Skip to main content

3D Computation of Gray Level Co-occurrence in Hyperspectral Image Cubes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4679))

Abstract

This study extended the computation of GLCM (gray level co-occurrence matrix) to a three-dimensional form. The objective was to treat hyperspectral image cubes as volumetric data sets and use the developed 3D GLCM computation algorithm to extract discriminant volumetric texture features for classification. As the kernel size of the moving box is the most important factor for the computation of GLCM-based texture descriptors, a three-dimensional semi-variance analysis algorithm was also developed to determine appropriate moving box sizes for 3D computation of GLCM from different data sets. The developed algorithms were applied to a series of classifications of two remote sensing hyperspectral image cubes and comparing their performance with conventional GLCM textural classifications. Evaluations of the classification results indicated that the developed semi-variance analysis was effective in determining the best kernel size for computing GLCM. It was also demonstrated that textures derived from 3D computation of GLCM produced better classification results than 2D textures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albregtsen, F., Nielsen, B., Danielsen, H.E.: Adaptive gray level run length features from class distance matrices. In: 15th International Conference on Pattern Recognition. vol. 3, pp. 3746–3749 (2000)

    Google Scholar 

  2. Jhanwar, N., Chaudhuri, S., Seetharaman, G., Zavidovique, B.: Content based image retrieval using motif cooccurrence matrix. Image and Vision Computing 22(12), 1211–1220 (2004)

    Google Scholar 

  3. Tsai, F., Chou, M.J.: Texture augmented analysis of high resolution satellite imagery in detecting invasive plant species. Journal of the Chinese Institute of Engineers 29(4), 581–592 (2006)

    Google Scholar 

  4. du Buf, J.M.H., Kardan, M., Spann, M.: Texture feature performance for image segmentation. Pattern Recognition 23(4), 291–309 (1990)

    Article  Google Scholar 

  5. Ohanian, P.P., Dubes, R.C.: Performance evaluation of four classes of texture features. Pattern Recognition 25(8), 819–833 (1992)

    Article  Google Scholar 

  6. Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP: Image Understanding 57(3), 359–372 (1993)

    Article  Google Scholar 

  7. Haralick, R.M., Shanmugan, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Systems, Man Cybernetics 3(6), 610–621 (1973)

    Article  Google Scholar 

  8. Tsai, F., Lin, E.K., Yoshino, K.: Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species. International Journal of Remote Sensing 28(5-6), 1023–1039 (2007)

    Article  Google Scholar 

  9. Tsai, F., Philpot, W.: A derivative-aided image analysis system for land-cover classification. IEEE Transactions on Geoscience and Remote Sensing 40(2), 416–425 (2002)

    Article  Google Scholar 

  10. Tsai, F., Philpot, W.D.: Derivative analysis of hyperspectral data. Remote Sensing of Environment 66(1), 41–51 (1998)

    Article  Google Scholar 

  11. Gao, D.: Volume texture extraction for 3D seismic visualization and interpretation. Geophsics 68(4), 1294–1302 (2003)

    Article  Google Scholar 

  12. Mahmoud-Ghoneim, D., Toussaint, D., Constans, J.M., de Certaines, J.D.: Three dimensional texture analysis in MRI: a preliminary evaluation in glioma. Magnetic Resonance Imaging 21(9), 983–987 (2003)

    Article  Google Scholar 

  13. Bhalerao, A., Reyes-Aldasoro, C.C.: Volumetric texture description and discriminant feature selection for MRI. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 573–584. Springer, Heidelberg (2003)

    Google Scholar 

  14. Unser, M.: Texture classification and segmentation uisng wavelet frames. IEEE Trans. on Image Processing 4(11), 1549–1560 (1995)

    Article  MathSciNet  Google Scholar 

  15. Nielsen, B., Albregtsen, F., Danielsen, H.E.: Low dimensional adaptive texture feature vectors from class distance and class difference matrices. IEEE Trans. Medical Imaging 23(1), 73–84 (2004)

    Article  Google Scholar 

  16. Suzuki, M.T., Yoshino, Y., Osawa, N., Sugimoto, Y.Y.: Classification of solid texture using 3D mask patterns. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, pp. 6342–6347 (2004)

    Google Scholar 

  17. Cross, G.R., Jain, A.K.: Markov Random Field texture models. IEEE Trans. on PAMI 5(1), 25–39 (1983)

    Google Scholar 

  18. Keller, J.M., Chen, S.: Texture description and segmentation through fractal geometry. Computer Vision, Graphics and Image Processing 45, 150–160 (1989)

    Article  Google Scholar 

  19. Baraldi, A., Parmiggiani, F.: An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Transactions on Geoscience and Remote Sensing 33, 293–303 (1995)

    Article  Google Scholar 

  20. Clausi, D.A.: An analysis of co-occurrence statistics as a function of grey level quantization. Canadian J. Remote Sensing 28, 45–62 (2002)

    Google Scholar 

  21. Jobanputra, R., Clausi, D.A.: Preserving boundaries for image texture segmentation using grey level co-occurring probabilities. Pattern Recognition 39, 234–245 (2006)

    Article  MATH  Google Scholar 

  22. de Martino, M., Causa, F., Serpico, S.B.: Classification of optical high resolution images in urban environment using spectral and textural information. In: IGARSS 2003. IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. 467–469 (2003)

    Google Scholar 

  23. Kourgli, A., Belhadj-Aissa, A.: Texture primitives description and segmentation using variography and mathematical morphology. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 7, pp. 6360–6365 (2004)

    Google Scholar 

  24. Datt, B., McVicar, T.R., van Niel, T.G., Jupp, D.L.B., Pearlman, J.S.: Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing 41, 1246–1259 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan L. Yuille Song-Chun Zhu Daniel Cremers Yongtian Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsai, F., Chang, CK., Rau, JY., Lin, TH., Liu, GR. (2007). 3D Computation of Gray Level Co-occurrence in Hyperspectral Image Cubes. In: Yuille, A.L., Zhu, SC., Cremers, D., Wang, Y. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2007. Lecture Notes in Computer Science, vol 4679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74198-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74198-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74195-4

  • Online ISBN: 978-3-540-74198-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics