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Abstract

Let (X, dX) be ann-point metric space. We show that there exists a distributionD over non-contractive
embeddings into treesf : X→ T such that for everyx ∈ X,

ED

[
max

y∈X\{x}

dT( f (x), f (y))
dX(x, y)

]
6 C(logn)2,

whereC is a universal constant. Conversely we show that the above quadratic dependence on logn
cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield
a framework for the design of approximation algorithms for awide range of clustering problems with
monotone costs, including fault-tolerant versions ofk-median and facility location.

1 Introduction

Metric embeddings are an invaluable tool in analysis, Riemannian geometry, group theory, graph theory,
and the design of approximation algorithms. In most cases embeddings are used to “simplify” a geometric
object that we wish to understand, or on which we need to perform certain algorithmic tasks. Thus one tries
to faithfully represent a metric space as a subset of anotherspace with controlled geometry, whose structure
is well enough understood to successfully address the problem at hand. There is some obvious flexibility in
this approach: Both the choice of target space and the notionof faithfulness of an embedding can be adapted
to the problem that we wish to solve. Of course, once these choices are made, the main difficulty is the
construction of the required embedding, and in the algorithmic context we have the additional requirement
that the embedding can be computed efficiently.

In this paper we introduce a new notion of embedding, calledmaximum gradient embeddings, which
turns out to be perfectly suited for approximating a wide range of clustering problems. We then provide op-
timal maximum gradient embeddings of general finite metric spaces, and use them to design approximation
algorithms for several clustering problems. These embeddings yield a generic approach to many problems,
and we give some examples that illustrate this fact.

Due to their special structure, it is natural to try to embed metric spaces into trees. This is especially
important for algorithmic purposes, as many hard problems are tractable on trees. Unfortunately, this is too
much to hope for in the bi-Lipschitz category: As shown by Rabinovich and Raz [35] then-cycle incurs
distortionΩ(n) in any embedding into a tree. However, one can relax this idea and look for arandom
embedding into a tree which is faithful on average.

Randomized embeddings into trees via mappings which do not contract distances (also known as prob-
abilistic embeddings into dominating trees) became an important algorithmic paradigm due to the work of
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Bartal [3, 4] (see also [1, 16] for the related problem of embedding graphs into distributions over spanning
trees). This work led to the design of many approximation algorithms for a wide range of NP hard prob-
lems. In some cases the best known approximation factors aredue to the “probabilistic tree” approach,
while in other cases improved algorithms have been subsequently found after the original application of
probabilistic embeddings was discovered. But, in both cases it is clear that the strength of Bartal’s approach
is that it is generic: For a certain type of problem one can quickly get a polylogarithmic approximation
using probabilistic embedding into trees, and then proceedto analyze certain particular cases if one desires
to find better approximation guarantees. However, probabilistic embeddings into trees do not always work.
In [7] Bartal and Mendel introduced the weaker notion of multi-embeddings, and used it to design improved
algorithms for special classes of metric spaces. Here westrengthenthis notion to maximum gradient embed-
dings, yielding a faithfulness measure which is nevertheless weaker than bi-Lipschitz, and use it to design
approximation algorithms for harder problems to which regular probabilistic embeddings do not apply.

Let (X, dX) and (Y, dY) be metric spaces, and fix a mappingf : X → Y. We shall say thatf is non-
contractiveif for every x, y ∈ X we havedY( f (x), f (y)) > dX(x, y). Themaximum gradientof f at a point
x ∈ X is defined as

|∇ f (x)|∞ = sup
y∈X\{x}

dY( f (x), f (y))
dX(x, y)

. (1)

Thus theLipschitz constantof f is given by

‖ f ‖Lip = sup
x∈X
|∇ f (x)|∞.

Note that in the mathematical literature, mostly in the context of the study of isoperimetry on general
geodesic metric measure spaces (see for example [8,28]), itis common to define themodulus of the gradient
of f at x ∈ X as

|∇ f (x)| = lim sup
y→x

dY( f (x), f (y))
dX(x, y)

. (2)

The definition in (2) is very natural in the context of connected metric spaces, but in the context of finite
metric spaces it clearly makes more sense to deal with the maximum gradient as defined in (1).

In what follows when we refer to a tree metric we mean the shortest-path metric on a graph-theoretical
tree with weighted edges. Recall that (U, dU) is an ultrametric if for everyu, v,w ∈ U we havedU(u, v) 6
max{dU(u,w), dU (w, v)}. It is well known that ultrametrics are tree metrics. The following result is due to
Fakcharoenphol, Rao and Talwar [17], and is a slight improvement over an earlier theorem of Bartal [4]. For
everyn-point metric space (X, dX) there is a distributionD over non-contractive embeddings into ultramet-
rics f : X→ U such that

max
x,y∈X
x,y

ED

[
dU( f (x), f (y)

dX(x, y)

]
= O(logn). (3)

The logarithmic upper bound in (3) cannot be improved in general.
Inequality (3) is extremely useful for optimization problems whose objective function is linear in the

distances, since by linearity of expectation it reduces such tasks to trees, with only a logarithmic loss in the
approximation guarantee. When it comes to non-linear problems, the use of (3) is very limited. We will
show that this issue can be addressed using the following theorem, which is our main result.
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Theorem 1. Let (X, dX) be an n-point metric space. Then there exists a distributionD over non-contractive
embeddings into ultrametrics f: X→ U (thus both the ultrametric(U, dU) and the mapping f are random)
such that for every x∈ X,

ED

[|∇ f (x)|∞
]
6 C(logn)2,

where C is a universal constant.
On the other hand there exists a universal constant c> 0 and arbitrarily large n-point metric spaces Yn

such that for any distribution over non-contractive embeddings into trees f: Yn → T there is necessarily
some x∈ Yn for which

ED

[|∇ f (x)|∞
]
> c(logn)2.

We call embeddings as in Theorem 1, i.e. embeddings with small expected maximum gradient,maxi-
mum gradient embeddings into distributions over trees(in what follows we will only deal with distributions
over trees, so we will drop the last part of this title when referring to the embedding, without creating any
ambiguity). The proof of the upper bound in Theorem 1 is a modification of an argument of Fakcharoenphol,
Rao and Talwar [17], which is based on ideas from [3, 11]. It uses the same stochastic decomposition of
metric spaces as in [17], but it relies on properties of it which are well known to experts, yet have not been
exploited in full strength in previous applications. The argument appears in Section 2. Alternative proofs of
the main technical step of the proof of the upper bound in Theorem 1 can be also deduced from the results
of [32] or an argument in the proof of Lemma 2.1 in [20]. In bothof these references the required inequality
is deduced from an improved analysis of the specific stochastic decomposition of Calinescu, Karloff and
Rabani [11] that was used in [17]. Here we present a different approach, which shows that the “padding
inequality” proved by Fakcharoenphol, Rao and Talwar in [17] can be used as a “black box” to yield a max-
imum gradient embedding, and there is no need to recall how the stochastic decomposition was originally
defined.

The heart of this paper is the lower bound in Theorem 1. The metrics Yn in Theorem 1 are the diamond
graphs of Newman and Rabinovich [34], which will be defined inSection 3. These graphs have been
previously used as counter-examples in several embedding problems— see [10, 21, 29, 34]. In particular,
we were inspired to consider these examples by the proof in [21] of the fact that they require distortion
Ω(logn) in any probabilistic embedding into trees. However, our proof of theΩ((logn)2) lower bound in
Theorem 1 is considerably more delicate than the proof in [21]. This proof, together with other lower bounds
for maximum gradient embeddings, is presented in Section 3.

1.1 A framework for clustering problems with monotone costs

We now turn to some algorithmic applications of Theorem 1. The general reduction in Theorem 2 below
should also be viewed as an explanation why maximum gradientembeddings are so natural— they are
precisely the notion of embedding which allows such reductions to go through.

A general setting of the clustering problem is as follows. Let X be ann-point set, and denote by MET(X)
the set of all metrics onX. A possible clustering solutionconsists of sets of the form{(x1,C1), . . . , (xk,Ck)}
wherex1, . . . , xk ∈ X andC1, . . . ,Ck ⊆ X. We think ofC1, . . . ,Ck as the clusters, andxi as the “center” ofCi.
In this general framework we do not require that the clusterscoverX, or that they are pairwise disjoint, or
that they contain their centers. Thus the space of possible clustering solution isS ≔ 2X×2X

(though the exact
structure ofS does not play a role in the proof of Theorem 2 below). Assume that for every pointx ∈ X,
every metricd ∈ MET(X), and every possible clustering solutionP ∈ S, we are givenΓ(x, d,P) ∈ [0,∞],
which we think of as a measure of the dissatisfaction ofx with respect toP andd. Our goal is to minimize
the average dissatisfaction of the points ofX. Formally, given a measure of dissatisfaction (which we also
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call in what follows aclustering cost function) Γ : X × MET(X) × S → [0,∞], we wish to compute for a
given metricd ∈ MET(X) the value

OptΓ(X, d)
def
= min


∑

x∈X
Γ(x, d,P) : P ∈ S



(Since we are mainly concerned with the algorithmic aspect of this problem, we assume from now on thatΓ
can be computed efficiently.)

We make two natural assumptions on the cost functionΓ. First of all, we will assume that it scales
homogeneously with respect to the metric, i.e. for everyλ > 0, x ∈ X, d ∈ MET(X) andP ∈ S we have
Γ(x, λd,P) = λΓ(x, d,P). Secondly we will assume thatΓ is monotone with respecting to the metric, i.e.
if d, d ∈ MET(X) andx ∈ X satisfyd(x, y) 6 d(x, y) for everyy ∈ X thenΓ(x, d,P) 6 Γ(x, d,P). In other
words, if all the points inX are further with respect tod from x then they are with respect tod, thenx is
more dissatisfied. This is a very natural assumption to make,as most clustering problems look for clusters
which are small in various (metric) senses. We call clustering problems withΓ satisfying these assumptions
monotone clustering problems. Essentially all the algorithmic minimization problems that have benefitted
from an application of (3) can be cast as monotone clusteringproblems, but this framework also applies to
some “non-linear” clustering optimization problems, as weshall see presently.

The following theorem is a simple application of Theorem 1. It shows that it is enough to solve monotone
clustering problems on ultrametrics, with only a polylogarithmic loss in the approximation factor.

Theorem 2 (reduction to ultrametrics). Let X be an n-point set and fix a homogeneous monotone clustering
cost functionΓ : X ×MET(X) × S → [0,∞]. Assume that there is a randomized polynomial time algorithm
which approximatesOptΓ(X, ρ) to within a factorα(n) on any ultrametricρ ∈ MET(X). Then there is a
randomized polynomial time algorithm which approximatesOptΓ(X, d) on any metric d∈ MET(X) to within
a factor of O

(
α(n)(logn)2

)
.

Proof. Let (X, d) be ann-point metric space and letD be the distribution over random ultrametricsρ on X
from Theorem 1 (which is computable in polynomial time, as follows directly from our proof of Theorem 1
in Section 2). In other words,ρ(x, y) > d(x, y) for all x, y ∈ X and

max
x∈X
ED

[
max

y∈X\{x}

ρ(x, y)
d(x, y)

]
6 C(logn)2.

Let P ∈ S be a clustering solution for which

OptΓ(X, d) =
∑

x∈X
Γ(x, d,P).

Using the monotonicity and homogeneity ofΓ we see that

OptΓ(X, ρ) 6
∑

x∈X
Γ(x, ρ,P) 6

∑

x∈X
Γ

(
x,

[
max

y∈X\{x}

ρ(x, y)
d(x, y)

]
· d,P

)
=

∑

x∈X

[
max

y∈X\{x}

ρ(x, y)
d(x, y)

]
· Γ(x, d,P).

Taking expectation we conclude that

ED

[
OptΓ(X, ρ)

]
6

∑

x∈X

(
ED

[
max

y∈X\{x}

ρ(x, y)
d(x, y)

])
Γ(x, d,P) 6 C(logn)2 ·OptΓ(X, d).
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Hence, with probability at least12 we have

OptΓ(X, ρ) 6 2C(logn)2 ·OptΓ(X, d).

For suchρ compute a clustering solutionQ ∈ S satisfying
∑

x∈X
Γ(x, ρ,Q) 6 α(n)OptΓ(X, ρ) 6 2Cα(n)(logn)2 ·OptΓ(X, d).

Sinceρ > d it remains to use the monotonicity ofΓ once more to deduce that
∑

x∈X
Γ(x, ρ,Q) >

∑

x∈X
Γ(x, d,Q) > OptΓ(X, d).

ThusQ is aO
(
α(n)(logn)2

)
approximate solution to the clustering problem on (X, d) with costΓ. �

Theorem 2 is a generic reduction, and in many particular cases it might be possible use a case-specific
analysis to improve theO

(
(logn)2

)
loss in the approximation factor. However, as a general reduction

paradigm for clustering problems, Theorem 2 makes it clear why maximum gradient embeddings are natural.
We shall now demonstrate the applicability of the monotone clustering framework to two concrete ex-

amples calledfault-tolerant k-median clusteringandΣℓp clustering. We are not aware of a previous inves-
tigation of these problems, but we believe that they are quite natural. It also seems plausible that, just as in
the problems for which Bartal’s method originally yielded the first non-trivial algorithmic results, a better
approximation factor might be obtainable via more problem-specific tools.

Fault-tolerant k-median and facility location. The k-median problem is as follows. Given ann-point
metric space (X, dX) andk ∈ N, find x1, . . . , xk ∈ X that minimize the objective function

∑

x∈X
min

j∈{x1,...,xk}
dX(x, x j). (4)

This very natural and well studied problem can be easily castas monotone clustering problem by defining
Γ(x, d, {(x1,C1), . . . , (xm,Cm)}) to be∞ if m, k, and otherwise

Γ(x, d, {(x1,C1), . . . , (xm,Cm)}) = min
j∈{x1,...,xk}

d(x, x j ).

The linear structure of (4) makes it a prime example of a problem which can be approximated using
Bartal’s probabilistic embeddings. Indeed, the first non-trivial approximation algorithm fork-median clus-
tering was obtained by Bartal in [4] (another such example isMin-Sum clustering— see [5]). Since then
this problem has been investigated extensively: The first constant factor approximation for it was obtained
in [13] using LP rounding, and the first combinatorial (primal-dual) constant-factor algorithm was obtained
in [24]. In [2] an analysis of a natural local search heuristic yields the best known approximation factor for
k-median clustering.

Here we study the following fault-tolerant version of thek-median problem. Let (X, d) be ann-point
metric space and fixk ∈ N. Assume that for everyx ∈ X we are given an integerj(x) ∈ X (which we
call the fault-tolerant parameter ofx). Given x1, . . . , xk and x ∈ X let x∗j (x; d) be the j-th closest point to

x in {x1, . . . , xk}. In other words,{x∗j (x; d)}kj=1 is a re-ordering of{x j}kj=1 such thatd(x, x∗1(x; d)) 6 · · · 6
d(x, x∗k(x; d)). Our goal is to minimize the objective function

∑

x∈X
d
(
x, x∗j(x)(x; d)

)
. (5)
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To understand (5) assume for the sake of simplicity thatj(x) = j for all x ∈ X. If {x j}kj=1 minimize (5)
and j − 1 of them are deleted (due to possible noise), then we are still ensured that on average every point
in X is close to one of thex j . In this sense the clustering problem in (5) is fault-tolerant. In other words, the
optimum solution of (5) is insensitive to (controlled) noise. Observe that forj = 1 we return to thek-median
clustering problem.

We remark that another fault-tolerant version ofk-median clustering was introduced in [25]. In this
problem we connect each pointx in the metric spaceX to j(x) centers, but the objective function is the
sum overx ∈ X of the sum of the distances fromx to all the j(x) centers. Once again, the linearity of the
objective function seems to make the problem easier, and in [37] a constant factor approximation is achieved
(this immediately implies that our version of fault-tolerant k-median clustering, i.e. the minimization of (5),
has aO (maxx∈X j(x)) approximation algorithm). In particular, the LP that was previously used fork-median
clustering naturally generalizes to this setting. This is not the case for our fault-tolerant version in (5).
Moreover, the local search techniques fork-median clustering (see for example [2]) do not seem to be easily
generalizable to the casej > 1, and in any case seem to requirenΩ( j) time, which is not polynomial even for
moderate values ofj.

Arguing as above in the case ofk-median clustering we see that the fault-tolerantk-median clustering
problem in (5) is a monotone clustering problem. In Section 4.1 we show that it can be solved exactly in
polynomial time on ultrametrics. Thus, in combination withTheorem 2, we obtain aO

(
(logn)2

)
approxi-

mation algorithm for the minimization of (5) on general metrics.

Remark1. Facility location type problems have been studied extensively since the 1960’s— we refer to the
book [33], and specifically to the chapter on uncapacitated facility location [15], for a discussion of such
problems. The uncapacitated metric facility location problem is closely related tok-median problem (indeed
k-median can be reduced to it via Lagrangian relaxation— see [24]), and has been studied extensively in
recent years (see [12, 19, 23, 24, 26, 36]). In the context of (5) we can also consider the following fault-
tolerant version of the facility location problem. Assume in addition that we are given non-negative facility
costs{ fx}x∈X. Then the goal is to minimize over allx1, . . . , xk ∈ X the objective function

k∑

j=1

fxj +
∑

x∈X
d
(
x, x∗j(x)(x; d)

)
. (6)

The casej(x) ≡ 1 reduces to the classical un-capacitated metric facility location problem. The techniques
presented here can be easily generalized to yield aO

(
(logn)2

)
approximation algorithm for the minimization

of (6) as well.

Σℓp clustering. Another problem which illustrates the usefulness of Theorem 2 is theΣℓp clustering problem
which we now describe. Our argument for this problem is quitegeneral, and it applies to more cost functions,
but it is beneficial to concentrate on a concrete example. Forp ∈ [1,∞] the Σℓp clustering problem is as
follows: For a metric space (X, d) andk ∈ N the goal is to findx1, . . . , xk ∈ X and a partition ofX into k sets
C1, . . . ,Ck ⊆ X which minimize the objective function

k∑

j=1


∑

x∈C j

d(x, x j )
p



1/p

. (7)

When p = 1 this becomes thek-median problem, and whenp = ∞ this is the “sum of the cluster
radii” problem, which has been studied in [14]. In both of these extreme cases there is a constant factor
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approximation algorithm known, so we automatically get aO
(
min{n1/p, n1−1/p}

)
approximation algorithm

for (7). Here we shall use the framework of Theorem 2 to give aO
(
(logn)2

)
approximation algorithm for

this problem for generalp.
Observe that theΣℓp clustering problems are monotone clustering problems. Indeed, all we need to do

is defineΓ(x, d, {(x1,C1), . . . , (xm,Cm)}) to be∞ if {C1, . . . ,Cm} is not a partition ofX or m, k. Otherwise
setΓ(x, d, {(x1,C1), . . . , (xk,Ck)}) = 0 if x < {x1, . . . , xk} and for j ∈ {1, . . . , k},

Γ(x j , d, {(x1,C1), . . . , (xk,Ck)}) =


∑

x∈C j

d(x, x j)
p



1/p

.

This definition clearly makesΓ a homogeneous monotone clustering cost function for anyp ∈ [1,∞].
The following lemma, combined with Theorem 2, therefore implies that theΣℓp clustering problem has a
O

(
(logn)2

)
approximation algorithm.

Lemma 3. TheΣℓp clustering problem has a constant factor polynomial time approximation algorithm
(even a FPTAS) on ultrametrics.

Lemma 3 will be proved via dynamic programming in Section 4.1.

2 Proof of the upper bound in Theorem 1

We start by recalling some terminology and results concerning random partitions of metric spaces. Given a
partitionP of a finite metric space (X, dX) andx ∈ X we denote byP(x) the unique element ofP to which
x belongs. For∆ > 0 the partitionP is said to be∆-bounded if for everyx ∈ X we have diam(P(x)) 6 ∆.
We also fix a positive measureµ onX. The following fundamental result is due to [17] whenµ is the uniform
measure onX. The case of general measures was observed in [27,30], and the specific numerical constants
used below are taken from [32].

Lemma 4. For every∆ > 0 there exists a distribution over∆-bounded partitionsP of X such that for every
x ∈ X and every0 < t 6 ∆/8,

Pr [BX(x, t) *P(x)] 6
16t
∆
· log

µ(BX(x,∆))
µ(BX(x,∆/8))

. (8)

We also recall the notion of aquotient of a metric space(see [9, 18, 31]). LetW = {W1, . . . ,Wm} be a
partition ofX. ForW,W′ ∈ W write dX(W,W′) = min{dX(x, y) : x ∈W, y ∈W′}. The quotient metric space
(X/W , dX/W ) is define as follows. As a setX/W coincides withW . The metricdX/W is the maximal metric
onW which is majorized bydX(·, ·). In other words, forW,W′ ∈ W ,

dX/W (W,W′) = min



m−1∑

j=1

dX(V j−1,V j) : V0, . . . ,Vm−1 ∈ W , V0 =W, Vm−1 =W′


.

Note that theV j ’s in the definition above need not be distinct.
The following lemma is a well known “quotient version” of Lemma 4. The argument dates back at least

to Bartal [3], and appeared in various guises in several other places— see for example [22, 32]. Since we
couldn’t locate the formulation that we need in the literature, we include a proof here.
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Lemma 5. Let (X, dX) be an n-point metric space and∆ > 0. Then there exists a distribution over∆-
bounded partitionsP of X such that for every x, y ∈ X, if dX(x, y) 6 ∆

2n thenP(x) = P(y), and for every
x ∈ X and0 < t 6 ∆/16,

Pr [BX(x, t) *P(x)] 6
32t
∆
· log

µ(BX(x,∆))
µ(BX(x,∆/16))

.

Proof. Define an equivalence relation onX by x ∼ y if there existsk ∈ N and x0, . . . , xk ∈ X such that
x0 = x, xk = y anddX(xi−1, xi) 6 δ

2n for all i ∈ {1, . . . , k}. Let W = {W1, . . . ,Wm} be the equivalence
classes of this relation, and consider the quotient metric spaceX/W . We also denote byπ : X → W the
induced quotient map, i.e. forx ∈ Wj, π(x) = Wj . Let µ ◦ π−1 be the measure onW given forW ∈ W by
µ ◦ π−1(W) = µ(π−1(W)). Observe that for everyx, y ∈ X,

dX(x, y) − ∆
2
6 dX/W (π(x), π(y)) 6 dX(x, y). (9)

Indeed, the upper bound in (9) is immediate from the definition of a quotient metric. The lower bound in (9)
is proved as follows. There are pointsx = x0, x1, . . . , xm−1 = y in X such that the sets{π(x j)}m−1

j=0 are distinct

(and hence disjoint), anddX/W (π(x), π(y)) =
∑m−1

j=1 dX(π(x j−1), π(x j)). For j ∈ {1, . . . ,m− 1} let a j ∈ π(x j−1)
and b j ∈ π(x j) be such thatdX(a j , b j) = dX(π(x j−1), π(x j)). Since, by the definition of the equivalence
relation∼, for all z ∈ X we have diam(π(z)) = maxa,b∈π(z) dX(a, b) 6 (|π(z)|−1)∆

2n we get that

dX(x, y) 6 dX(x, a1) +
m−1∑

j=1

dX(a j , b j) +
m−2∑

j=1

dX(b j , a j+1) + dX(bm−1, y)

6

m−1∑

j=0

(|π(x j)| − 1)∆

2n
+ dX/W (π(x), π(y)) 6

∆

2
+ dX/W (π(x), π(y)),

implying the lower bound in (9).
Let Q be a distribution over∆/2-bounded partitions ofX/W such that for everyW ∈ W and every

0 < t 6 ∆/16 we have

Pr
[
BX/W (W, t) * Q(W)

]
6

32t
∆
· log

µ ◦ π−1(BX/W (W,∆/2))

µ ◦ π−1(BX/W (W,∆/16))
. (10)

The existence ofQ follows from Lemma 4. LetP be the partition ofX given byP = {π−1(A) : A ∈ Q}.
Note that (9) implies that for everyx ∈ X we haveπ−1 (

BX/W (π(x),∆/2)
) ⊆ BX(x,∆) and for everyt > 0,

π−1 (
BX/W (π(x), t)

) ⊇ BX(x, t). Thus (10) implies that for everyx ∈ X and 0< t 6 ∆/16,

Pr [BX(x, t) *P(x)] 6 Pr
[
BX/W (π(x), t) * Q(π(x))

]
6

32t
∆
· log

µ(BX(x,∆))
µ(BX(x,∆/16))

.

It remains to note that (9) implies thatP is ∆-bounded and ifdX(x, y) 6 ∆
2n thenx ∼ y, which means that

π(x) = π(y), so thatP(x) =P(y). �

Proof of the upper bound in Theorem 1.For everyk ∈ Z let Pk be a random partition sampled from the
distribution over partitions ofX from Lemma 5 with∆ = 16k, whereµ is the counting measure onX (we
assume in what follows that the distributions for different values ofk are independent). Forx, y ∈ X let k
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be the largest integer for whichPk(x) , Pk(y) (such ak must exists since for small enoughk we have
Pk(z) = {z} for all z ∈ X). Denoteρ(x, y) = 16k+1. Thenρ is a (random) ultrametric onX. Indeed, if
x, y, z ∈ X andρ(x, y) = 16k+1 thenPk(x) ,Pk(y). It follows that eitherPk(z) ,Pk(x) or Pk(z) ,Pk(y).
Thus by the definition ofρ we have that max{ρ(x, z), ρ(y, z)} > ρ(x, y). Note also that ifρ(x, y) = 16k+1 then
Pk+1(x) = Pk+1(y), so thatdX(x, y) 6 diam(P(x)) 6 16k+1 = ρ(x, y). It follows that the identity mapping
on X is a random non-contractive embedding ofX into the ultrametric (X, ρ). Finally, since whenever
dX(x, y) 6 16k

2n we havePk(x) =Pk(y), we are ensured thatρ(x, y) 6 32ndX(x, y) for everyx, y ∈ X.
Denote forx ∈ X andi ∈ Z, Ai(x) = BX(x, 16i )\BX(x, 16i−1). For everyj ∈ N andk ∈ Z if BX(x, 16k− j ) ⊆

Pk(x) then for everyy ∈ BX(x, 16k− j ) we havePk(x) = Pk(y), and therefore by the definition ofρ(x, y)
we haveρ(x, y) 6 16k. Thus, if y ∈ Ak− j(x) we haveρ(x, y) 6 16k < 16j+1dX(x, y). This establishes the
following inclusion of events:

{
max

y∈Ak− j(x)

ρ(x, y)
dX(x, y)

> 16j+1
}
⊆

{
BX(x, 16k− j ) *Pk(x)

}
.

hence

Pr

[
max

y∈Ak− j (x)

ρ(x, y)
dX(x, y)

> 16j+1
]
6 Pr

[
BX(x, 16k− j ) *Pk(x)

]
6

32
16j
· log

|BX(x, 16k)|
|BX(x, 16k−1)|

.

Thus, sinceX =
⋃

i∈Z Ai(x), we see that

Pr

[
max

y∈X\{x}

ρ(x, y)
dX(x, y)

> 16j
]
= Pr


⋃

i∈Z

{
max

y∈Ai(x)

ρ(x, y)
dX(x, y)

> 16j
} 6

∑

i∈Z
Pr

[
max

y∈Ai(x)

ρ(x, y)
dX(x, y)

> 16j
]

6

∑

i∈Z

32

16j−1
· log

|BX(x, 16i+ j−1)|
|BX(x, 16i+ j−2)|

6
512
16j
· logn. (11)

It follows that there exists a universal constantC > 0 such that for allu > 0 we have

Pr

[
max

y∈X\{x}

ρ(x, y)
dX(x, y)

> u

]
6

C logn
u

.

Hence, using the a priori boundρ(x, y) 6 32ndX(x, y), it follows that

E

[
max

y∈X\{x}

ρ(x, y)
dX(x, y)

]
=

∫ 32n

0
Pr

[
max

y∈X\{x}

ρ(x, y)
dX(x, y)

> u

]
du6

∫ 32n

0
min

{
1,

C logn
u

}
du= O

(
1+ (logn)2

)
.

This completes the proof of the upper bound in Theorem 1. �

Remark2. The above argument also shows that for everyn-point metric space (X, dX) there exists a distri-
bution over non-contractive embeddings into ultrametricsf : X→ U such that

ED

[|∇ f (x)|∞
]
= O

(
1+ (logn) logΦ(X)

)
,

whereΦ(X) is the aspect ratio ofX, which is defined by

Φ(X) =
diamX

minx,y∈X
x,y

dX(x, y)
=

maxx,y∈X dX(x, y)

minx,y∈X
x,y

dX(x, y)
.
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3 Tight lower bounds for cycles, paths, and diamond graphs

As mentioned in the introduction, the metricsYn in Theorem 1 are the diamond graphs of Newman and
Rabinovich [34], which will be defined presently. Before passing to this more complicated (and strongest)
lower bound, we will analyze the simpler examples of cycles and paths, which are of independent interest.

Let Cn, n > 3, be the unweighted path onn-vertices. We will identifyCn with the groupZn of integers
modulo n. We first observe that in this special case the upper bound in Theorem 1 can be improved to
O(logn). This is achieved by using Karp’s embedding of the cycle into spanning paths— we simply choose
an edge ofCn uniformly at random and delete it. Letf : Cn → Z be the randomized embedding thus
obtained, which is clearly non-contractive.

As Karp observed, one can readily verify that as a probabilistic embedding into treesf has distortion at
most 2. We will now show that as a maximum gradient embedding,f has distortionΘ(logn). Indeed, fix
x ∈ Cn, and denote the deleted edge by{a, a + 1}. Assume thatdCn(x, a) = t 6 n/2 − 1. Then the distance
from a+ 1 to x changed fromt + 1 in Cn to n− t − 1 in the path. It is also easy to see that this is where the
maximum gradient is attained. Thus

E
[|∇ f (x)|∞

] ≈ 2
n

∑

06t6n/2

n− t − 1
t + 1

= Θ(logn).

We will now show that any maximum gradient embedding ofCn into a distribution over trees incurs distor-
tionΩ(logn). For this purpose we will use the following lemma from [35].

Lemma 6. For any tree metric T, and any non-contractive embedding g: Cn → T, there exists an edge
(x, x+ 1) of Cn such that dT(g(x), g(x+ 1)) > n

3 − 1.

Now, letD be a distribution over non-contractive embeddings ofCn into treesf : Cn→ T. By Lemma 6
we know that there existsx ∈ Cn such thatdT( f (x), f (x + 1)) > n−3

3 . Thus for everyy ∈ Cn we have that
max{dT( f (y), f (x)), dT ( f (y), f (x+1))} > n−3

6 . On the other hand max{dCn(y, x), dCn(y, x+1)} 6 dCn(x, y)+1.
It follows that

|∇ f (y)|∞ >
n− 3

6dCn(x, y) + 6
.

Summing this inequality overy ∈ Cn we see that

∑

y∈Cn

|∇ f (y)|∞ >
∑

06k6n/2

n− 3
6k + 6

= Ω(n logn).

Thus

max
y∈Cn

ED

[|∇ f (y)|∞
]
>

1
n

∑

y∈Cn

ED |∇ f (y)|∞ = Ω(logn),

as required.

We will now deal with the more complicated case of maximum gradient embeddings of the unweighted
path onn-vertices, which we denote byPn, into ultrametrics. The following proposition shows that Theo-
rem 1 is optimal when one considers embeddings into ultrametrics. This is weaker than the lower bound in
Theorem 1, which deals with embeddings into arbitrary trees(note thatPn is a tree).

Proposition 7. LetD be a distribution over non-contractive embeddings of Pn into ultrametrics f : Pn→ U.
Then there exists x∈ Pn such thatED

[|∇ f (x)|∞
]
= Ω((logn)2).
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Before proving Proposition 7 we record the following numerical inequalities.

Lemma 8. The following elementary inequalities hold true:

1. For every a, b ∈ {0, 1, 2, . . .},

a(loga)2 + b(logb)2
> (a+ b)

(
log(a+ b)

)2 − 2

[
1+ log

(
a+ b

a

)]
a log(a+ b).

2. For every x> 1,
(
1+ log x

)
log x 6 4

√
x.

Proof. The first inequality is trivial ifa = 0 or b = 0, so assume thata, b > 1. Denote fort > 0, ψ(t) =
t(log t)2. Then

(a+ b)
(
log(a+ b)

)2 − b(logb)2 =

∫ a+b

b
ψ′(t)dt

=

∫ a+b

b

[
(log t)2 + 2 logt

]
dt

6 a
(
log(a+ b)

)2
+ 2a log(a+ b)

= a(loga)2 + a
[
log(a+ b) + loga

] · log

(
a+ b

a

)
+ 2a log(a+ b)

6 a(loga)2 + 2

[
1+ log

(
a+ b

a

)]
a log(a+ b),

proving the first assertion in Lemma 8.
The second assertion in Claim 8 follows from the inequality logx 6 2 4

√
x − 1, which is true since the

minimum of the functiony 7→ 2 4
√

y− 1− logy, which is attained aty = 16, is positive. �

Proof of Proposition 7.We think ofPn as the interval of integersI = {0, . . . , n− 1} ⊆ R. Arguing the same
as in the case of the cycleCn, it is enough to prove that if (U, dU) is an ultrametric andf : Pn → U is
non-contractive then

1
n

n−1∑

x=0

|∇ f (x)|∞ > c(logn)2, (12)

wherec > 0 is a universal constant.
Given a sub-intervalJ = {a, a+1, . . . , a+t} ⊆ {0, . . . , n−1} let mJ be the largest pointm ∈ {a+1, . . . , a+t}

for which dU( f (m− 1), f (m)) = ‖ f |J‖Lip = max16i6t dU( f (a+ i − 1), f (a+ i)) (if t = 0 then we setmJ = a).
Since the distortion ofJ in any embedding into an ultrametric is at least|J| − 1 (see Lemma 2.4 in [31]), we
know thatdU( f (mJ −1), f (mJ)) > t = |J| −1. We shall denote in what followsJs to be the shorter of the two
intervals{a, a+ 1, . . . ,mJ − 1} and{mJ, . . . , a+ t} (breaking ties arbitrarily), andJb will denote the longer of
these two intervals (when|J| = 1 we use the conventionJs = Jb). ThusJ = Js ∪ Jb and|Js| 6 |Jb|. Finally,
let xJ be the point inJs which is closest toJb (so thatxJ ∈ {mJ,mJ−1}).

We define a functiongJ : J→ R inductively as follows. If 16 |Js| 6
√
|J| then

gJ(x) =



gJs(x) if x ∈ Js \ {xJ},
1
8

[
1+ log

( |J|
|Js|

)]
|Js| log |J| if x = xJ,

gJb(x) if x ∈ Jb.

(13)

11



If, on the other hand,|Js| >
√
|J| then

gJ(x) =



gJs(x) if x ∈ Js and|x− xJ| > 4√|Js|,
|J|−1
|x−xJ |+1 if x ∈ Js and|x− xJ| 6 4√|Js|,
gJb(x) if x ∈ Jb.

(14)

The following claim summarizes the crucial properties of the these mappings. Recall that we are using
the notationI = {0, . . . , n− 1}.

Claim 9. The following assertions hold true for every sub-interval J⊆ I.

1. For every x∈ J we have gJ(x) 6 |∇( f |J)(x)|∞ = maxy∈J\{x}
dU ( f (x), f (y))
|x−y| .

2. For every x∈ J, gJ(x) 6 |J| − 1.

3. If |Js| >
√

J and|x− xJ| 6 4√|Js| then gJs(x) 6 4
√
|Js|.

Proof. The proofs of all of the assertions in Claim 9 will be by induction on J. To prove the first assertion
assume first that 16 |Js| 6

√
|J|. From the recursive definition in (13) it follows that we should show

that 1
8

[
1+ log

( |J|
|Js|

)]
|Js| log |J| 6 |∇( f |J)(xJ)|∞. SincexJ ∈ {mJ − 1,mJ} the definition ofmJ implies that

|∇( f |J)(xJ)|∞ > |J| − 1. Thus it is enough to show that1
8

(
1+ log |J|)

√
|J| log |J| 6 |J| − 1, which follows

from the second assertion in Lemma 8. If, on the other hand,|Js| >
√
|J| then from the recursive definition

in (14) it follows that it is enough to show that for everyx ∈ Js we have |J|−1
|x−xJ |+1 6 |∇( f |J)(x)|∞. But sinceU

is an ultrametric we know that

|J| − 1 6 dU( f (mJ − 1), f (mJ)) 6 max{dU( f (x), f (mJ − 1)), dU ( f (x), f (mJ))},

which implies the required lower bound on|∇( f |J)(x)|∞ sincexJ ∈ {mJ − 1,mJ}. The second assertion in
Claim 9 is proved similarly.

It remains to prove the third assertion in Lemma 9. LetK ⊆ Js be the sub-interval ofJs in which
the value ofgJs(x) was first set. In other words,K ⊆ Js is the smallest interval for whichx ∈ Ks and
gK(x) = gJs(x). It follows in particular that|x− xK | 6 4√|Ks|. Also, by construction it is always the case that
eitherKs or Kb is contained in the interval [min{xK, xJ},max{xK, xJ}]. SinceKs is shorter thanKb we are
assured that

|Ks| 6 |xK − xJ| 6 |xK − x| + |x− xJ| 6
4
√
|Ks| +

4
√
|Js| 6 2 4

√
|Js|. (15)

If |Ks| 6
√
|K| then necessarilyx = xK andgK(x) was determined by the second line in (13). Hence

gJs(x) = gK(x) =
1
8

[
1+ log

(
|K|
|Ks|

)]
|Ks| log |K| 6 1

4
[
1+ log |Js|

] 4
√
|Js| log |Js| 6 4

√
|Js|, (16)

where we used (15) and the last inequality in (16) follows from the second assertion of Lemma 8.
Otherwise|Ks| >

√
|K| andgK(x) was determined by the second line in (14), i.e.

gJs(x) = gK(x) =
|K| − 1
|x− xK | + 1

< |K| < |Ks|2 6 4
√
|Js|,

where we used (15). This completes the proof of Claim 9. �
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With Claim 9 at hand we are in position to conclude the proof ofProposition 7. We will prove by
induction on|J| that

∑

x∈J
gJ(x) > c|J|(log |J|)2. (17)

This will prove (12), and hence imply Proposition 7, since bythe first assertion of Claim 9 we get that

n−1∑

x=0

|∇ f (x)|∞ >
∑

x∈I
gI (x) > cn(logn)2.

Inequality (17) trivially holds true with small enough constantc if |J| 6 260, so assume that|J| > 260. To
prove (17) we distinguish between two cases. If|Js| 6

√
|J| then sincegJs(xJ) 6 |Js| (by the second assertion

in Claim 9) we see by induction that
∑

x∈J
gJ(x) =

∑

x∈Js

gJs(x) +
∑

x∈Jb

gJb(x) + gJ(xJ) − gJs(xJ)

> c
(
|Js|(log |Js|)2 + |Jb|(log |Jb|)2

)
+ 2

[
1+ log

(
|J|
|Js|

)]
|Js| log |J| − |Js| (18)

> c|J|(log |J|)2 − 2c

[
1+ log

(
|J|
|Js|

)]
|Js| log |J| +

[
1+ log

(
|J|
|Js|

)]
|Js| log |J| (19)

> c|J|(log |J|)2, (20)

where in (18) we used the inductive hypothesis and the inductive definition in (13) , in (19) we used
Lemma 8, and (20) holds forc 6 1

2.
On the other hand if|Js| >

√
|J| then

∑

x∈J
gJ(x) =

∑

x∈Js

gJs(x) +
∑

x∈Jb

gJb(x) +
∑

x∈Js

|x−xJ |6 4√|Js|

(
|J| − 1
|x− xJ| + 1

− gJs(x)

)
(21)

> c|J|(log |J|)2 − 2c

[
1+ log

(
|J|
|Js|

)]
|Js| log |J| +

⌊
4√|Js|

⌋
∑

k=0

|J| − 1
k+ 1

− 8|Js|3/4 (22)

> c|J|(log |J|)2 − 2c

[
1+ log

(
|J|
|Js|

)]
|Js| log |J| + 1

4
(|J| − 1) log |Js| − 8|J|3/4

> c|J|(log |J|)2 − 2c

[
1+ log

(
|J|
|Js|

)]
|Js| log |J| + 1

8
(|J| − 1) log |Js| (23)

> c|J|(log |J|)2, (24)

where in (21) we used the inductive definition in (14), in (22)we used the inductive hypothesis, Lemma 8
and Claim 9, and inequalities (23) and (24) hold for|J| > 260 and small enoughc, respectively, since
|J|
2 6 |Js| >

√
|J|. This completes the proof of Proposition 7. �

We now pass to the proof of the lower bound in Theorem 1 in its full strength, i.e. in the case of maximum
gradient embeddings into trees. We start by describing the diamond graphs{Gk}∞k=1, and a special labelling
of them that we will use throughout the ensuing arguments. The first diamond graphG1 is a cycle of length
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4, andGk+1 is obtained fromGk by replacing each edge by a quadrilateral. ThusGk has 4k edges and2·4
k+4
3

vertices. As we have done before, the required lower bound onmaximum gradient embeddings ofGk into
trees will be proved if we show that for every treeT and every non-contractive embeddingf : Gk → T we
have

1

4k

∑

e∈E(Gk)

∑

x∈e
|∇ f (x)|∞ = Ω

(
k2

)
. (25)

Note that the inequality (25) is different from the inequalities that we proved in the case of the cycle and
the path in that the weighting on the vertices ofGk that it induces is not uniform— high degree vertices get
more weight in the average in the left-hand side of (25).

We will prove (25) by induction onk. In order to facilitate such an induction, we will first strengthen
the inductive hypothesis. To this end we need to introduce a useful labelling ofGk. For 1 6 i 6 k the
graphGk contains 4k−i canonical copies ofGi , which we index by elements of{1, 2, 3, 4}k−i , and denote{
G(k)

[α]

}
α∈{1,2,3,4}k−i . These graphs are defined as follows—see Figures 1 and 2 for a schematic description.

)2(
]1[G

)2(
]3[G)2(

]4[G

)2(
]2[G

Figure 1: The graphG2 and the labelling of the canonical copies ofG1 contained in it.

)3(
]11[G

)3(
]12[G

)3(
]14[G

)3(
]13[G

)3(
]1[G

)3(
]2[G

)3(
]4[G )3(

]3[G

)3(
]21[G

)3(
]22[G

)3(
]23[G

)3(
]24[G

)3(
]31[G

)3(
]32[G

)3(
]33[G

)3(
]34[G

)3(
]42[G

)3(
]41[G

)3(
]44[G

)3(
]43[G

Figure 2: The graphG3 and the induced labelling of canonical copies ofG1 andG2.

Formally, we setG(k)
[∅] = Gk, and assume inductively that the canonical subgraphs ofGk−1 have been

defined. LetH1,H2,H3,H4 be the top-right, top-left, bottom-right and bottom-left copies ofGk−1 in Gk,
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respectively. Forα ∈ {1, 2, 3, 4}k−1−i and j ∈ {1, 2, 3, 4} we denote the copy ofGi in H j corresponding to
G(k−1)

[α] by G(k)
[ jα] .

For every 16 i 6 k andα ∈ {1, 2, 3, 4}k−i let T(k)
[α] , B

(k)
[α], L

(k)
[α] ,R

(k)
[α] be the topmost, bottom-most, left-most,

and right-most vertices ofG(k)
[α], respectively. We will construct inductively a set of simple cyclesC[α] in G(k)

[α]
and for eachC ∈ C[α] an edgeεC ∈ E

(
C[α]

)
, with the following properties.

1. The cycles inC[α] are edge-disjoint, and they all pass through the verticesT(k)
[α] , B

(k)
[α] , L

(k)
[α] ,R

(k)
[α]. There

are 2i−1 cycles inC[α], and each of them contains 2i+1 edges. Thus in particular the cycles inC[α] form
a disjoint cover of the edges inG(k)

[α] .

2. If C ∈ C[α] andεC = {x, y} thendT ( f (x), f (y)) > 2i+1

3 − 1.

3. DenoteE[α] = {εC : C ∈ C[α]} and∆i =
⋃
α∈{1,2,3,4}k−i E[α] . The edges in∆i will be called the

designated edgesof level i. Forα ∈ {1, 2, 3, 4}k−i , C ∈ C[α] and j < i let ∆ j(C) = ∆ j ∩ E(C) be the
designated edges of levelj on C. Then we require that each of the two pathsT(k)

[α] − L(k)
[α] − B(k)

[α] and

T(k)
[α] − R(k)

[α] − B(k)
[α] in C contains exactly 2i− j−1 edges from∆ j(C).

The construction is done by induction oni. For i = 1 andα ∈ {1, 2, 3, 4}k−1 we letC[α] contain only the
4-cycleG(k)

[α] itself. Moreover by Lemma 6 there is and edgeεG(k)
[α]
∈ E

(
G(k)

[α]

)
such that ifεG(k)

[α]
= {x, y} then

dT( f (x), f (y)) > 1
3. This completes the construction fori = 1. Assuming we have completed the construction

for i − 1 we construct the cycles at leveli as follows. Fix arbitrary cyclesC1 ∈ C[1α], C2 ∈ C[2α] , C3 ∈ C[3α],
C4 ∈ C[4α] . We will use these four cycles to construct two cycles inC[α]. The first one consists of the
T(k)

[α] − R(k)
[α] path inC1 which contains the edgeεC1, theR(k)

[α] − B(k)
[α] path inC3 which does not contain the

edgeεC3, theB(k)
[α] − L(k)

[α] path inC4 which contains the edgeεC4, and theL(k)
[α] − T(k)

[α] path inC2 which does
not contain the edgeεC2. The remaining edges inE(C1) ∪ E(C2) ∪ E(C3) ∪ E(C4) constitute the second
cycle that we extract fromC1,C2,C3,C4. Continuing in this manner by choosing cycles fromC[1α] \ {C1},
C[2α] \ {C2}, C[3α] \ {C3}, C[4α] \ {C4} and repeating this procedure, and then continuing until we exhaust
the cycles inC[1α] ∪ C[2α] ∪ C[3α] ∪ C[4α] , we obtain the set of cyclesCα. For everyC ∈ Cα we then apply
Lemma 6 to obtain an edgeεC with the required property.

For each edgee ∈ E(Gk) let α ∈ {1, 2, 3, 4}k−i be the unique multi-index such thate ∈ E
(
G(k)

[α]

)
. We

denote byCi(e) the unique cycle inC[α] containinge. We will also denotêei(e) = εCi (e). Finally we let
ai(e) ∈ eandbi(e) ∈ êi(e) be vertices such that

dT ( f (ai(e)), f (bi (e))) = max
a∈e

b∈̂ei (e)

dT( f (a), f (b)).

Note that by the definition of̂ei(e) and the triangle inequality we are assured that

dT ( f (ai(e)), f (bi (e))) >
1
2

(
2i+1

3
− 1

)
>

2i

12
. (26)

Recall that we plan to prove (25) by induction onk. Having done all of the above preparation, we are
now in position to strengthen (25) so as to make the inductiveargument easier. Given two edgese, h ∈ Gk

we writee⌢i h if both e, h are on the same canonical copy ofGi in Gk, Ci(e) = Ci(h) = C, and furthermore
e andh on the same side ofC. In other words,e⌢i h if there isα ∈ {1, 2, 3, 4}k−i andC ∈ C[α] such that if
we partition the edges ofC into two disjointT(k)

[α] − B(k)
[α] paths, theneandh are on the same path.
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Let m ∈ N be a universal constant that will be specified later. For every integerℓ 6 k/m and any
α ∈ {1, 2, 3, 4}k−mℓ define

Lℓ(α) =
1

4mℓ

∑

e∈E
(
G(k)

[α]

)
max

i∈{1,...,ℓ}
e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1
.

We also writeLℓ = minα∈{1,2,3,4}k−mℓ Lℓ(α). We will prove thatLℓ > Lℓ−1 + cℓ, wherec > 0 is a universal
constant. This will imply that forℓ = ⌊k/m⌋ we haveLℓ = Ω(k2) (sincem is a universal constant). By simple
arithmetic (25) follows.

Observe that for everyα ∈ {1, 2, 3, 4}k−mℓ we have

Lℓ(α) =
1

4m

∑

β∈{1,2,3,4}m

1

4m(ℓ−1)

∑

e∈E
(
G(k)

[βα]

)
max

i∈{1,...,ℓ}
e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1

=
1

4m

∑

β∈{1,2,3,4}m

1

4m(ℓ−1)

∑

e∈E
(
G(k)

[βα]

)
max

i∈{1,...,ℓ−1}
e⌢imêim(e)

dT( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1

+
1

4mℓ

∑

e∈E
(
G(k)

[α]

)
max


0,

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1
· 1{e⌢ℓm̂eℓm(e)}

− max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1



=
1

4m

∑

β∈{1,2,3,4}m
Lℓ−1(βα)

+
1

4mℓ

∑

e∈E
(
G(k)

[α]

)
max


0,

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1
· 1{e⌢ℓm̂eℓm(e)}

− max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1



> Lℓ−1 +
1

4mℓ

∑

e∈E
(
G(k)

[α]

)
max


0,

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1
· 1{e⌢ℓm̂eℓm(e)}

− max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1


.
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Thus it is enough to show that

A
def
=

1

4mℓ

∑

e∈E
(
G(k)

[α]

)
max


0,

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1
· 1{e⌢ℓm̂eℓm(e)}

− max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1


= Ω(ℓ). (27)

To prove (27) denote forC ∈ C[α]

SC =


e∈ E(C) : εC ⌢ℓm e and

max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1
>

1
2
· dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1


.

Then using (26) we see that

A >
1

2 · 4mℓ

∑

C∈C[α]

∑

e∈E(C)\SC
εC⌢ℓme

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1

>
1

2 · 4mℓ

∑

C∈C[α]

∑

e∈E(C)
εC⌢ℓme

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1
− 1

2 · 4mℓ

∑

C∈C[α]

∑

e∈SC

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1

>
1

2 · 4mℓ

∑

C∈C[α]

2mℓ−1∑

i=1

2mℓ

12i
− 1

2 · 4mℓ

∑

C∈C[α]

∑

e∈SC

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1

= Ω

(
1

4mℓ
· |C[α] | · 2mℓ ·mℓ

)
− 1

2 · 4mℓ

∑

C∈C[α]

∑

e∈SC

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1

= Ω(mℓ) − 1

2 · 4mℓ

∑

C∈C[α]

∑

e∈SC

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1
. (28)

To estimate the negative term in (28) fixC ∈ C[α] . For every edgee ∈ SC (which implies in particular
that êℓm(e) = εC) we fix an integeri < ℓ such thate⌢im êim(e) and

2im

dGk(e, êim(e)) + 1
>

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk(e, êim(e)) + 1
>

1
2
· dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1

>
1
12
· 2ℓm

dGk(e, εC) + 1
,

or

dGk(e, êim(e)) + 1 6 2(i−ℓ)m+4 [
dGk(e, εC) + 1

]
. (29)
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We shall call the edgêeim(e) the designated edge that insertede into SC. For a designated edgeε ∈ E(C) of
level im (i.e. ε ∈ ∆im(C)) we shall denote byEC(ε) the set of edges ofC which ε inserted toSC. Denoting
Dε = dGk(ε, εC) + 1 we see that (29) implies that fore ∈ EC(ε) we have

∣∣∣Dε −
[
dGk(e, εC) + 1

] ∣∣∣ 6 2(i−ℓ)m+4 [
dGk(e, εC) + 1

]
. (30)

Assuming thatm> 5 we are assured that 2(i−ℓ)m+4
6

1
2. Thus (30) implies that

Dε

1+ 2(i−ℓ)m+4
6 dGk(e, εC) + 1 6

Dε

1− 2(i−ℓ)m+4
.

Hence

∑

e∈SC

dT( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk(e, êℓm(e)) + 1
6

ℓ−1∑

i=1

∑

ε∈∆im(C)

∑

e∈EC(ε)

2ℓm

dGk(e, εC) + 1

6 2
ℓ−1∑

i=1

∑

ε∈∆im(C)

∑

j∈N
Dε

1+2(i−ℓ)m+46 j6 Dε
1−2(i−ℓ)m+4

2ℓm

j

= O(1) · 2ℓm
ℓ−1∑

i=1

|∆im(C)| · log

(
1+ 2(i−ℓ)m+4

1− 2(i−ℓ)m+4

)

= O(1) · 2ℓmℓ · 2(ℓ−i)m · 2(i−ℓ)m = O(1) · 2ℓmℓ.

Thus, using (28) we see that

A = Ω(mℓ) −O(1) · 1

4ℓm
·
∣∣∣C[α]

∣∣∣2mℓℓ = Ω(mℓ) −O(1)ℓ = Ω(ℓ),

provided thatm is a large enough absolute constant.
This completes the proof of the lower bound in Theorem 1. �

4 Monotone clustering problems

In this section we give some examples which illustrate how certain monotone clustering problems can be
solved efficiently on ultrametrics. Our arguments are quite flexible, and apply in more general situations.
Before passing to these algorithms, we make a few general remarks on the framework for monotone cluster-
ing that was discussed in the introduction.

In the definition of monotone clustering we required thatΓ(x, d,P) is homogeneous ind. One might
wonder whether it is possible to consider also higher ordersof homogeneity, i.e. clustering cost functionsΓ
which satisfyΓ(x, λd,P) = λpΓ(x, d,P) for somep > 1 (this occurs, for example, in thek-means clustering
problem, where the goal is to findk “centers” that minimize the sum over the data points of the squared
distance to the closest center). For the proof of Theorem 2 towork in this setting we need a distribution
over non-contractive embeddings into ultrametricsf : X → U with a polylogarithmic upper bound on the
expected value of|∇ f (x)|p∞. Unfortunately, this is impossible to achieve in general. Indeed, letf : Cn → T
be a random non-contractive embedding of then-cycle into trees. Lemma 6 implies that there exists an edge
(x, x+ 1) ∈ E(Cn) for which dT( f (x), f (x+ 1)) > n

3 − 1. Thus

∑

{x,y}∈E(Cn)

dT( f (x), f (y))p
>

np

12p .
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Taking expectation we see that

max
x∈V(Cn)

E
[
|∇ f (x)|p∞

]
>

1
n

∑

x∈V(Cn)

E
[
|∇ f (x)|p∞

]
>

np−1

12p
.

We note, however, that the proof of Theorem 2 used the homogeneity of Γ in a weak way. In order to get
a polylogarithmic reduction to ultrametrics is enough to assume, for example, that for everyλ > 1 we have
Γ(x, λd,P) = O

(
polylog(n)

) · λ · Γ(x, d,P).
Our second remark concerns the fact that the solution space for monotone clustering problem that was

presented in the introduction was 2X×2X
. This is a huge space, and as we have seen in Section 1.1, by setting

the clustering cost function to be∞ on certain possible clustering solutions it is possible to reduce the size
of this space. Additionally, in the arguments is Section 1.1the cost functionΓ ignored the structure of the
solution space. Thus in a more generic formulation of the monotone clustering framework we can assume
that the solution space is some abstract finite setS(X). For example, in our version of the fault-tolerant
k-median problem we can take the solution space to be

(
X
k

)
.

4.1 Monotone clustering on ultrametrics via dynamic programming

We now pass to the design of some monotone clustering algorithms on ultrametrics. It is a standard fact (see
for example [6]) that any ultrametric (U, dU) can be represented as follows. There is a graph theoreticaltree
T = (V,E) such thatU is the set of leaves ofT. The vertices ofT are labelled by∆ : V → [0,∞) and for
everyu, v ∈ U we havedU (u, v) = ∆(lca(u, v)), where lca(u, v) is the least common ancestor ofu andv in T.
We may, and will, assume in what follows that every vertex ofT is either a leaf or has exactly two children.

We begin by showing that the fault-tolerant version of thek-median problem described in (5) can be
solved exactly on ultrametrics.

Lemma 10. The minimization of the objective function in(5) can be solved exactly on any n-point ultramet-
ric in time O(kn2).

Proof. Let (U, dU) be ann-point ultrametric and letT = (V,E) be a binary tree with vertex labels∆ : V →
[0,∞) which representsU. We also assume that we are given fault-tolerant parameters{ j(u)}u∈U . For every
v ∈ V let Tv denote the subtree ofT rooted atv. Define forv ∈ V ands∈ {0, . . . , k}

cost∗(v, s) = min



∑

x∈Tv∩U
j(x)6s

dU

(
x, x∗j(x)(x; dU )

)
: x1, x2, . . . , xs ∈ Tv ∩ U


. (31)

Our goal is to compute cost∗(r, k), wherer is the root ofT. This will be done using dynamic program-
ming. For any leafu ∈ U ands ∈ {0, . . . , k} define cost(u, s) = 0. Letv ∈ V be an internal vertex with two
childrenu,w ∈ V. Define recursively

cost(v, s) = min
t∈{0,...,s}

[
cost(u, t) + cost(w, s− t)

+ ∆(v) · (|{x ∈ Tu ∩U : t < j(x) 6 s}| + |{x ∈ Tw ∩ U : s− t < j(x) 6 s}|)
]
. (32)

A bottom-up computation of the dynamic program in (32) computes cost(v, s) naı̈vely inO(kn2) time.
We will be done if we show that cost(v, s) = cost∗(v, s) for any v ∈ V and s ∈ {0, . . . , k}. The fact that
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cost∗(v, s) 6 cost(v, s) is obvious since (32) computes a feasible solution of (31) (this fact is proved by a
straightforward induction).

We prove the reverse inequality by induction on|Tv|. Let x1, . . . , xs ∈ Tv ∩ U be such that

cost∗(v, s) =
∑

x∈Tv∩U
j(x)6s

dU

(
x, x∗j(x)(x; dU )

)
.

Let u,w be the children ofv in T. We may reorder the points so that for somet ∈ {0, . . . , s} we have
{x1, . . . , xt} = Tu ∩ {x1, . . . , xs} and{xt+1, . . . , xs} = Tw ∩ {x1, . . . , xs}. Then

cost∗(v, s) =
∑

x∈Tv∩U
j(x)6s

dU

(
x, x∗j(x)(x; dU )

)

=
∑

x∈Tu∩U
j(x)6t

dU

(
x, x∗j(x)(x; dU )

)
+

∑

x∈Tw∩U
j(x)6s−t

dU

(
x, x∗j(x)(x; dU )

)

+∆(v) · (|{x ∈ Tu ∩ U : t < j(x) 6 s}| + |{x ∈ Tw ∩ U : s− t < j(x) 6 s}|) (33)

> cost∗(u, t) + cost∗(w, s− t)

+∆(v) · (|{x ∈ Tu ∩ U : t < j(x) 6 s}| + |{x ∈ Tw ∩ U : s− t < j(x) 6 s}|) (34)

> cost(u, t) + cost(w, s− t)

+∆(v) · (|{x ∈ Tu ∩ U : t < j(x) 6 s}| + |{x ∈ Tw ∩ U : s− t < j(x) 6 s}|) (35)

> cost(v, s), (36)

where in (33) we used the fact that the treeT represents the ultrametric (U, dU), in (34) we used the definition
of cost∗(u, t) and cost∗(w, s− t) given by (31), in (35) we used the inductive hypothesis, andin (36) we
used (32). �

Our final result is the proof of Lemma 3, which yields a FPTAS for the Σℓp clustering problem on
ultrametrics. We start with the following inequality.

Lemma 11. Fix p > 1 and assume that a1 > a2 > · · · > an > 0 and b1, . . . , bn > 0. Then

n∑

j=1

(ap
j + bp

j )
1/p
>

n∑

j=2

a j +

a
p
1 +

n∑

j=1

bp
j



1/p

.

Proof. The proof is by induction onn, and the inductive hypothesis simplifies to

a
p
1 +

n∑

j=1

bp
j



1/p

− an+1 >

a
p
1 +

n+1∑

j=1

bp
j



1/p

− (ap
n+1 + bp

n+1)1/p. (37)

Denote forx > 0

f (x) =

a
p
1 +

n∑

j=1

bp
j + x



1/p

− (ap
n+1 + x)1/p.
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Inequality (37) isf (bp
n+1) 6 f (0), so it is enough to prove thatf is decreasing. But

f ′(x) =
1

p
(
ap

1 +
∑n

j=1 bp
j + x

)1−1/p
− 1

p
(
ap

n+1 + x
)1−1/p

6
1

p
(
ap

1 + x
)1−1/p

− 1

p
(
ap

n+1 + x
)1−1/p

6 0,

sincea1 > an+1. �

Proof of Lemma 3.Let (U, dU) be ann-point ultrametric and letT = (V,E) be a binary tree with vertex
labels∆ : V → [0,∞) which representsU. For v ∈ V, ℓ ∈ {0, . . . , k}, s ∈ {0, . . . , n} and t ∈ [0,∞) define
B∗(v, ℓ, s, t) to be the minimum cost according to (7) to clusterTv∩U usingℓ sets and centers, when we are
allowed to excludespoints fromTv ∩ U, and the most costly cluster has costt.

We next define a “pseudo cost”B(v, ℓ, s, t) inductively as follows. Ifv is a leaf then defineB(v, 1, 0, 0) =
B(v, 1, 1, 0) = B(v, 0, 1, 0) = 0, and for all other values ofℓ, s, t we setB(v, ℓ, s, t) = ∞. Whenv has children
u andw define:

B(v, ℓ, s, t) = min



B(u, ℓ1, s1, t1) + B(w, ℓ2, s2, t2)

+
(
tp
1 + r2∆(v)p

)1/p
− t1 +

(
tp
2 + r1∆(v)p

)1/p
− t2 :

s1,r1,s2,r2∈{0,...,s},
t1,t2∈[0,t],
ℓ1∈{0,...,ℓ},

r16s1,
r26s2,

s=s1+s2−r1−r2,
ℓ=ℓ1+ℓ2,

t=max
{
(tp

1+r2∆(v)p)1/p
, (tp

2+r1∆(v)p)1/p}



.

With these definition we will prove the following claim by induction.

Claim 12. For every v∈ T, ℓ ∈ {0, . . . , k}, s∈ {0, . . . , n} and t∈ [0,∞) we have

B∗(v, ℓ, s, t) = B(v, ℓ, s, t).

Assuming the validity of Claim 12 for the moment, we concludeas follows. The dynamic programming
algorithm described above does not suffice since the parametert takes values in the range [0,∞), while we
need it to take only poly(n) values. We fix this issue using an argument which is based on ideas from [5].

Normalize the distances inU so that the minimum distance is 1, and denoteΦ = diam(U). We can
clearly assume thatt 6 nΦ. Assume first of all that we can ensure thatt 6 A = O

(
poly(n)

)
. Once this is

achieved then all we need to do is to apply a standard discretization procedure as follows. Fix an integer
M > 0 which will be determined presently and letA′ = {0,A/M, 2A/M, . . . ,A}. For t ∈ [0,A] denote by
rd(t) the rounding oft to its closest value inA′. We can now define a discretized dynamic programming
procedureB′(v, ℓ, s, τ), wherev, ℓ, s take the same values as in the definition ofB(v, ℓ, s, t) andτ ∈ A′. This
is done by defining as before for a leafv ∈ U B(v, 1, 0, 0) = B(v, 1, 1, 0) = B(v, 0, 1, 0) = 0, and for all other
values ofℓ, s, τ settingB(v, ℓ, s, τ) = ∞. Whenv has childrenu andw define:
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B′(v, ℓ, s, τ) = min



rd
((
τ

p
1 + r2∆(v)p

)1/p
− τ1 +

(
τ

p
2 + r1∆(v)p

)1/p
− τ2

)

+ B′(u, ℓ1, s1, τ1) + B′(w, ℓ2, s2, τ2) :

s1,r1,s2,r2∈{0,...,s},
τ1,τ2∈A′,
ℓ1∈{0,...,ℓ},

r16s1,
r26s2,

s=s1+s2−r1−r2,
ℓ=ℓ1+ℓ2,

τ=rd
(
max

{
(τp

1+r2∆(v)p)1/p
, (τp

2+r1∆(v)p)1/p})



.

It is straightforward to check by induction that for anyv ∈ V, ℓ ∈ {0, . . . , k}, s ∈ {0, . . . , n} andt ∈ [0,A] we
have

|B(v, ℓ, s, t) − B′(v, ℓ, s, rd(t))| 6 4|Tv|
M

.

Since the optimal value of theΣℓp clustering problem is at least 1 (excluding trivial cases),as this is the
smallest distance inU, B′ will yield an approximation algorithm for this problem whose multiplicative error
is bounded by 1+O(n/M). TakingM = n/ε for someε ∈ (0, 1) we obtain the required PTAS.

We therefore need to argue that we can ensure thatt = O(poly(n)). Recall that we can assume thatt 6
nΦ. LetP = {(x1,C1), . . . , (xk,Ck)} be the (yet unknown) optimal solution of theΣℓp clustering problem with
k-centers onU. Let h be the maximum length appearing in the solution, i.e.h = max16i6k maxx∈Ci dU(xi , x).
Fix ε ∈ (0, 1) and define two “levels” of the treeT by

L =
{
v ∈ V : ∆(v) 6 h < ∆(parent(v))

}
,

and

Q =

{
v ∈ V : ∆(v) 6

εh

n2
< ∆(parent(v))

}
.

Let T′ be the subtree obtained fromT by deleting the subtrees{Tv \ {v}}v∈Q, and letU′ denote the leaves of
T′. Equivalently,U′ is obtained fromU by contracting all distances smaller thatεh/n2. It is straightforward
to check that costU′(P) 6 costU(P) 6 (1+ ε) costU′(P).

Note that for everyv ∈ L the aspect ratio (i.e. the ratio of the diameter and the shortest distance) of
T′v∩U′ is at mostn2/ε. So, by the above reasoning (in the case of an a priori polynomial bound ont) we can
approximate in polynomial time the value ofB∗(v, ℓ, s, t) up to a factor 1+O(ε). It remains to “glue” these
approximate solutions to a solution of theΣℓp clustering problem onT. This is done by a (simpler) dynamic
programming argument as follows. Denote byT̂ the subtree ofT′ whose root is the same as that ofT′ and
whose leaves areL. Forv ∈ T̂ let C∗(v, ℓ) be the optimal solution of theΣℓp clustering problem on̂Tv with
ℓ centers and assuming that the largest distance appearing inthe solution is at mosth. We calculateC∗(v, ℓ)
by dynamic programming: Forv ∈ L defineC(v, ℓ) = mint B∗(v, ℓ, 0, t), and ifv has two childrenu,w in T̂
then

C(v, ℓ) = min {C(u, ℓ1) +C(w, ℓ2) : ℓ1 ∈ {0, . . . , ℓ}, ℓ1 + ℓ2 = ℓ} .
A straightforward induction shows thatC∗(v, ℓ) = C(v, ℓ).

The only thing that is left to be explained is how to find the valueh. This is done by exhaustive search:
We try all the

(
n
2

)
possible values ofh, do the above procedure for each of them, and take the minimumof

the values that we get.
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The proof of Lemma 3 will be complete once we prove Claim 12. Wefirst note thatB∗(v, ℓ, s, t) 6
B(v, ℓ, s, t). This is true becauseB(·) represents a feasible solution ofB∗(·). The proof of this fact is by
induction. Ifu,w ∈ V are the children ofv in T then there exists1, s2, t1, t2, r1, r2, ℓ1, ℓ2 such that

B(v, ℓ, s, t) = B(u, ℓ1, s1, t1) + B(w, ℓ2, s2, t2) +
(
tp
1 + r2∆(v)p

)1/p
− t1 +

(
tp
2 + r1∆(v)p

)1/p
− t2,

where s1, r1, s2, r2 ∈ {0, . . . , s}, t1, t2 ∈ [0, t], ℓ1 ∈ {0, . . . , ℓ}, r1 6 s1, r2 6 s2, s = s1 + s2 − r1 − r2,

ℓ = ℓ1 + ℓ2, andt = max
{(

tp
1 + r2∆(v)p

)1/p
,
(
tp
2 + r1∆(v)p

)1/p
}
. By the inductive hypothesisB(u, ℓ1, s1, t1)

and B(w, ℓ2, s2, t2) correspond to feasible solutions ofB∗(·) on Tu ∩ U andTw ∩ U, respectively. Hence
B(v, ℓ, s, t) corresponds to the following feasible solution: Take the union of the centers inTu ∩ U and
Tw∩U and retain all the current clusters inTu∩U andTw∩U as is. Next add arbitraryr1 unclustered points
from Tu∩U (from the pool ofs1 unclustered points that we are assuming exist inTu∩U) to the cluster with
the most weight inTw∩U, and similarly addr2 unclustered points fromTw∩U to the cluster with the most
weight inTu ∩ U. This creates the required feasible solution.

We next prove by induction thatB∗(v, ℓ, s, t) > B(v, ℓ, s, t). Consider the clustering solution at which
B∗(v, ℓ, s, t) is attained. It corresponds tos excluded leavesy1, . . . , ys ∈ Tv ∩ U, ℓ “centers” x1, . . . , xℓ ∈
(Tv ∩ U) \ {y1, . . . , ys} and a partition{C1, . . . ,Cℓ} of (Tv ∩U) \ {y1, . . . , ys} such that

B∗(v, ℓ, s, t) =
ℓ∑

j=1


∑

x∈C j

d(x, x j)
p



1/p

.

By reordering the points we may assume thatx1, . . . , xℓ1 ∈ Tu andxℓ1+1, . . . , xℓ1+ℓ2, ∈ Tw (whereℓ2 = ℓ−ℓ1).
Denote ∣∣∣∣∣∣∣∣


ℓ1⋃

j=1

C j

 ∩ Tw

∣∣∣∣∣∣∣∣
= r2 and

∣∣∣∣∣∣∣∣


ℓ1+ℓ2⋃

j=ℓ1+1

C j

 ∩ Tu

∣∣∣∣∣∣∣∣
= r1.

Finally, we may assume that

t1
def
=

∑

x∈C1∩Tu

d(x, x1)p = max
j∈{1,...,ℓ1}

∑

x∈C j∩Tu

d(x, x j )
p,

and
t2

def
=

∑

x∈Cℓ1+1∩Tw

d(x, xℓ1+1)p = max
j∈{ℓ1+1,...,ℓ1+ℓ2}

∑

x∈C j∩Tw

d(x, x j)
p.

Denote

Aw =


ℓ1⋃

j=1

C j

 ∩ Tw and Au =


ℓ1+ℓ2⋃

j=ℓ1+1

C j

 ∩ Tu.

We also writes1 = |{y1, . . . , ys} ∩ Tu| + r1 ands2 = |{y1, . . . , ys} ∩ Tw| + r2, so thats= s1 + s2 − r1 − r2.
Note that by definition

ℓ1∑

j=1


∑

x∈C j∩Tu

d(x, x j )
p



1/p

> B∗(u, ℓ1, s1, t1), (38)

and

ℓ1+ℓ2∑

j=ℓ1+1


∑

x∈C j∩Tw

d(x, x j )
p



1/p

> B∗(w, ℓ2, s2, t2). (39)
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Thus

B∗(v, ℓ, s, t) =
ℓ1∑

j=1


∑

x∈C j∩Tu

d(x, x j )
p + |C j ∩ Aw|∆(v)p



1/p

+

ℓ1+ℓ2∑

j=ℓ1+1


∑

x∈C j∩Tw

d(x, x j )
p + |C j ∩ Au|∆(v)p



1/p

> B∗(u, ℓ1, s1, t1) + B∗(w, ℓ2, s2, t2) +
(
tp
1 + r2∆(v)p

)1/p
− t1 +

(
tp
2 + r1∆(v)p

)1/p
− t2 (40)

> B(u, ℓ1, s1, t1) + B(w, ℓ2, s2, t2) +
(
tp
1 + r2∆(v)p

)1/p
− t1 +

(
tp
2 + r1∆(v)p

)1/p
− t2 (41)

> B(v, ℓ, s, t), (42)

where in (40) we used Lemma 11 together with (38) and (39), in (41) we used the inductive hypothesis, and
in (42) we used the definition ofB(·). This completes the proof of Lemma 3. �
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