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Abstract. We introduce a new partial inversion technique for first-order
functional programs. Our technique is simple, fully automatic, and (when
it succeeds) returns a program that belongs to the same class of the orig-
inal program, namely the class of inductively sequential programs (i.e.,
typical functional programs). To ease the definition, our method pro-
ceeds in a stepwise manner: normalization (introduction of let expres-
sions), proper inversion, and removal of let expressions. Furthermore,
it can easily be implemented. Therefore, it forms an appropriate ba-
sis for developing a practically applicable transformation tool. Prelimi-
nary experiments with a prototype implementation of the partial inverter
demonstrates the usefulness and viability of our approach.

1 Introduction

Program inversion is a fundamental transformation within the functional pro-
gramming paradigm. Having a fully automatic inversion tool could be very useful
for programmers because there are many functions that can be seen as the inverse
of other, sometimes easier, functions (e.g., encoding and decoding, compression
and decompression, etc). Moreover, having a function and its inverse can also
be useful for defining views [19], where one needs to implement translation func-
tions from a built-in data type to an algebraic data type and vice versa, so that
both functions are inverses of each other.

Intuitively speaking, given a function f of arity n, the total inversion of func-
tion f is a new function f−1 such that

f−1(t) = 〈t1, . . . , tn〉 if and only if f(t1, . . . , tn) = t

for all terms t1, . . . , tn, t. Computing the total inversion of a function is a difficult
task and, in most cases, the inverse of a function does not exist (e.g., when the
given function is not injective).
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In this paper, and in contrast to most of the previous work on program
inversion, we consider the computation of partial inverses. Roughly speaking,
given a function f , the partial inversion of f w.r.t. the set of parameters I =
{i1, . . . , im} ⊂ {1, . . . , n} is a new function fI such that

f I(t, ti1 , . . . , tim) = 〈tj1 , . . . , tjk
〉 if and only if f(t1, . . . , tn) = t

for all terms t1, . . . , tn, t, with {j1, . . . , jk} = {1, . . . , n} \ I. Clearly, partial in-
version subsumes total inversion (when I = ∅). In contrast to total inversion,
however, the considered function needs not be injective in order to be acceptable
for partial inversion. Nevertheless, some form of injectivity w.r.t. the parameters
I is required (see Sect. 3.1).

Consider, for instance, the usual definition of the addition on natural numbers
(built from zero and succ):

add(zero, y) → y
add(succ(x), y) → succ(add(x, y))

Here, there exist three possible partial inverses: add∅ (the total inversion),
add{1} and add{2}. The specifications of these partial inversions are as follows:

add∅(t) = 〈t1, t2〉 ⇔ add(t1, t2) = t

add{1}(t, t1) = t2 ⇔ add(t1, t2) = t

add{2}(t, t2) = t1 ⇔ add(t1, t2) = t

Their definitions can be given, respectively, as follows:

add∅(y) → 〈zero, y〉
add∅(succ(w)) → let 〈x, y〉 = add∅(w) in 〈succ(x), y〉

add{1}(y, zero) → y

add{1}(succ(w), succ(x)) → add{1}(w, x)

add{2}(y, y) → zero
add{2}(succ(w), y) → succ(add{2}(w, y))

Observe that both add{1} and add{2} define the subtraction on natural numbers
(though they are syntactically different).

The original definition of function add is inductively sequential [1]; roughly
speaking, a function is inductively sequential when its definition is left-linear
(i.e., there are no multiple occurrences of the same variable in the left-hand
sides) and does not have overlapping left-hand sides (i.e., no left-hand sides
unify). However, in the above partial inversions,

– the definition of the partial inverse add∅ has overlapping left-hand sides,
and

– the definition of the partial inverse add{2} is not left-linear.
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Therefore, program inversion can generally produce programs which do not be-
long to the same class of the original programs.

In this work, we consider that ensuring that partially inverted programs are
inductively sequential (as the original ones) is mandatory, since otherwise the
practical applicability of these partially inverted functions is unclear. For in-
stance, although add{1} and add{2} are semantically equivalent (in the sense
that both implement subtraction: add{1}(t, t1) = t2 iff add{2}(t, t2) = t1), the
first function add{1} can be used in any functional programming language or en-
vironment, while the second one add{2} is often illegal (e.g., in Haskell) because
it is not left-linear.

Furthermore, we consider partial inverses because they subsume the compu-
tation of total inverses and because functions need not be injective. Moreover,
there are many practical cases where the computation of a partial inverse is
more useful; e.g., while function add{1} implements the subtraction on natural
numbers, the practical use of the total inverse add∅ is not so obvious.

The main features of the partial inversion method that we introduce in this
paper can be summarized as follows:

– The method proceeds in a stepwise manner: normalization (introduction of
let expressions), partial inversion, and removal of let expressions.

– The method is purely static, i.e., no (partial) computations are performed.
As a consequence, it can be efficiently implemented.

– Finally, our method always terminates, either returning an inductively se-
quential program—defining the partial inversion of a function—or a failure.

2 Preliminaries

We follow the standard framework of term rewriting [2] since it suffices to model
the first-order component of many functional programming languages.

Term Rewriting Systems. In term rewriting, a set of rewrite rules (or oriented
equations) l → r such that l is a nonvariable term and r is a term is called a term
rewriting system (TRS for short); terms l and r are called the left-hand side and
the right-hand side of the rule, respectively. If there are variables in the right-
hand side of a rule that do not appear in the corresponding left-hand side, we
say that the TRS contains extra variables. In this work, we only consider TRSs
without extra variables. Given a TRS R over a signature F , the defined symbols
D are the root symbols of the left-hand sides of the rules and the constructors
are C = F\D. We often write f/n to denote that the arity of the function or
constructor f is n. We restrict ourselves to finite signatures and TRSs. We denote
the domain of terms and constructor terms by T (F , V) and T (C, V), respectively,
where V is a set of variables with F ∩ V = ∅.

A TRS R is constructor-based if the left-hand sides of its rules have the
form f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C, V), for all
i = 1, . . . , n. The set of variables appearing in a term t is denoted by Var(t). A
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term t is linear if every variable of V occurs at most once in t. R is left-linear if
l is linear for all rule l → r ∈ R. The definition of f in R is the set of rules in
R whose root symbol in the left-hand side is f . A function f ∈ D is left-linear if
the rules in its definition are left-linear.

The root symbol of a term t is denoted by root(t). A term t is operation-
rooted (resp. constructor-rooted) if root(t) ∈ D (resp. root(t) ∈ C). As it is
common practice, a position p in a term t is represented by a sequence of natural
numbers, where ε denotes the root position. Positions are used to address the
nodes of a term viewed as a tree: t|p denotes the subterm of t at position p and
t[s]p denotes the result of replacing the subterm t|p by the term s. A term t is
ground if Var(t) = ∅. A substitution σ is a mapping {x1 	→ t1, . . . , xn 	→ tn}
from variables to terms such that its domain Dom(σ) = {x ∈ V | x 
= σ(x)} is
finite. The identity substitution is denoted by id. We write on for the sequence
of syntactic objects o1, . . . , on.

The evaluation of terms w.r.t. a TRS is formalized with the notion of rewriting.
A rewrite step is an application of a rewrite rule to a term, i.e., t →p,R s if there
exists a position p in t, a rewrite rule R = (l → r) and a substitution σ with
t|p = σ(l) and s = t[σ(r)]p (p and R will often be omitted in the notation of a
reduction step). A term t is called irreducible or in normal form if there is no
term s with t → s. We denote by →+ the transitive closure of → and by →∗

its reflexive and transitive closure. Given a TRS R and a term t, we say that t
evaluates to s iff t →∗ s and s is in normal form.

Inductively Sequential Systems. Inductively sequential TRSs [1] are a sub-
class of constructor-based left-linear TRSs. The formal definition of this class
of programs requires the notion of definitional tree [1]. Essentially, a TRS is in-
ductively sequential [1] when all its operations are defined by rewrite rules that,
recursively, make on their arguments a case distinction analogous to a data type
(or structural) induction (i.e., a typical functional program).

Example 1. Consider the following definition of the less-or-equal relation:

zero � y → true
succ(x) � zero → false
succ(x) � succ(y) → x � y

This function is inductively sequential because the left-hand sides can be induc-
tively organized as follows:1

n � m ⇒

⎧
⎨

⎩

zero � m → true (first rule)

succ(x) � m ⇒
{

succ(x) � zero → false (second rule)
succ(x) � succ(y) → x � y (third rule)

Inductive sequentiality is not a limiting condition for programming. In fact, the
first-order components of many functional and functional logic programs written
in, e.g., Haskell, ML or Curry, are inductively sequential.
1 Actually, this is the definitional tree of function “�”.
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3 A Method for Partial Inversion

In this section, we present our stepwise method for the partial inversion of in-
ductively sequential TRSs.

In the following, we consider the partial inversion of a given function f/n w.r.t.
a set I ⊂ {1, . . . , n} of input (or “known”) parameters. Therefore, we want to
obtain a new function, which we call f I , which takes the output of the original
function and the input parameters (according to I), and returns the remaining
parameters of the original function, which we denote by Ī = {1, . . . , n}\I (the
“unknown” parameters).

Observe that I = {1, . . . , n} is not allowed because it would imply that, in
the inverted function, all arguments, together with the output, would be known,
which would be meaningless unless one wants to produce a sort of “Boolean
test”. Now, we formally introduce our notion of partial inversion:

Definition 1 (partial inversion). Let R be an inductively sequential TRS
that includes the definition of function f/n. Then, R′ is a partial inversion of
R w.r.t. f and I = {i1, . . . , im} ⊂ {1, . . . , n} iff the following conditions hold:

1. R′ is inductively sequential and
2. it includes the definition of a function f I such that f(t1, . . . , tn) →∗ t iff

f I(t, ti1 , . . . , tim) →∗ 〈tj1 , . . . , tjk
〉 for all ground constructor terms t1, . . . , tn,

t, where Ī = {j1, . . . , jk}.

In this case, we say that f I is the partial inverse of f w.r.t. I.

As mentioned before, the first condition above is often ignored (e.g., [15]), but
we require it in order to produce partially inverted programs which are useful in
practice.

3.1 Preconditions

In this section, we present three preconditions for our partial inversion algorithm
to be successful. These preconditions are local, i.e., should be checked for every
function involved in the partial inversion process (see Sect. 3.3).

As mentioned in the introduction, functions need not be injective to be par-
tially inverted. However, some form of injectivity is still necessary. Let us con-
sider a function f/n that we want to partially invert w.r.t. I = {i1, . . . , im} ⊂
{1, . . . , n}. Assume a relation Rel(f), defined as follows:

Rel(f) = {(t1, . . . , tn, t) | f(t1, . . . , tn) →∗ t}

where t1, . . . , tn, t are ground constructor terms (i.e., values). Then, we say that
the partial inversion of f w.r.t. I is well-defined if (tj1 , . . . , tjk

) 
= (sj1 , . . . , sjk
)

implies (ti1 , . . . , tim , t) 
=(si1 , . . . , sim , s) for all tuples (t1, . . . , tn, t), (s1, . . . , sn, t)
in Rel(f), where Īfrm[o]−− ={j1, . . . , jk}.

Trivially, a total inversion is well-defined when the considered function is
injective. In general, however, the set of functions that can be partially inverted
is greater than the set of functions that can be totally inverted.
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For instance, the total inversion of the addition function add shown in Sect. 1
is not well-defined because add is not injective. On the other hand, the par-
tial inversion of add w.r.t. {1} is well-defined because, given the evaluations
add(t1, t2) →∗ t and add(s1, s2) →∗ s, whenever t2 
= s2, we have (t1, t) 
= (s1, s),
where t1, t2, t, s1, s2, s are ground constructor terms.

Unfortunately, determining if a partial inversion is well-defined is generally
undecidable. Therefore, we introduce three (decidable) preconditions for partial
inversion. The first precondition, which regards extra variables, is very simple:

Precondition 1 (extra variables). Let f/n be a function to be partially in-
verted w.r.t. I = {i1, . . . , im} ⊂ {1, . . . , n}. Then, function f/n must fulfill the
following condition: Var({tj1 , . . . , tjk

}) ⊆ Var({r, ti1 , . . . , tim}) for every rule
f(t1, . . . , tn) → r in the definition of f , with Ī = {j1, . . . , jk}.

For instance, a function fst defined by a rule of the form fst(x, y) → x cannot
be partially inverted w.r.t. {1} since Var({y}) 
⊆ Var({x, x}). Indeed, the defi-
nition of the partially inverted function fst{1} would contain an extra variable:
fst{1}(x, x) → y.

In the following, we denote by C[e1, . . . , en] a term with a constructor con-
text C and maximal operation-rooted subterms e1, . . . , en. For instance, the
term c(f(a), s(g(b))), with f, g ∈ D defined functions and a, b, c ∈ C construc-
tor symbols, can be represented by C[f(a), g(b)], where the context C denotes
the constructor term c(•, s(•)) with two “holes”. A constructor term (or a vari-
able) can thus be denoted by C[], i.e., a term with no maximal operation-rooted
subterms.

The second precondition regards left-linearity and is also rather simple:

Precondition 2 (left-linearity). Let f/n be a function to be partially in-
verted w.r.t. I = {i1, . . . , im} ⊂ {1, . . . , n}. Then, C must be linear and must
not share variables with ti1 , . . . , tim for every rule f(t1, . . . , tn) → C[e1, . . . , el]
in the definition of function f .

Consider, e.g., the following function double:

double([ ]) → [ ]
double(x : xs) → x : x : double(xs)

where lists are built from [ ] and “:”. This function does not fulfill the second
precondition because the constructor part in the right-hand side of the second
rule, x : x : •, is not linear. Actually, the partial inversion of double w.r.t. ∅

would return the following rules:

double∅([ ]) → [ ]
double∅(x : x : xs) → x : double∅(xs)

Also, the partial inversion of function fst w.r.t. {1} above does not fulfill the
second precondition because the right-hand side x is linear but also occur in the
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first input parameter x. On the other hand, the second precondition holds for
function fst w.r.t. {2} since x and y do not share variables.

We note that the second precondition could be removed by allowing the re-
placement of repeated occurrences of the same variable in the left-hand side of
a rule by equality tests in the corresponding right-hand side. For example, the
definition of double∅ could be transformed as follows:

double∅([ ]) → [ ]
double∅(x : y : xs) → cond(eq(x, y), x : double∅(xs))

where cond(c, t) returns t if c evaluates to true and eq(t1, t2) is a Boolean equality
test. Such a transformation, however, would not be useful in a lazy context
because eq should be regarded as a strict equality and, thus, the inverted function
would be more strict than the original function. It could be useful in the context
of a strict language though.

We now present our last precondition for ensuring the inductive sequentiality
of the partially inverted function.

Precondition 3 (inductive sequentiality). Let f/n be a function to be par-
tially inverted w.r.t. I = {i1, . . . , im} ⊂ {1, . . . , n}. Then, there must be a defi-
nitional tree for a function f I whose definition contains the following left-hand
sides:

{ f I(C[x1, . . . , xl], ti1 , . . . , tim) | f(t1, . . . , tn) → C[e1, . . . , el] ∈ Rf

and x1, . . . , xl are fresh variables }

where Rf contains the rules in the definition of function f .

Observe that the above precondition can be tested before partial inversion pro-
ceeds, since only the left-hand sides are relevant to determine the existence of a
definitional tree associated to a function.

Consider, for instance, the following function app:

app([ ], y) → y
app(x : xs, y) → x : app(xs, y)

If we consider its partial inversion w.r.t. {2}, then the third precondition does
not hold since there is no definitional tree for a function defined by a set of rules
whose left-hand sides are {app{2}(y, y), app{2}(x : w, y)} (roughly speaking,
because the left-hand sides overlap).

Now, we present our stepwise process for partial inversion.

3.2 Normalization

The first stage of our transformation is used to flatten the right-hand sides of
the rules so that no nested function calls occur. This transformation is not really
necessary for partially inverting functions, but it greatly simplifies the definition
of the inversion algorithm in Sect. 3.3.
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Definition 2 (normalized TRS). A normalized TRS contains either rules of
the form

l → p0 or l → let p1 = e1, . . . , pn = en in p0

where p0, p1, . . . , pn are constructor terms and e1, . . . , en are operation-rooted
terms with constructor terms as arguments (i.e., nested defined function symbols
are not allowed). Each equality, pi = ei, is called a pattern definition. We further
require that Var(ei) ⊆ Var(l) ∪ Var(p1) ∪ . . . ∪ Var(pi−1), for i = 1, . . . , n, and
Var(p0) ⊆ Var(l) ∪ Var(p1) ∪ . . . ∪ Var(pn).2

Although let expressions may introduce extra variables, these are a kind of local
variables that can easily be removed by either inlining or lambda lifting (see
below). The following definition introduces our normalization process:

Definition 3 (normalization). Given a TRS R, the normalized TRS N (R) is
obtained by replacing every rewrite rule l → r ∈ R by l → r′ in N (R), where r′

is obtained from r by applying the following transformations as much as possible:

C[ek] =⇒ let x1 = e1, . . . , xk = ek in C[xk]
f(ek) =⇒ let x = f(ek) in x
let p1 = e1,

. . . ,
pi = f(. . . , C[ejmj ], . . .)
. . . ,
pk = ek in p

=⇒ let xjmj = ejmj , p1 = e1,
. . . ,
pi = f(. . . , C[xjmj ], . . .),
. . . ,
pk = ek in p

where x, x1, . . . , xk, xj1, . . . , xjmj are fresh variables. The process stops when no
rule is applicable—clearly a terminating process.

Roughly speaking, normalization proceeds as follows: if the right-hand side is a
constructor term, then it is already normalized; otherwise,

– If it is an operation-rooted term, then it is completely replaced by a fresh
variable and a new pattern definition in a let expression is returned.

– If it is a constructor-rooted term that contains some maximal operation-
rooted subterms, normalization replaces those operation-rooted subterms by
fresh variables and adds new pattern definitions by means of a let declaration.

– Once the right-hand side is transformed into a let expression, we continue by
flattening the arguments of operation-rooted terms in the right-hand sides of
pattern definitions so that all function arguments become constructor terms.
We note that new pattern definitions are added to the left in order to fulfill
the condition on the variables of Def. 2.

Observe that, if we take a TRS and normalize it using Def. 3, then it could be
transformed back into an ordinary TRS by applying inlining, i.e., by applying the
following rules to the right-hand sides of normalized TRSs as much as possible:

let p1 = e1 in p ⇒ {p1 	→ e1}(p)
let pn = en in p ⇒ {pn 	→ en}(let p1 = e1, . . . , pn−1 = en−1 in p) n > 1

2 This is similar to the notion of deterministic conditional TRS.
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Input: a normalized TRS R, a function f/n, and a set I ⊂ {1, . . . , n};
Output: a normalized TRS R′ (the partial inversion of R w.r.t. f and I) or a failure;
Initialization: R′ := { }, Inv := { }, Pend := {(f/n, I)};
Repeat

1. select a pair (f/n, I) ∈ Pend
2. if I = {1, . . . , n}

then stop with failure; /* Boolean tests are not allowed */
else update Inv := Inv ∪ {(f, I)} and Pend := Pend \ {(f, I)}

3. if the Preconditions 1, 2 and 3 hold
then proceed with step 4
else stop with failure /* R′ would not be inductively sequential */

4. let RI
f = pinv(R, f, I); update R′ := R′ ∪ RI

f

5. Pend := Pend ∪ (pcalls(RI
f ) \ Inv)

Until Pend = { }
Return R′

Fig. 1. Partial inversion algorithm

Note that these rules are well-defined in our case because patterns pi are always
variables in TRSs obtained by applying Def. 3. In general, however, some form
of lambda-lifting [9] is required to remove let expressions (see Sect. 3.4).

Example 2. Consider the following inductively sequential TRS that defines the
function incL for incrementing all the elements of a list by a given value:

incL([ ], i) → [ ] add(zero, y) → y
incL(x : xs, i) → add(i, x) : incL(xs, i) add(succ(x), y) → succ(add(x, y))

The normalization of this program returns

incL([ ], i) → [ ] add(zero, y) → y
incL(x : xs, i) → let w1 = add(i, x), add(succ(x), y) → let w = add(x, y)

w2 = incL(xs, i) in succ(w)
in w1 : w2

3.3 Partial Inversion Algorithm

Our algorithm for partial inversion is shown in Fig. 1. Roughly speaking, our
iterative algorithm for computing the partial inversion of a function proceeds as
follows:

– The algorithm takes a normalized program and returns either a failure or a
normalized program (the desired partial inversion).

– In every iteration, the partial inversion of a function denoted by a pair
(f/n, I) is considered, where f is a function symbol of arity n and I ⊂
{1, . . . , n}.

– Given such a pair (f/n, I), we first check the preconditions of Sect. 3.1 in
order to stop the inversion process if the partial inversion of f w.r.t. I would
not be inductively sequential (with no extra variables).
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((let . . . , pl = el, . . . in p))l
V = ((let . . . , pl = el, . . . in p))l−1

V ∪Var(pl)

if Var(el) ⊆ V and pl �∈ V

((let p1 = e1,
. . . ,
pl = g(qb)
. . . ,

pa = ea in p))l
V

= ((let p1 = e1,
. . . ,
〈qj1 , . . . , qjk 〉 = g{i1,...,im}(pl, qi1 , . . . , qim )
. . . ,

pa = ea in p))l−1
V ∪Var(qj1 )∪...∪Var(qjk

)

if Var(qw) ⊆ V for all w = i1, . . . , im, m ≥ 0,
Var(qu) �⊆ V for all u = j1, . . . , jk, k ≥ 0, and
{i1, . . . , im} 
 {j1, . . . , jk} = {1, . . . , b}

((let pa = ea in p))0V = let pa = ea in p

Fig. 2. Auxiliary function (( ))

– If the preconditions hold, then we compute the partial inversion f I of f
w.r.t. I by means of function pinv (see Def. 4).

– The iteration terminates by updating the set of pending partial inversions;
this is done by using the auxiliary function pcalls , which simply traverses the
right-hand sides of a function definition and then returns a set which includes
a pair (g/m, J) for each call gJ(t1, . . . , tm) in these right-hand sides.

The following definition formalizes the main component of our partial inversion
algorithm:

Definition 4 (function pinv). Let R be a normalized TRS, f/n be a function,
and I ⊂ {1, . . . , n} be a set. The partial inversion of f w.r.t. I, in symbols
pinv (R, f, I), is obtained as the set

{ [[l → r]]I | l → r belongs to the definition of f in R }

Function [[ ]] is defined as follows:

[[f(pn) → C[]]]I = f I(C[], pi1 , . . . , pim) → 〈pj1 , . . . , pjk
〉

[[f(pn) → let ql = el in C[]]]I = f I(C[], pi1 , . . . , pim) → ((let ql = el

in 〈pj1 , . . . , pjk
〉))l

V

where I = {i1, . . . , im}, Ī = {j1, . . . , jk}, and V = Var(f I(C[], pi1 , . . . , pim)).
The auxiliary function (( )) is defined inductively as shown in Fig. 2.

Essentially, function pinv above considers sequentially3 each pattern definition
pl = g(q1, . . . , qb) in the let declaration and transforms it into a new pattern
definition according to the set V of “known” variables (which is initialized to
the variables of the new left-hand side) as follows:

– If all variables in q1, . . . , qb are known (i.e., belong to V ), then we do not
modify this pattern definition (i.e., a call to a function of the original program
is performed);

3 It proceeds from right to left in order to transform outer function calls first.
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– Otherwise, we divide the parameters of g into a set {i1, . . . , im} of input
parameters—i.e., associated to those arguments of g whose variables be-
long to the current set V of “known” variables—and output parameters
{j1, . . . , jk}, and replace the original pattern definition by 〈qj1 , . . . , qjk

〉 =
g{i1,...,im}(pl, qi1 , . . . , qim).

Example 3. Consider the normalized TRS of Example 2. The stepwise compu-
tation of pinv (R, incL, {2}) proceeds as follows:

[[incL([ ], i) → [ ]]]{2} = incL{2}([ ], i) → [ ]

[[incL(x : xs, i) → let w1 = add(i, x), w2 = incL(xs, i) in w1 : w2]]{2}
= incL{2}(w1 : w2, i)→((let w1 =add(i, x), w2 = incL(xs, i) in x : xs))2{w1,w2,i}

where

((let w1 = add(i, x), w2 = incL(xs, i) in x : xs))2{w1,w2,i}
= ((let w1 = add(i, x), xs = incL{2}(w2, i) in x : xs))1{w1,w2,i,xs}
= ((let x = add{1}(w1, i), xs = incL{2}(w2, i) in x : xs))0{w1,w2,i,xs,x}
= let x = add{1}(w1, i), xs = incL{2}(w2, i) in x : xs

Now, function pcalls would return the set {(add/2, {1}), (incL/2, {2})}, though
only (add/2, {1}) is added to Pend since (incL/2, {2}) already belongs to Inv .
Then, the computation of pinv (R, add , {1}) begins so that the following partial
inversion is computed:

add{1}(y, zero) → y

add{1}(succ(w), succ(x)) → let y = add{1}(w, x) in y

The final transformed program is thus as follows:

incL{2}([ ], i) → [ ]
incL{2}(w1 : w2, i) → let x=add {1}(w1, i), xs= incL{2}(w2, i) in x : xs

add{1}(y, zero) → y

add{1}(succ(w), succ(x)) → let y = add{1}(w, x) in y

which implements a function incL{2} that decrements all the elements of the
input list by a given value (using the auxiliary function add{1} to perform sub-
traction on natural numbers).

3.4 Removal of Let Declarations

Let expressions in transformed programs can easily be removed by applying a
simplified version of lambda lifting [9]. In particular, we follow the transformation
presented in [4, Appendix D], where a rule of the form

l → let p1 = e1, . . . , pi−1 = ei−1, pi = ei, pi+1 = ei+1, . . . , pm = em in e
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is transformed into the rules

l → g(xk, ei)
g(xk, z) → g′(xk, g1(z), . . . , gm(z))
g′(xk, ym) → let p1 = e1, . . . , pi−1 = ei−1, pi+1 = ei+1, . . . , pm = em in e
g1(pi) → y1
. . .
gm(pi) → ym

where x1, . . . , xk are the variables of l, y1, . . . , ym are the variables occurring in
pi, z is a fresh variable, and g, g′, g1, . . . , gm are new function symbols. This step
is repeated until all local patterns are eliminated.

Nevertheless, we allow the application of the simpler transformation of inlining
(see Sect. 3.2) when the pattern definition has the form x = e.

Example 4. Consider the partially inverted TRS of Example 3. Here, inlining
suffices to remove let expressions, so that the following inductively sequential
system is obtained:

incL{2}([ ], i) → [ ]
incL{2}(w1 : w2, i) → add{1}(w1, i) : incL{2}(w2, i)

add{1}(y, zero) → y

add{1}(succ(w), succ(x)) → add{1}(w, x)

3.5 Correctness

Although there exist several approaches to function inversion in the literature
(e.g., [6,8,10,17]), we only found a formal proof of correctness for the transfor-
mation in the work of Nishida et al. [15].

Basically, the correctness of our technique relies on [15, Theorem 9], regard-
ing normalization and partial inversion, and the correctness of lambda lifting,
regarding the removal of let expressions.

Let us first consider the work of Nishida et al. [15]. There are two kinds of
differences between our method and that of [15]:

– Restrictions. In comparison with [15], we added several new restrictions in
order to ensure that the result is “acceptable”. For instance, [15] may pro-
duce non-deterministic functions containing extra-variables which require a
logical extension of reduction—called narrowing [18]—in order to be able to
evaluate inverse functions.

– Simplifications. Thanks to the new restrictions, the overall method can be
presented in a simpler and more intuitive way.

Obviously, the addition of new restrictions do not affect to the correctness result
of [15] and, thus, Theorem 9 is still applicable.

Regarding the simplifications, they are not difficult to prove. For instance,
we could easily prove that partially inverted functions are indeed inductively
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sequential and do not contain extra-variables; this is an immediate consequence
of the preconditions in Sect. 3.1. Also, we have replaced the (more complex)
unraveling of [15] by a simpler form of lambda-lifting. This is not as immediate
as the above property, but could easily be proved by showing that the partial
inversion of each function returns a normalized TRS. In this case, since the par-
tial inversion is a deterministic TRS (in the terminology of [15]), then standard
inlining (in most of the cases) or lambda-lifting suffices to produce a program
without extra variables.

On the other hand, the correctness of the removal of let expressions is derived
from the correctness of either inlining or lambda lifting [9] (see also [3,13]), whose
correctness is proved in [5]. We note that a similar transformation is considered
in [15] by means of the definition of a so called unraveling [11].

4 Extensions of the Method

In this section, we describe how our method can be extended to cope with
higher-order functions and lazy evaluation.

Higher-Order. Let us first consider a straightforward application of
our method to a higher-order program. Consider, for instance, the well-known
function map:

map(f, [ ]) → [ ]
map(f, x : xs) → f(x) : map(f, xs)

Then, in order to compute the partial inversion of map w.r.t. {1}, our method
proceeds as follows. First, the normalized program is computed:

map(f, [ ]) → [ ]
map(f, x : xs) → let w = f(x), ws = map(f, xs) in w : ws

Now, the partial inversion step returns the following program:

map{1}([ ], f) → [ ]
map{1}(w : ws, f) → let x = f{1}(w), xs = map{1}(ws, f) in x : xs

Finally, by removing let expressions we get

map{1}([ ], f) → [ ]
map{1}(w : ws, f) → f{1}(w) : map{1}(ws, f)

so that map{1} maps the inverse of a function to each element of a given list.
Now, the problem of how the partial inverse f{1} can be computed arises. Since
function f is not known at compile time, the pair (f, {1}) cannot be considered
in the next iteration of the partial inversion algorithm.

In order to deal with such a situation, we could produce a partial inversion of
the form

map{1}([ ], f) → [ ]
map{1}(w : ws, f) → inv(f, {1})(w) : map{1}(ws, f)
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where the auxiliary function inv is used to compute the name of the partially in-
verted function at run-time. In order to determine the possible values of variable
f above, one could apply a standard closure analysis and/or ask the programmer.
For instance, if we determine that function map is only called with functions foo
and boh, then only foo{1} and boh{1} should be computed. Moreover, we should
add the following definition of inv to the partially inverted program:

inv (foo, {1}) → foo{1}
inv(boh, {1}) → boh{1}

Laziness. Regarding non-strict functions, our method can already be applied
to lazy programs. Consider the following program:

foo(n, m) → take(n, repeat(m))
take(zero, xs) → [ ]

take(succ(n), x : xs) → x : take(n, xs)
repeat(m) → m : repeat(m)

where foo(n, m) returns a list of n elements, all of which are m. The normaliza-
tion step returns the following program:

foo(n, m) → let x = repeat(m), xs = take(n, x) in xs
take(zero, xs) → [ ]

take(succ(n), x : xs) → let w = take(n, xs) in x : w
repeat(m) → let w = repeat(m) in m : w

Then, the partial inversion of foo w.r.t. {1} returns

foo{1}(xs, n) → let m = repeat{}(w), w = take{1}(xs, n) in m

Now, the next iteration computes the partial inversion of take w.r.t. {1}:4

take{1}([ ], zero) → xs

take{1}(x : w, succ(n)) → let xs = take{1}(w, n) in x : xs

Therefore, the next iteration computes the partial inversion of repeat w.r.t. {},
and the problem shows up:

repeat{}(m : w) → let () = repeat{1}(w, m) in m

In our current method, the last step suspends the partial inversion process and
returns a failure because “Boolean tests” (i.e., function calls where both the
arguments and the result are known) are not allowed.

The method of [15] allows the partial inversion of functions even when the
result includes Boolean tests. However, observe that if one would allow such
4 Although the first rule violates the first precondition, we ignore this fact in this

example since it is orthogonal to the kind of problem that we want to illustrate.
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Boolean tests, we would have obtained a program like the following one (after
removal of let expressions):

foo{1}(xs, n) → repeat{}(take{1}(xs, n))
take{1}([ ], zero) → xs

take{1}(x : w, succ(n)) → x : take{1}(w, n)
repeat{}(m : w) → m

Observe that the let expression in the right-hand side of repeat{}, i.e., the
Boolean test, does not appear in the rule above because in a non-strict lan-
guage its computation is not needed. Here, the meaning of function repeat{} is
as follows: given a call repeat{}(xs), return the first element of list xs, which is
clearly incorrect! (it should also check that all elements of xs are equal). This
situation does not happen in our technique because the so called Boolean tests
are forbidden.

5 An Inversion Tool

We have undertaken a prototype implementation of our partial inversion method
in order to test its applicability and usefulness. It is implemented in Prolog
(around 500 lines of code) and it is publicly available at

http://www.dsic.upv.es/~gvidal/german/finv/

Once the program is loaded into Prolog,5 the user can load in a functional
program from a file using the predicate loadf/1. The functional program should
be written according to the following syntax for rules:

lhs := rhs.

Function and constructor symbols start with a lowercase letter and variables
start with an uppercase letter (i.e., typical Prolog notation). Function definitions
may also include type declarations. For instance, function add (see Sect. 1) can
be defined as follows:

add :: nat -> nat -> nat.

add(0,X) := X.
add(s(X),Y) := s(add(X,Y)).

Arbitrary data types (like nat above) can also be defined by the user. For in-
stance, natural numbers and lists can be defined as follows

datatype nat ::= 0 | s(nat).
datatype list(A) ::= nil | (A : list(A)).

Partial inversion is then started by executing a goal of the form

?- invert(function_name, input_parameters_list).

5 Currently, it has only been tested on SWI Prolog.
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For instance, if we type in the following goal

?- invert(add,[1]).

we get the partially inverted program:

add_[1](A,0) := A.
add_[1](s(A),s(B)) := add_inv(A,B).

where the partial inversion of the given function is denoted by add_[1].
Our preliminary results point out the viability and potential usefulness of the

technique. We note, however, that one should be very careful with the election
of the function and input set used for partial inversion, i.e., by choosing an
arbitrary function and input set, the result is often a failure.

We also note that the current tool can only deal with first-order programs,
but it could be extended to higher-order programs along the lines of the previous
section. A web interface for the partial inverter can be accessed from the URL
above so that the reader can easily test the system.

6 Related Work

The work by Glück and Kawabe [6] (further improved in [7]) presents an auto-
matic program inversion algorithm for first-order functional programs. In con-
trast to ours, a total inversion algorithm is considered (a particular case of our
partial inversion) and, thus, only injective functions produce useful results.

The closest approach is that of Nishida et al. [15], where the authors present a
very general inversion algorithm for term rewriting systems which is able to per-
form both partial and total inversions. The main differences with our approach
are the following:

– The method of [15] allows the partial inversion of functions even when the
result includes “Boolean tests”. As discussed in Sect. 4, such a situation
is avoided in our method in order to have a method applicable to a lazy
language.

– The (more general) inversion technique of [15] introduces some additional
rules that are not needed in our approach. For instance, in order to preserve
the correctness, [15] adds the following rule:

add{2}(add(x, y), y) → 〈x〉

to the definition of add{2}. These rules are not needed in our restricted
method.

– Furthermore, they require a form of narrowing [18] to perform computations
in the inverted program due to extra variables, while functional reduction
suffices in our case because extra variables in partially inverted functions are
not allowed.
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To summarize, our method is simpler than that of [15] and can be applied in
fewer cases, but when it succeeds, the resulting program is inductively sequential.

Partial inversions were also considered in [16] but, in contrast to ours, their aim
is not the definition of an automatic method. Function inversion is extensively
considered by Mu [14], though the author considers a different, calculational
approach.

Finally, Mogensen [12] has recently introduced a method for computing the
semi-inversion of a functional program with guarded equations. Basically, semi-
inversion means taking a program and producing a new program that as input
takes part of the input and part of the output of the original program and
as output produces the rest of the input and output of the original program.
This work tackles a more general objective than ours but might produce func-
tions that are non-deterministic, contain extra-variables, etc., and, thus, it is not
appropriate in the context of the most common functional languages. Further-
more, in contrast to ours, the semi-inversion method is rather inefficient (due
to a number of non-deterministic choices); therefore, it is unclear whether an
efficient implementation would be possible.

7 Discussion and Future Work

We have presented a novel method for the partial inversion of inductively se-
quential rewrite systems. When the method succeeds, it returns an inductively
sequential system without extra variables, which is essential to have a practically
applicable method. In contrast to other related approaches, our method is easy
to implement and works well in the context of lazy evaluation.

As future work, we plan to extend the partial inversion method to cope with
higher-order functions along the lines of Sect. 4. This is an interesting challenge
that will allow us to design a partial inversion tool for a realistic functional
programming language like Haskell.
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M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 107–121. Springer, Heidelberg (1996)

12. Mogensen, T.Æ.: Semi-inversion of Guarded Equations. In: Glück, R., Lowry, M.
(eds.), Proc. of the 4th Int’l Conf. on Generative Programming and Component
Engineering (GPCE’05), LNCS 3676, pp. 189–204. Springer (2005)

13. Morazán, M.T., Mucha, B.: Improved Graph-Based Lambda Lifting. In: Proc. of
the Int’l Conf. on Software Engineering Research and Practice (SERP’06), pp.
896–902. CSREA Press (2006)

14. Mu, S.-C.: A Calculational Approach to Program Inversion. PhD thesis, Oxford
University Computing Laboratory (2003)

15. Nishida, N., Sakai, M., Sakabe, T.: Partial Inversion of Constructor Term Rewriting
Systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer,
Heidelberg (2005)

16. Pareja-Flores, C., Velázquez-Iturbide, J.A.: Synthesis of Functions by Transfor-
mations and Constraints. In: Proc. of the Int’l Conf. on Functional Programming
(ICFP’97), pp. 317–317. ACM Press, New York Poster (1997)

17. Romanenko, A.: Inversion and metacomputation. In: Partial Evaluation and
Semantics-Based Program Manipulation, Sigplan Notices, vol. 26(9), pp. 12–22.
ACM, New York (1991)

18. Slagle, J.R.: Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity and Associativity. Journal of the ACM 21(4), 622–642 (1974)

19. Wadler, P.: Views: A Way for Pattern Matching to Cohabit with Data Abstraction.
In: Proc. of 14th ACM Symp. on Principles of Programming Languages (POPL’87),
pp. 307–313. ACM Press, New York (1987)


	Introduction
	Preliminaries
	A Method for Partial Inversion
	Preconditions
	Normalization
	Partial Inversion Algorithm
	Removal of Let Declarations
	Correctness

	Extensions of the Method
	An Inversion Tool
	Related Work
	Discussion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


