
Real-Time Model Checking on Secondary Storage

Stefan Edelkamp and Shahid Jabbar

University of Dortmund
Otto-Hahn Straße 14

Germany
{stefan.edelkamp,shahid.jabbar}@cs.uni-dortmund.de ?

Abstract. In this paper, we consider disk based exploration in priced timed au-
tomata for resource-optimal scheduling. State spaces for large problems can eas-
ily go beyond the main memory capacity. We propose the use of hard disk to
store the generated state space induced by priced timed automata. We contribute
three algorithms: External Breadth First Search for reachability analysis in ordi-
nary timed automata, External Breadth First Branch-and-Bound for cost-optimal
reachability analysis in priced timed automata, and Iterative Broadening Exter-
nal Breadth First Branch-and-Bound for a partial exploration in priced timed au-
tomata. The third algorithm achieves its completeness by trying to find an upper
bound on the optimal solution in an incomplete search tree. Iteratively, the up-
per bound is made tighter and the coverage of the search space is widened. We
present correctness and completeness proofs for the suggested algorithms along
with experimental results on different instances of aircraft landing scheduling to
validate the practicality of our approach.

1 Introduction

Real-time model checking with timed automata [2] is an important decidable subfield
of the analysis of hybrid automata [11] with a number of industrial applications. UP-
PAAL [21] is one very successful verification tool based on timed automata. It can be
used for modeling, simulation and validation of real-time systems. It deals with non-
deterministic processes with finite control structure, channel or shared variable com-
munication, and real-valued clocks. UPPAAL CORA [20] is the extension of UPPAAL
designed for efficient cost-optimal reachability analysis in priced timed automata. UP-
PAAL CORA is also competitive in resource-optimal scheduling [23].

The main limitation to the exploration of real-time systems are bounded main mem-
ory resources. Relying on virtual memory slows down the exploration due to excessive
page faults. External algorithms [24] exploit harddisk space and organize the access to
secondary memory. Originally designed for explicit graphs, external search algorithms
have shown considerable performances in the large-scale breadth-first and guided ex-
ploration of single-agent games [16, 9] and in the analysis of model checking prob-
lems [13, 14, 18]. While [14] provides a distributed implementation of [13] for model
checking safety properties, a recent extension [8] extends the approach to general LTL
? The authors are supported by DFG under projects Directed Model Checking and Heuristic

Search.

properties. The approaches in [8, 13, 14] have been implemented on top of Spin model
checker and have succeeded in exploring state spaces as large as 3 Terabytes. In [25]
the model checker Murφ has been extended to use hard disk to store intermediate states.

In this paper, we extend external search algorithms for exploration in unweighted
and weighted real-time models. The challenge is to I/O efficiently deal with the external
representation and elimination of redundant states. We propose three algorithms: Exter-
nal Breadth First Search for reachability analysis in ordinary timed automata, External
Breadth First Branch-and-Bound for cost-optimal reachability analysis in priced timed
automata, and Iterative Broadening External Breadth First Branch-and-Bound for a par-
tial exploration in priced timed automata. The proposed algorithms provide a controlled
and guided exploration of the state space.

The paper is structured as follows. First, we review real-time model checking with
priced timed automata. Then, we consider external exploration and introduce delayed
duplication detection in breadth-first search. Next, we present external search in real-
time domains. An introduction to priced timed automata is presented next. Since in the
priced timed automata, we are interested in a cost optimal solution, we combine external
search with branch-and-bound. Later, we present an iterative broadening variant of the
algorithm that tries to find a good upper bound by searching in only a fragment of the
state space. We have implemented our approach in UPPAAL CORA. Results for various
problems of aircraft landing scheduling are presented.

In this text we consider real-time model checking with timed automata, for which
the reachability problem is decidable but PSPACE-hard [2]. We furthermore restrict
overselves to the cost optimization variant of reachability analysis for linearly priced
timed automata. For extending these explorations to real-time model checking with
respect to temporal properties we refer the reader to [6]. Moreover,

2 Timed Automata

Timed Automata can be viewed as an extension of classical finite automata with clocks
and constraints defined on these clocks. These constraints, when corresponding to states
are called invariants, and restrict the time allowed to stay at the state. When corre-
sponding to transitions these constraints are called guards, and restrict the use of the
transition. The clocks C are real-valued variables and are used to measure durations.
The values of all the clocks in the system are denoted as a vector, also called as clock
valuation function v : C → IR+. The constraints are defined over clocks and can be
generated by the following grammar: for x, y ∈ C, a constraint α is defined as,

α ::= x ≺ d | x− y ≺ d | ¬α | (α ∧ α),

where d ∈ ZZ and ≺∈ {<,≤}. These constraints yield two different kinds of transi-
tions. The first one (delay transition) is to wait for some duration in the current state s
- provided the invariant(s) holds. This lets only the clock variables increase. The other
operation (edge transition) resets some clock variables while taking the transition t. The
operation is possible given that the guard(t) holds. We allow an edge transition to be
taken without an increase in the clock variables, i.e., in time 0. Trajectories are alter-
nating sequences of states and transitions and define a path within the automata. The

reachability task is to determine, if the goal in form of partial assignment to the ordinary
and clock variables can be reached or not. The optimal reachability problem is to find a
trajectory that minimizes the overall path length.

For a reachability analysis on timed automata, one faces the problem of an infinite-
state space. This infiniteness is due to the fact that the clocks are real-valued and, hence,
an exhaustive state space exploration can yield to infinite branches. This problem was
solved with the introduction of a partitioning scheme based on regions [2]. A region au-
tomata creates finitely many partitions of the infinite state space based on the equivalent
classes of the clock valuations. In model checking tools like Uppaal, though, a coarser
representation called as zone [2] is used. Formally, a zone Z over a set of clocks C is a
finite conjunction of simple difference constraints of the form x− y ≤ d or x− y < d,
with x, y ∈ C and integer d1. The semantics for delay and edge transitions in a timed
automata are based on some basic operations. We restrict to changes in clock variables.
For a clock vector u and a zone Z we write u ∈ Z if u satisfies the constraints in Z.
The two main operations on (clock) zones are clock reset {x}Z = {u[0/x] | u ∈ Z}
that resets all the clocks x, delay or future (d time units) Z↑ = {u + d | u ∈ Z}.
The reachability problem in timed automata can then be reduced to the reachability
analysis in zone automata. In a zone automata, each state is basically a symbolic state
corresponding to one or many states in the original Timed Automata. The new state is
represented as a tuple (l, Z), with l being the discrete part containing the local state of
the automata, and Z is the convex |C|-dimensional hypersurface in Euclidean space.
Semantically, (l, Z) now represents the set of all states (l, u) with u ∈ Z. Let B(C) de-
notes the set of constraints defined on clocksC andP(C) the power set ofC. Formally,
a Timed automata can be defined as follows:

Definition 1 (Timed Automata). A timed automata is a tuple A = (S, l0,R, Inv, T),
where S is the set of states, (l0, Z0) is the initial state with an empty zone, R ⊆ S ×
B(C)×P(C)×S is the transition relation making states to their successors, given the
constraints on the edge are satisfied, Inv : S → B(C) assigns invariants to the states,
and T is the set of final states.

3 External Breadth First Search

Most modern operating systems hide secondary memory accesses from the program-
mer, but offer one consistent address space of virtual memory that can be larger than
the internal memory. When the program is executed, virtual addresses are translated
into physical addresses. Only those portions of the program currently needed for the
execution are copied into main memory. Caching and pre-fetching heuristics have been
developed in order to reduce the number of page faults (the referenced page does not
reside in the cache and has to be loaded from the hard disk). However, these methods
are general-purpose and can not always take full advantage of the locality inherent in
algorithms. Algorithms that explicitly manage the memory hierarchy can lead to sub-
stantial speedups, since they are more informed to predict and adjust future memory
access.

1 Unary constraints x ≤ d or x < d are rewritten as x− x0 ≤ d and x− x0 < d for some start
time clock variable x0, x− y ≥ d as y − x ≤ −d and x = y as x− y ≤ 0 and y − x ≤ 0.

The standard model for comparing the performance of external algorithms consists
of a single processor, a small internal memory that can hold up to M data items, and
an unlimited secondary memory. The size of the input problem (in terms of the number
of records) is abbreviated by N . Moreover, the block size B governs the bandwidth of
memory transfers2. Typically M =

√
B. It is usually assumed that at the beginning of

the algorithm, the input data is stored in contiguous block on external memory, and the
same must hold for the output. Only the number of block reads and writes are counted,
computations in internal memory do not incur any cost. The single disk model for ex-
ternal algorithms has been invented by [1]. It is convenient to express the complexity
of external-memory algorithms using a number of frequently occurring primitive oper-
ations:

1. scan(N) with an I/O complexity of Θ(NB) that can be achieved through trivial
sequential access.

2. sort(N) with an I/O complexity of Θ(NB logM/B
N
B) that can be achieved through

External Merge or Distribution Sort

Finite State Systems One of the first efforts towards a search algorithm that works on
external memory is due to Munagala and Ranade [22]. The authors presented an exter-
nal memory Breadth First Search(BFS) algorithm for explicit graphs, i.e., the graphs
that are completely available beforehand in the form of adjacency lists. For example, a
road network. Later the algorithm has been adapted for the implicit graphs that are gen-
erated on-the-fly from an initial state and a set of rules/transitions, and has been called
delayed duplicate detection for frontier search. Both of the these algorithms assume an
unweighted and undirected graph and work on a similar principle. Let Succ be the suc-
cessor generation function. The algorithms maintain BFS layers on disk3. Let Open(j)
represent the set of states at layer j. Layer Open(j−1) is scanned and the set of succes-
sors is put into a buffer of size close to the main memory capacity. If the buffer becomes
full, internal sorting followed by a scanning generates a sorted duplicate-free state se-
quence in the buffer that is flushed to disk. This results in a file with states belonging to
depth j stored in the form of sorted buffers. To remove the duplicates, external sorting
is applied to unify the buffers into one sorted file. Due to sorting, all duplicates will
come close to each other and a simple scan is enough to generate a duplicate free file.
One also has to eliminate/subtract previous layers from Open(j) to avoid re-expansions.
In [22], the authors argue that for undirected graphs, subtracting two previous layers is
enough to guarantee that no state is expanded twice.

The process is repeated until Open(j − 1) becomes empty, or the goal has been
found. Delayed duplicate detection appliesO(sort(|Succ(Open(j−1))|)+scan(|Open(j−

2 On the hardware level the block size B is fixed by the computer architecture. From the appli-
cation program point of view it is possible to vary B according to the given resources. If only
a constant number c of internal buffers are required, the block size can be scaled to M = cB.

3 As BFS traverses the graph in layers, only two active files are needed, one for reading the
expanded states and one for writing the generated states. To I/O optimally cope with sparse
graphs, the BFS layers can be maintained in one large file together with file pointers locating
their offsets and with two internal buffers for reading and writing. With respect to the previous
footnote this implies that M = 2B.

1)|+|Open(j−2)|)) I/Os. Since each edge contributes to one state,
∑

j |Succ(Open(j))| =
O(|R|) and

∑
j |Open(j)| = O(|S|). This gives a total I/O complexity ofO(sort(|R|)+

scan(|S|)) I/Os, which – assuming delayed duplicate detection on general state vectors
is needed – proves to be optimal [3].

The algorithm shares similarities with internal Frontier Search [15, 17] that was
used for solving multiple sequence alignment problems, an idea that goes back to
Hirschberg [12]. The sorting complexity can be improved in practice by using a hash-
based delayed duplicate detection scheme. Frontier search has been used to fully ex-
plore the 15-Puzzle with 1.4 Terabytes of harddisk in about three weeks [16]. Since
harddisk operations are several times slower than the internal operations, interleaving
expansion and merging through threads also accelerated the performance. It has also
been used to generate very large abstract state spaces that exceed main memory capac-
ity [27].

4 External Search in Real-Time Systems

One of the involved differences between real-time reachability and ordinary reachabil-
ity analysis is the inclusion-check. While in (delayed) duplicate elimination we omit
all identical states from further consideration, in real-time model checking we have to
check inclusions of the form Z ⊆ Z ′ to detect duplicate states. Once Z is closed under
entailment, in the sense that no constraint of Z can be strengthened without reducing
the solution set, the time-complexity for inclusion checking is linear to the number of
constraints in Z.

Subsequently, while porting real-time model checking algorithms to an external
setting, we have to provide an option for the elimination of zones. Since we cannot
define a total order on zones, trivial external sorting schemes are useless in our case. In
our proposal of External Breadth First Searchwe exploit the fact that two states (l, Z)
and (l′, Z ′) are comparable only when l = l′. This motivates the definition of zone
union U where all zones correspond to the states sharing a common discrete part l, and
for all Z,Z ′ ∈ U , we have Z * Z ′.

Duplicate states can now be removed by first sorting with respect to the discrete
part l, which will bring all states sharing the same l close together, and then doing a
one-to-one comparison among all such states. The result of this phase is a file where
states are sorted according to the discrete parts l forming duplicate free zone unions.

However, the one-to-one comparison of all the zones for a particular l can only be
performed I/O-efficiently when all the states sharing the same l can be read into the
main memory. Throughout this presentation, we assume that this requirement holds.
The same approach of internalizing zone unions is available during set refinement with
respect to predecessor files. We load both the zone union from the predecessor file and
the one in the unrefined file and check for the entailment condition.

State spaces that appear in model checking are usually directed and hence just re-
moving duplicates with respect to the last previous two layers is not sufficient. The
crucial complexity parameter is the locality or duplicate elimination scope as defined
in [26], which defines the number of previous levels to be considered. In the text, this
notion of locality for an automaton A is referred to as locality(A). Let Z0 denotes the

Procedure External Breadth First Search
Input: A timed automata A = (S, l0,R, Inv, T); a symbolic initial state (l0, Z0).
begin

Open(0)← {(l0, Z0)} ;; START WITH THE INITIAL STATE

j ← 1
while (Open(j − 1) 6= ∅)
A(j)← Succ(Open(j − 1))
forall (l, Z) ∈ A(j) ;; ITERATE ON ALL SUCCESSORS

if (l ∩ T 6= ∅) ;; GOAL FOUND

return ConstructSolution() ;; RETURN SOLUTION

A′(j)← remove redundant zones within A(j) ;; DUPLICATES WITHIN THE LAYER

for loc← 1 to locality(A) ;; DUPLICATES SEEN IN PREVIOUS LAYERS

A′′(j)← A′(j)\
{(l, Z′) ∈ Open(j − loc) | (l, Z) ∈ A′(j), Z ⊆ Z′}

Open(j)← A′′(j)
j ← j + 1

end

Fig. 1. External Breadth First Search: (l0, Z0) is the initial state of the timed automaton A and T
are the desired goal states.

empty zone. The locality of a directed search graph with (l0, Z0) being the start state is
defined as

max{δ((l0, Z0), (l, Z))− δ((l0, Z0), (l′, Z ′))}+ 1

for all states (l, Z), (l′, Z ′), with (l′, Z ′) being a successor of (l, Z) and δ being the
shortest-path distance between two states. For undirected graphs the above equation
evaluates to 2 – validating the proof of Munagala and Ranade.

In Figure 1, we depict the pseudo-code of the algorithm that performs an External
Breadth First Search on real-time systems with symbolic states representation. There
is no hash-table involve in the algorithm but we rely on alternative duplicates removal
techniques. Starting with the initial state, the algorithm performs generates all the nodes
of layer j − 1 generating the successors in layer j − 1. Duplicates are removed in two
steps: removing all the redundant zones from within a layer, and wrt. locality(A) many
previous layers. The sets A, A′, and A′′ act as temporary sets. Each set is mapped to a
file and a corresponding internal memory buffer. New states are first inserted into the
buffer and flushed to the file once the buffer is full.

For a timed automaton A with S as the set of states and R the set of transitions in
a real-time system A, we obtain the following worst-case I/O complexity of External
Breadth First Search.

Theorem 1. For the problem of symbolic reachability in timed automata, if all zone
unions individually fit into the main memory External Breadth First Search for can be
executed in O(sort(|R|) + locality(A) · scan(|S|)) I/Os.

Proof. The proof extends the I/O complexity of external Breadth-First search for undi-
rected graphs. For directed graphs, the duplicate elimination scope is equal to locality(A),

y ≥ 40 ≤ y ≤ 4
s1 s3s2

c = 4 x← 0
c = c+ 1 c = c+ 4

x← 0
y ≤ 4

x← 0
c = 2

Fig. 2. Example of a priced timed automaton.

which, in turn, effects the number of layers that we have to scan in order to remove all
the duplicates. ut

The memory assumption is almost always fulfilled in practice, as current amounts
of main memory can maintain several millions of zones. If some zone unions still fail to
fit into main memory, we have to rescan the zone unions in one file again and again. If
the size of the largest zone union is Umax, this will accumulate to O(locality(A) · |E|Umax

·
scan(Umax)2) I/Os in the worst case for checking the duplicates in the previous layer
and for compacting a sorted file.

4.1 Linearly Priced Timed Automata

Linearly Priced Timed Automata (LPTA) are timed automata with (linear) cost vari-
ables. For the sake of brevity, we restrict their introduction to one cost variable c. Cost
increases at states with respect to a predefined rate and in transitions with respect to
an update operation. The cost-optimal reachability problem is to find a trajectory that
minimizes the overall path costs. Figure 2 shows a timed automata with 3 states s1

(init), s2 (intermediate), s3 (goal) with two clock variables x and y and the clock con-
straints defined on the transitions. The rate of cost variable c is 4 at s1 and 2 at state
s2. The minimum cost of reaching location s3 with cost 13 correspond to the trajectory
(d(0), t1, d(4), t2) of waiting 0 steps in s1 and then taking the transition to s2, where
four time steps are spent until the transition to the goal in s3.

Similar to the timed automata, for LPTAs we use the notion of priced zone to rep-
resent the symbolic states. Let ∆Z be the unique clock valuation of Z such that for all
u ∈ Z and ∀x ∈ C, we have, ∆Z ≤ u(x), i.e., it represents the lowest corner of the
|C|-dimensional hypersurface representing a zone. In the following, we ∆Z is referred
as the zone offset.

For the internal state representation, we exploit the fact that prices are linear cost
hyperplanes of zones. A priced zone Z is a triple (Z, c, r), where Z is a zone, integer c
describes the cost of∆Z and r : C → ZZ gives the rate for a given clock. In other words,
prices of zones are defined by the respective slopes that the cost function hyperplane has
in the direction of the clock variable axes. Furthermore, with f : Z → ZZ, we denote
the cost evaluation function based on priced zonesZ . The cost value f for a given clock
x ∈ C in the priced zoneZ = (Z, c, r) can then be computed as c+

∑
x∈C r(x)(v(x)−

∆z(x)). Formally, a priced timed automata can be described as follows:

Definition 2 (Linearly Priced Timed Automata [20]). A linearly priced timed au-
tomaton A over clocks C is a tuple (S, l0,R, Inv, P, T), where S is a finite set of au-
tomata locations, (l0,Z0) is the initial state with empty priced zone Z0, R ⊆ S ×
B(C)×P(C)× S is the set of transitions, each consisting of a parent state, the guard
on the transition, the clocks to reset and the successor state, Inv assigns invariants to
locations, and P : (S ∪R)→ IN assigns prices to the states and transitions.

5 External Breadth First Branch-and-Boundin Priced Real-Time
Systems

Until now, we have been mainly discussing external search in directed and unweighted
state spaces. But, as we move towards priced real-time systems where timed automata
are extended with a cost variable, we find ourselves dealing with a weighted state space.
Moreover, we are no longer interested in just some path to a particular goal state, but in
an optimal path with respect to our new cost variable.

In priced real-time systems, cost f is a monotonically increasing function implying
that for all (u, v) ∈ R, we have f(u) ≤ f(v). If f ∗ is the optimal solution cost, the
following definition captures the notion of cost-optimality for a set of goals T and a
start state (l0,Z0).

Definition 3. (Cost-Optimality) An algorithm is Cost-Optimal, if and only if, it termi-
nates with a state t ∈ T and f(t) = f ∗.

In such directed and weighted graphs, BFS does not guarantee an optimal solution.
A natural extension of BFS is to continue the search when a goal is found and keep
on searching until a better goal is found or the state space is exhausted. A Branch-and-
Bound (BnB) search algorithm is an extension to an uninformed search algorithm that
does not stop when it finds the first goal, but instead prunes all the states that do not
improve on the last solution cost. Given that the cost function is monotone, which is the
case with f , BnB always terminates with an optimal solution.

The main traversal policy of a Branch-and-Bound algorithm can be borrowed from
either breadth-first search, depth-first search, or best-first search. A Best-First BnB al-
gorithm, though very well suited for small-sized problems can create a bottleneck for
larger problems. Best-first search picks a state u such that for all v ∈ Open, we have
f(u) ≤ f(v), for the next expansion. This selection criteria calls for a much larger hori-
zon to be saved in the memory as compared to the Breadth First Search or a Depth First
Search. Moreover, both depth-first and best-first traversal policies show no locality in
the way they expand states - unlike Breadth First Search , where every state in a layer
j is expanded before any state of the layer j + 1. This property makes Breadth First
Search a good candidate for branch-and-bound.

Because of being in a weighted state space, we have to pay an overhead by re-
opening already seen states. Consider the following example as illustrated in Fig. 3. A
Breadth-First search visits state v for the first time (top right copy) and stores it. Goal
state g is also visited and its cost is saved. When the search reaches state v for the second
time along a longer path (bottom left copy), but this time with a better cost, v will be
pruned away while subtracting previous layers and g will never be reached. If the new

g
v

v

g

Fig. 3. Anomaly in the Breadth-First Branch-and-Bound. g is a goal state

path to g has a better cost, we lose our claim for optimality. Due to this anomaly, the
duplicate detection policy has to be adapted to make it compatible with weighted state
spaces. Now we are not allowed to remove a duplicate state if its cost is better than what
we have seen earlier.

Definition 4. Duplicate state in priced domains (l,Z) is a duplicate state of (l′,Z ′) if
and only if l = l′, Z ⊆ Z ′ and f(Z) ≥ f(Z ′).

In Figure 4, we formulate our discussion on External Breadth First Branch-and-
Bound in pseudo-code. The set Open represents the BFS layer and the sets A, A′ and
A′′ are temporary variables to construct the search frontier for the next iteration. Initially
the goal cost Cost is initialized with∞ and a goal state with a better value is searched
in the successor set A(j). States with a higher value than the best goal cost are pruned
and saved inA′(j). In the next step, we remove redundant states based on our definition
of duplicate states.

The working of the algorithm is depicted in Figure 5. On x-axis we denote the
layers of Breadth First exploration. Each layer is sorted with increasing cost value.
Upon arriving at the first goal t1, the next layer is pruned to only consider the nodes
that have a better cost value. The exploration terminates when the last goal t4 with the
minimal cost value is expanded and no successor of t4 improves the cost.

The I/O complexity of External Breadth First Branch-and-Bound algorithm depends
on the number of times a state is re-expanded. The worst-case scenario is when the
whole state space fits into one layer and the next layer has the same states but with
better cost values. The following theorem states the cost-optimality and I/O complexity
of the algorithm.

Theorem 2. For the problem of cost-optimal symbolic reachability in priced timed au-
tomata with monotonic costs, if all zone unions individually fit into the main mem-
ory, External Breadth First Branch-and-Bound is Cost-Optimal and can be executed
in O(D · (sort(|R|) + locality(A) · scan(|S|))) I/Os, where D is the maximal depth
explored.

Procedure External Breadth First Branch-and-Bound
Input: A linearly priced timed automaton A = (S, l0,R, Inv, P, T);

A symbolic initial state (l0,Z0).
begin

Cost←∞; j ← 1 ;; BEST GOAL COST IS∞
Open(0)← {(l0,Z0)} ;; START WITH THE INITIAL STATE

while (Open(j − 1) 6= ∅)
A(j)← Succ(Open(j − 1))
forall (l,Z) ∈ A(j) ;; ITERATE ON ALL SUCCESSORS

if (l ∩ T 6= ∅ ∧ f(Z) < Cost) ;; ANOTHER GOAL FOUND

Cost← f(Z) ;; COST OF THE NEW GOAL

A′(j)← A(j) \ {(l,Z) ∈ A(j) | f(Z) ≥ Cost} ;; PRUNE THE EXPENSIVE STATES

A′′(j)← remove redundant zones within A′(j) ;; DUPLICATES WITHIN THE LAYER

for loc← 1 to locality(A) ;; DUPLICATES SEEN IN PREVIOUS LAYERS

A′′(j)← A′′(j)\
{(l,Z ′) ∈ Open(j − loc) | (l,Z) ∈ A′′(j), Z ⊆ Z ′ ∧ f(Z) ≥ f(Z ′)}

Open(j)← A′′(j)
j ← j + 1

if (Cost 6=∞)
return ConstructSolution() ;; CONSTRUCT SOLUTION IF FOUND

end

Fig. 4. External Breadth First Branch-and-Bound: (l0,Z0) is the symbolic initial state of the
graph A and T are the desired goal states.

Proof. Since External Breadth First Branch-and-Bound expands at least all states (l,Z)
with f(l,Z) < f∗, the algorithm terminates with the optimal solution. The I/O com-
plexity of the algorithm is inherited from the External Breadth First Search search (cf.
Theorem 1). The factor D is introduced due to re-openings. ut

Furthermore, we can say that if there are several goal states in the state space with
different solution costs, then an External Breadth First Branch-and-Bound run will ex-
plore at most as many states as a complete External Breadth First Search run.

Lemma 1. If m is the number of states expanded by External Breadth First Branch-
and-Bound and n is the number of states expanded by a complete exploration of Exter-
nal Breadth First Search, then m ≤ n.

Proof. External Breadth First Branch-and-Bound does not change the order in which
states are looked at during a complete External Breadth First Search exploration. There
can be two cases:

1. |T | = 1: There exist just one goal state twhich is also the last state in a breadth-first
search tree. For this case clearly n = m.

2. |T | > 1: There exists more than one goal state in the search tree. Let t1, t2 ∈ T
be the two goal states with f(t1) > f(t2) = f∗ and depth(t1) < depth(t2). Since
t1 will be expanded first, f(t1) will be used as the pruning value during the next

Depth

Cost

t1

t4

t2

t3

Fig. 5. A sample run of External Breadth First Branch-and-Bound; the ti’s represent different
goals.

iterations. In case, there does not exists any state u in the search tree between t1
and t2 with f(u) > f(t2), n = m, else m < n.

ut

The behaviour of External Breadth First Branch-and-Bound largely depends on how
fast it reaches to some solution so that it can use that solution cost to further prune away
the search space. Their exists a very trivial solution to this problem where the user
provides some upper boundU on the solution cost that can be used for pruning. In case
the upper bound U is actually equal to the optimal solution cost f ∗, the algorithm is
trivially Cost-Optimal.

Lemma 2. External Breadth First Branch-and-Bound with U = f ∗ is Cost-Optimal.

Since the cost function f in our real-time domain is monotonically increasing, i.e.,
for all (u, v) ∈ R, we have f(u) ≤ f(v), we will never prune any node that can
ultimately take us to the goal node.

6 Iterative Broadening External Breadth First Branch-and-Bound

We observe that the efficiency of External Breadth First Branch-and-Bound is inversely
proportional to the factor U − f∗. The more realistic the upper bound is, the bigger the
pruning and, hence, the lesser the number of expansions. This observation guides us to
an iterative strategy to find a good upper bound. We suggest to use only the first k% of
the states when sorted with respect to the increasing cost value and discard the rest of
the states in the layer. Hopefully, the algorithm will terminate with a solution, giving us
a good upper bound on the optimal solution cost. Using the found solution cost as the
upper bound for an increased value of k, we hope to converge to optimal solution cost
when k approaches to 100. We will refer the parameter k as the beam width.

Unfortunately, there is an apparent problem with this approach. It is possible that
for a particular iteration we arrive at a goal state, but at the next iteration we do not.

This problem is more frequent in real-time domains, where there can be many different
states with the same f -value, residing in a set that has no total order. The algorithm is
not guaranteed to converge with increasing k (exception is when k = 100% and the
whole state space is considered). Let ki be the value of k in the ith iteration. For the
algorithm to converge, the coverage area of the (i + 1)th iteration must be at least as
large as the coverage area of the ith iteration. Formally, for any layer j,

Openi(j) ⊆ Openi+1(j) (1)

Such a guarantee can only be given if the maximum cost value that was chosen in the
(i+ 1)th iteration for layer j is greater than or equal to the maximum cost value chosen
in the i-th iteration. For Condition 1 to hold throughout the exploration, we propose the
following selection criterion.

Selection Criterion the best k% states of a layer plus all the states that have the same
f -value as that of the last state of the selected list plus all the states that have the
smaller f -value as that of the maximum selected f -value of the last iteration.

With this selection criterion, for a particular cost f ′, we either choose all the states with
a f value equal to f ′ or choose none.

Figure 6 shows the pseudo-code for the actual exploration involving upper bound
pruning and the above mentioned selection criteria. The parameters of the algorithms
are the beam width k (in percent), the upper bound U and the vector Fmax of maximal
f -values from the last iteration. With successive iterations, the value of k is increased
and the solution cost value of the previous iteration is used as an upper bound. The set
Open denotes the search frontier, sliced into layers as before. The sets A, A′ and A′′

are temporary sets, to construct the search frontier for the next iteration. Both the new
Cost and the new vector of maximal f -values are returned. We use πn to denote the
n-th element in the sorted permutation of a set.

6.1 Correctness

Let U ′i be the cost of the solution found by Iterative Broadening External Breadth First
Branch-and-Bound in the ith iteration with k = ki and U = Ui as the arguments. In the
following, we show that the algorithm converges for increasing value of k.

Lemma 3. The selection criterion for Iterative Broadening External Breadth First Branch-
and-Bound guarantees the coverage condition for every iteration i.

Proof. We prove it by induction on the layer j. For j = 0, Openi(0) ⊆ Openi+1(0).
Assume that it holds for layer j − 1 i.e, Openi(j − 1) ⊆ Openi+1(j − 1). Gener-
ating the successor sets for both sides of the relation yields Succ(Openi(j − 1)) ⊆
Succ(Openi+1(j − 1)). Removing duplicates from the successor sets on both sides
does not change the subset condition. Now we turn to pruning. The selection criteria
guarantees that the values F jmax increase monotonically for increasing value of i, i.e.,
F ji,max ≤ F ji+1,max. Moreover cost plateaux are completely searched. Therefore, prun-
ing does not change the subset condition, so that Openi(j) ⊆ Openi+1(j). ut

Procedure Iterative Broadening External Breadth First Branch-and-Bound(k,U, Fmax)
Input: A linearly priced timed automaton A = (S, l0,R, Inv, P, T);

A symbolic initial state (l0,Z0).
begin

Cost← U ; j ← 1 ;; BEST GOAL COST IS U
Open(0)← {(l0,Z0)} ;; ALWAYS SART WITH THE INITIAL STATE

while (Open(j − 1) 6= ∅)
A(j)← Succ(Open(j − 1))
forall (l,Z) ∈ A(j) ;; ITERATE ON ALL SUCCESSORS

if (l ∩ T 6= ∅ ∧ f(Z) < Cost) ;; ANOTHER GOAL FOUND

Cost← f(Z) ;; COST OF THE NEW GOAL

A′(j)← A(j) \ {(l,Z) ∈ A(j) | f(Z) ≥ Cost} ;; PRUNE THE EXPENSIVE STATES

A′′(j)← remove redundant zones within A′(j) ;; DUPLICATES WITHIN THE LAYER

for loc← 1 to locality(A) ;; DUPLICATES SEEN IN PREVIOUS LAYERS

A′′(j)← A′′(j)\
{(l,Z ′) ∈ Open(j − loc) | (l,Z) ∈ A′′(j), Z ⊆ Z ′ ∧ f(Z) ≥ f(Z ′)}

A′′(j)← External-sort A′′(j) w.r.t the cost function f
n← b(k · |A′′(j)|)/100c ;; THERE ARE n MANY STATES IN THE BEST k%
(ln,Zn)← πn(A′′(j)) ;; PICK THE n-TH STATE

F jmax ← max{F jmax, f(Zn)} ;; COMPUTE THE NEW MAX F VALUE FOR THE LAYER

Open(j)← {(l,Z) ∈ A′′(j) | f(Z) ≤ F jmax} ;; KEEP ONLY THE best STATES

j ← j + 1
if (Cost < U) ;; IF THE BOUND HAS IMPROVED CONSTRUCT THE SOLUTION

ConstructSolution()
return Cost, Fmax ;; RETURN NEW UPPER BOUND

end

Fig. 6. Iterative Broadening External Breadth First Branch-and-Bound. k represents beam width,
U the upper bound, and Fmax represents the maximum cost used in each layer during the last
iteration. (l0,Z0) is the symbolic initial state of the priced timed automata A and T are the
desired goal states.

Lemma 4. For all iterations i in Iterative Broadening External Breadth First Branch-
and-Bound, we have U ′i+1 ≤ U ′i .

Proof. Since the coverage area of iteration i + 1 is larger than the coverage area of
iteration i, in the worst case it does not improve on the solution quality i.e., U ′i+1 =
U ′i ≤ Ui, else we have U ′i+1 ≤ U ′i ≤ Ui. In both cases, U ′i+1 ≤ U ′i . ut

Theorem 3. Iterative Broadening External Breadth First Branch-and-Boundconverges
to the optimal solution.

Proof. Lemma 3 provides the necessary ground for the coverage of whole state space,
which implies the completeness of the algorithm and Lemma 4 provides the conver-
gence to the optimal solution cost that proves its optimality. ut

7 Experiments

We have implemented the algorithms External Breadth First Branch-and-Bound, and It-
erative Broadening External Breadth First Branch-and-Bound on top of UPPAAL CORA.
Our implementation also extends UPPAAL making it capable to perform External Breadth
First Search in timed automata. The main memory requirements are kept constant4.
Hash tables are replaced by files on harddisk with a small internal buffer for I/O effi-
ciency. As the maximum file size on most file systems is 2GB, we also provide large
file support, that splits files if they become too large. Trails for found solutions are re-
constructed by saving the predecessor together with every state, by using backtracking
along the stored files, and by looking for matching predecessors. This results in a I/O
complexity that is at most linear to the number of stored states.

A limited functionality (which nonetheless does not compromise the correctness of
the approach) of the current implementation is on the duplicate detection scope and
on external sorting. We remove duplicates from the internal buffer before flushing it
but the duplicates within different flushed buffers are not merged. All experiments are
run on a Pentium-4 with 150 GB of harddisk space and 2GB RAM running Linux. We
chose different instances of aircraft landing scheduling (ALS), for which [5] presented
a UPPAAL CORA model. It involves considering a timed automaton for each of the
airplane and runways.

We start with a smaller instance involving just 1 runway and 10 planes. Table 1 (left)
provides the results of running Iterative Broadening External Breadth First Branch-and-
Bound. Here k denotes the coverage, U the initial bound and U ′ the optimal solution
obtained. The behaviour of pruning on the number of expanded states is quite evident.
We also see a converging behaviour of the algorithm. In the last row we report the re-
sults for External Breadth First Branch-and-Bound to show the effect of pruning on
the search space. Our result matches with the one found by UPPAAL CORA. Table 1
(right) illustrates the results for the instance, where we created two independent au-
tomata for runways and planes. We then instantiated 1 runway and 10 planes from the
first type and 1 runway and 10 planes from the other. UPPAAL CORA with internal BnB
cannot solve the instance because of memory requirements. Being an exact dual, the
solution has to be 1400, which validates our implementation. With Iterative Broaden-
ing, we were able to find an optimal solution. On the other hand, External Breadth First
Branch-and-Boundcould not finalize its execution in two hours consuming about 3 GB
with 280 bytes per state, while expanding depth 19 - optimal solution lies at depth 40.
The process was manually killed.

For the third instance, we chose another instance of aircraft scheduling problem that
was obtained by a translation from PDDL planning models [7]. The internal version of
UPPAAL CORA failed to reach any solution for 3 planes and after quickly consuming
about 1.6 GB of main memory started to swap on harddisk. For this instance just for
3 planes a total of 13 clocks were used. Our iterative broadening strategy, for k <
100 didn’t produce any solution. For k = 100, the algorithm ran for about 12 hours
consuming a total of 311 GB and ran out of harddisk space using a mere 2KB per
state. On a harddisk with just 150 GB available, this was achieved by removing the

4 Up to a leak of at most 100 MB per hour.

k U U ′ Expanded

1 ∞ 970 91
20 970 970 91
40 970 810 125
60 810 710 281
80 710 700 439
100 700 700 577
100 ∞ 700 31,458

k U U ′ Expanded

0.1 ∞ 1940 1,060
20 1940 1940 1,285
40 1940 1420 18142
60 1420 1410 69,341
80 1410 1410 147,128

100 1410 1400 195,145
100 ∞ — —

Table 1. ALS with 1 runway and 10 planes (left), and with 2 runways and 20 planes (right).

previous layers manually. Up till the 40th layer there was no solution. In Fig. 7, we
depict the graph where space consumption for each layer is shown. The internal size of
the program remained under 1.8 GB.

8 Conclusion

We have seen an approach for large scale scheduling based on external exploration on
priced timed automata. We contributed two algorithms: External Breadth First Branch-
and-Bound and Iterative Broadening External Breadth First Branch-and-Bound. Both
algorithms perform an external Breadth First Search on the search space and preserve
optimality of the computed cost values. Having performed an exploration of more than
a quarter of a Terabyte, we believe to have pushed the limits of practical scheduling and
model-checking in real-time domains.

The exploration can be performed on multiple disks, as sorting and searching can
be distributed with optimal I/O efficiency. As external exploration realizes a controlled
streamed access to states, there is also potential for a parallel implementation. A par-
allel and distributed reachability checking algorithm of UPPAAL based on the Message
Passing Interface (MPI) partitions the list of explored states using a simple hash func-
tion [4]. It restricts itself to blind exploration.

We have not talked about heuristic search, although the UPPAAL CORA models in-
corporate hand-coded search heuristics to accelerate the exploration. A recent proposal
to generate heuristics for UPPAAL automatically has recently been provided by [19].

Iterative Broadening has been introduced by [10]. The Breadth First BnB approach
is related to Breadth-First Heuristic Search (BFHS) [26], a frontier search method that
was designed to save internal memory. It is based on the observation that the Breadth
First Search frontier is often much smaller than the best-first search frontier. A re-
cent extension of BFHS is its integration with beam search known as Beam-Stack
Search [28]. As it iterates on different beams, this algorithm is a natural competitor
for Iterative Broadening External Breadth First Branch-and-Bound. This algorithm is
also guaranteed to continously converge. There are several differences to our approach.
The beam width in Beam-Stack Search is driven by the limits of main memory (previ-
ous layers can be flushed to the harddisk). Such a limit is not needed in our case, as we
exploit the secondary storage. Therefore, we introduce parameter k to control the beam
width. Moreover, a backtracking strategy is employed to pick more elements from the
previous layer in case the upper bound is not improved.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 5 10 15 20 25 30 35 40

M
em

or
y

U
sa

ge
 (i

n
M

eg
ab

yt
es

)

BFS Layer

Secondary Memory

Fig. 7. Space consumption for each BFS Layer.

The approach we are currently working on, splits the layer that is being expanded,
into several ones, and distributes the work among different processors. As states can be
expanded independently of each other, a speedup is expected.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Journal of the ACM, 31(9):1116–1127, 1988.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. L. Arge, M. Knudsen, and K. Larsen. Sorting multisets and vectors in-place. In Workshop
on Algorithms and Data Structures (WADS), LNCS, pages 83–94, 1993.

4. G. Behrman, A. Fehnker, and F. Vaandrager. Distributed timed model checking - how the
search order matters. In CAV, 2000.

5. G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling using priced timed
automata. In ICAPS Workshop on Verification and Validation of Model-Based Planning and
Scheduling Systems, 2005.

6. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly algorithms
for the analysis of timed games. In CONCUR, 2005.

7. H. Dierks. Finding optimal plans for domains with restricted continuous effects with cora. In
ICAPS Workshop on Verification and Validation of Model-Based Planning and Scheduling
Systems, 2005.

8. S. Edelkamp and S. Jabbar. Large-scale directed model checking LTL. In Model Checking
Software, SPIN, pages 1–18, 2006.

9. S. Edelkamp, S. Jabbar, and S. Schroedl. External A*. In German Conference on Artificial
Intelligence (KI), pages 226–240, 2004.

10. M. Ginsberg and W. Harvey. Iterative broadening. Artificial Intelligence, pages 367–383,
1992.

11. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid au-
tomata? In ACM STOC, pages 373–381, 1995.

12. D. S. Hirschberg. A linear space algorithm for computing common subsequences. Commu-
nications of the ACM, 18(6):341–343, 1975.

13. S. Jabbar and S. Edelkamp. I/O efficient directed model checking. In VMCAI, 2005. 313–
329.

14. S. Jabbar and S. Edelkamp. Parallel external directed model checking with linear I/O. In
VMCAI, pages 237–251, 2006.

15. R. E. Korf. Divide-and-conquer bidirectional search: First results. In IJCAI, pages 1184–
1191, 1999.

16. R. E. Korf and P. Schultze. Large-scale parallel breadth-first search. In AAAI, pages 1380–
1385, 2005.

17. R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to optimal sequence
allignment. In AAAI, pages 910–916, 2000.

18. L. Kristensen and T. Mailund. Path finding with the sweep-line method using external stor-
age. In ICFEM, pages 319–337, 2003.

19. S. Kupferschmid, J. Hoffmann, H. Dierks, and G. Behrmann. Adapting an AI planning
heuristic for directed model checking. In SPIN, pages 35–52, 2006.

20. K. G. Larsen, Gerd Behrmann, E. Brinksma, A. Fehnker, T. S. Hune, P. Petterson, and
J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced timed au-
tomata. In CAV, pages 493 – 505, 2001.

21. K. G. Larsen, F. Larsson, P. Petterson, and W. Yi. Efficient verification of real-time systems:
Compact data structures and state-space reduction. In IEEE Real Time Systems Symposium,
pages 14–24, 1997.

22. K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In SODA, pages 687–694,
1999.

23. J. I. Rasmussen, K. G. Larsen, and K. Subramani. Resource-optimal scheduling using priced
timed automata. In TACAS, pages 220–235, 2004.

24. P. Sanders, U. Meyer, and J. F. Sibeyn. Algorithms for Memory Hierarchies. Springer, 2002.
25. U. Stern and D. Dill. Using magnetic disk instead of main memory in the murphi verifier. In

International Conference on Computer Aided Verification (CAV), pages 172–183, 1998.
26. R. Zhou and E. Hansen. Breadth-first heuristic search. In ICAPS, pages 92–100, 2004.
27. R. Zhou and E. Hansen. External-memory pattern databases using structured duplicate de-

tection. In AAAI, 2005.
28. R. Zhou and E. A. Hansen. Beam-stack search: Integrating backtracking with beam search.

In ICAPS, pages 90–98, 2005.

