Skip to main content

Efficient Computational Design of Tiling Arrays Using a Shortest Path Approach

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Abstract

Genomic tiling arrays are a type of DNA microarrays which can investigate the complete genome of arbitrary species for which the sequence is known. The design or selection of suitable oligonucleotide probes for such arrays is however computationally difficult if features such as oligonucleotide quality and repetitive regions are to be considered.

We formulate the minimal cost tiling path problem for the selection of oligonucleotides from a set of candidates, which is equivalent to a shortest path problem. An efficient implementation of Dijkstra’s shortest path algorithm allows us to compute globally optimal tiling paths from millions of candidate oligonucleotides on a standard desktop computer. The solution to this multi-criterion optimization is spatially adaptive to the problem instance. Our formulation incorporates experimental constraints with respect to specific regions of interest and tradeoffs between hybridization parameters, probe quality and tiling density easily. Solutions for the basic formulation can be obtained more efficiently from Monge theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kane, M.D., Jatkoe, T.A., Stumpf, C.R., Lu, J., Thomas, J.D., Madore, S.J.: Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res. 28(22), 4552–4557 (2000)

    Article  Google Scholar 

  2. Matveeva, O., Shabalina, S., Nemtsov, V., Tsodikov, A., Gesteland, R., Atkins, J., Journals, O.: Thermodynamic calculations and statistical correlations for oligo-probes design. Nucleic Acids Research 31(14), 4211–4217 (2003)

    Article  Google Scholar 

  3. He, Z., Wu, L., Li, X., Fields, M., Zhou, J.: Empirical Establishment of Oligonucleotide Probe Design Criteria. Applied and Environmental Microbiology 71(7), 3753–3760 (2004)

    Article  Google Scholar 

  4. Pozhitkov, A., Noble, P.A., Domazet-Loso, T., Nolte, A.W., Sonnenberg, R., Staehler, P., Beier, M., Tautz, D.: Tests of rrna hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted. Nucleic Acids Res. 34(9) (2006)

    Google Scholar 

  5. Selinger, D.W., Cheung, K.J., Mei, R., Johansson, E.M., Richmond, C.S., Blattner, F.R., Lockhart, D.J., Church, G.M.: Rna expression analysis using a 30 base pair resolution escherichia coli genome array. Nat. Biotechnol. 18(12), 1262–1268 (2000)

    Article  Google Scholar 

  6. Bertone, P., Trifonov, V., Rozowsky, J.S., Schubert, F., Emanuelsson, O., Karro, J., Kao, M.Y., Snyder, M., Gerstein, M.: Design optimization methods for genomic dna tiling arrays. Genome Res. 16(2), 271–281 (2006)

    Article  Google Scholar 

  7. Lipson, D., Yakhini, Z., Aumann, Y.: Optimization of probe coverage for high-resolution oligonucleotide acgh. Bioinformatics 23(2), 77–83 (2007)

    Article  Google Scholar 

  8. Bienert, S.: Flexible combination of filters for oligodesign. Diplomathesis, Center for Bioinformatics, Universität Hamburg (2006)

    Google Scholar 

  9. Abouelhoda, M., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms 2(1), 53–86 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische Mathematik, vol. 1, pp. 269–271. Mathematisch Centrum, Amsterdam, The Netherlands (1959)

    Google Scholar 

  11. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  12. Leda: http://www.algorithmic-solutions.com/

  13. Schliep, A.: The software GADAR and its application to extremal graph theory. In: Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Boca Raton, FL, vol. 104, pp. 193–203 (1994)

    Google Scholar 

  14. Automatically tuned linear algebra software (atlas): http://math-atlas.sourceforge.net/

  15. Shai, O., Morris, Q., Blencowe, B., Frey, B.: Inferring global levels of alternative splicing isoforms using a generative model of microarray data. Bioinformatics 22(5), 606 (2006)

    Article  Google Scholar 

  16. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of monge properties in optimization. Discrete Applied Mathematics 70(2), 95–161 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wilber, R.: The concave least-weight subsequence problem revisited. J. Algorithms 9(3), 418–425 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eppstein, D.: Sequence comparison with mixed convex and concave costs. J. Algorithms 11(1), 85–101 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic programming. Inf. Process. Lett. 33(6), 309–311 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix searching algorithm. In: SCG 1986: Proceedings of the second annual symposium on Computational geometry, New York, NY, USA, pp. 285–292. ACM Press, New York (1986)

    Chapter  Google Scholar 

  21. Aggarwal, A., Schieber, B., Tokuyama, T.: Finding a minimum weight k-link path in graphs with monge property and applications. In: SCG 1993: Proceedings of the ninth annual symposium on Computational geometry, New York, NY, USA, pp. 189–197. ACM Press, New York (1993)

    Chapter  Google Scholar 

  22. Cole, S., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S., Eiglmeier, K., Gas, S., Barry III, C., et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998)

    Article  Google Scholar 

  23. Schliep, A., Torney, D., Rahmann, S.: Group testing with DNA chips: generating designs and decoding experiments. In: Proceedings of the 2nd IEEE Computer Society Bioinformatics conference, pp. 84–93. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schliep, A., Krause, R. (2007). Efficient Computational Design of Tiling Arrays Using a Shortest Path Approach. In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics