Skip to main content

Identifying Modules in Complex Networks by a Graph-Theoretical Method and Its Application in Protein Interaction Networks

  • Conference paper
Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence (ICIC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4682))

Included in the following conference series:

Abstract

Detecting community structure/modules in complex networks recently attracts increasing attention from various fields including mathematics, physics and biology. In this paper, we propose a method based on graph-theoretical clustering for identifying modularity structure in complex networks. Compared with the existing algorithms, this method, based on minimum spanning tree, has several advantages. For example, unlike many algorithms, this method is deterministic and not sensitive to the initialization. In addition, the method does not require a prior knowledge about the number of the modules. It can easily obtain the number of clusters by analyzing the edge weight distribution of minimum spanning tree. Moreover, this algorithm has computational compexity of polynomial-time with low order and can be used to deal with large-scale networks. Experimental results show that our method produces good results for real networks and can also uncover meaningful functional modules in protein interaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibson, D., Kleinberg, J., Raghavan, P.: Inferring Web Communities from Link Topology. In: Proceedings of the 9th ACM Conference on Hypertext and Hypermedia, ACM Press, New York (1998)

    Google Scholar 

  2. Gavin, A.C., Aloyand, P., Grandi, P., et al.: Proteome Survey Reveals Modularity of the Yeast Cell Machinery. Nature 440, 631–636 (2006)

    Article  Google Scholar 

  3. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, L., Wu, L-Y., Wang, Y., Zhang, X-S.: Inferring Protein Interactions from Experimental Data by Association Probabilistic Method. Proteins 62, 833–837 (2006)

    Article  Google Scholar 

  5. Zhang, S., Ning, X.-M., Zhang, X.-S.: Identification of Functional Modules in a PPI Network by Clique Percolation Clustering. Computational Biology and Chemistry 30, 445–451 (2006)

    Article  MATH  Google Scholar 

  6. Zhang, S., Liu, H.-W., Ning, X.-M., Zhang, X.-S.: A Graph-Theoretic Method for Mining Functional Modules in Large Sparse Protein Interaction Networks. In: Proceeding of Sixth IEEE International Conference on Data Mining-Workshops (ICDMW’06), pp. 130–135. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  7. Wang, R., Zhou, T., Jing, Z., Chen, L.: Modelling Periodic Oscillation of Biological Systems with Multiple Time Scale Networks. Systems Biology 1, 71–84 (2004)

    Article  Google Scholar 

  8. Wang, Y., Joshi, T., Xu, D., Zhang, X-S., Chen, L.: Inferring Gene Regulatory Networks from Multiple Microarray Datasets. Bioinformatics 22, 2413–2420 (2006)

    Article  Google Scholar 

  9. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  10. White, S., Smyth, P.: A Spectral Clustering Approach to Finding Communities in Graphs. SIAM International Conference on Data Mining (2005)

    Google Scholar 

  11. Danon, L., Daz-Guilera, A., Duch, J., Arenas, A.: Comparing Community Structure Identification. J. Statist. Mech.: Theory and Experiment, 09, P09008 (2005)

    Google Scholar 

  12. Angelini, L., Boccaletti, S., Marinazzo, D., et al.: Fast Identification of Network Modules by Optimization of Ratio Association, cond-mat/0610182 (2006)

    Google Scholar 

  13. Reichardt, J., Bornholdt, S.: Detecting Fuzzy Community Structures in Somplex Networks with a Potts Model. Physical Review Letters, 93, 218701 (2004)

    Google Scholar 

  14. Pallal, G., Derenyi, I., Farkasl, I., et al.: Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  15. Vicsek, T.: Phase Transitions and Overlapping Modules in Complex Networks. Physica A 378, 20–32 (2007)

    Article  Google Scholar 

  16. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Phys. Rev. E 69, 026113 (2004)

    Google Scholar 

  17. Duch, J., Arenas, A.: Community Identification Using Extremal Optimization. Phys. Rev. E, 72, 027104 (2005)

    Google Scholar 

  18. Newman, M.E.J.: Modularity and Community Structure in Networks. Proc. Natl Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  19. Guimer, R., Amaral, L.A.N.: Functional Cartography of Complex Metabolic Networks. Nature 438, 895–900 (2005)

    Article  Google Scholar 

  20. Fortunato, S., Barthélemy, M.: Resolution Limit in Community Detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)

    Article  Google Scholar 

  21. Gustafsson, M.: Comparison and Validation of Community Structures in Complex Networks. Physica A 367, 559–576 (2006)

    Article  Google Scholar 

  22. Newman, M.E.J.: Detecting Community Structure in Networks. Eur. Phys. J. B 38, 321–330 (2004)

    Article  Google Scholar 

  23. Gower, J.C., Ross, G.J.S.: Minimum Spanning Trees and Single-Linkage Cluster Analysis. Applied Statistics 18, 54–64 (1969)

    Article  MathSciNet  Google Scholar 

  24. Zahn, C.T.: Graph-Theoretical Methods for Detecting and Describing gestalt clusters. IEEE Transaction on Computers C20, 68–86 (1971)

    Article  Google Scholar 

  25. Pävinen, N.: Clustering with a Minimum Spanning Tree of Scale-free Like Structure. Pattern Recognition Letters 26, 921–930 (2005)

    Article  Google Scholar 

  26. Varma, S., Simon, R.: Iterative Class Discovery and Feature Selection Using Minimal Spanning Trees. BMC Bioinformatics 5, 126–134 (2004)

    Article  Google Scholar 

  27. Xu, Y., Olman, V., Xu, D.: Clustering Gene Expression Data Using a Graph-Theoretic Approach: an Application of Minimum Spanning Trees. Bioinformatics 18, 536–545 (2002)

    Article  Google Scholar 

  28. Xu, Y., Olman, V., Uberbacher, E.C.: A Segmentation Algorithm for Noisy Images: Design and Evaluation. Pattern Recognition Letters 19, 1213–1224 (1998)

    Article  MATH  Google Scholar 

  29. Mewes, H.W., Frishman, D., Guldener, U., et al.: MIPS: a Database for Genomes and Protein Sequences. Nucleic Acids. Res. 30, 31–34 (2002)

    Article  Google Scholar 

  30. Vathy-Fogarassy, A., Feil, B., Abonyi, J.: Minimal Spanning Tree Based Fuzzy Clustering. ENFORMATIKA Transactions on Engineering, Computing and Technology 8, 7–12 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, RS., Zhang, S., Zhang, XS., Chen, L. (2007). Identifying Modules in Complex Networks by a Graph-Theoretical Method and Its Application in Protein Interaction Networks. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_113

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74205-0_113

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74201-2

  • Online ISBN: 978-3-540-74205-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics