Skip to main content

On the Benefits of Adaptivity in Property Testing of Dense Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4627))

Abstract

We consider the question of whether adaptivity can improve the complexity of property testing algorithms in the dense graphs model. It is known that there can be at most a quadratic gap between adaptive and non-adaptive testers in this model, but it was not known whether any gap indeed exists. In this work we reveal such a gap.

Specifically, we focus on the well studied property of bipartiteness.  Bogdanov and Trevisan (IEEE Symposium on Computational Complexity, 2004) proved a lower bound of Ω(1/ε 2) on the query complexity of non-adaptive testing algorithms for bipartiteness.  This lower bound holds for graphs with maximum degree O(εn).  Our main result is an adaptive testing algorithm for bipartiteness of graphs with maximum degree O(εn) whose query complexity is  \(\tilde{O}(1/\epsilon^{3/2})\).  A slightly modified version of our algorithm can be used to test the combined property of being bipartite and having maximum degree O(εn).  Thus we demonstrate that adaptive testers are stronger than non-adaptive testers in the dense graphs model.

We note that the upper bound we obtain is tight up-to polylogarithmic factors, in view of the Ω(1/ε 3/2) lower bound of Bogdanov and Trevisan for adaptive testers. In addition we show that \(\tilde{O}(1/\epsilon^{3/2})\) queries also suffice when (almost) all vertices have degree \(\Omega(\sqrt \epsilon \cdot n)\). In this case adaptivity is not necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. Combinatorica 20, 451–476 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Krivelevich, M.: Testing k-colorability. SIAM J. on Discrete Mathematics 15, 211–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  4. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: 3CNF properties are hard to test. In: Proc. 35th Symposium on the Theory of Computing (STOC), pp. 345–354 (2003)

    Google Scholar 

  5. Bogdanov, A., Trevisan, L.: Lower bounds for testing bipartiteness in dense graphs. In: Proc. 19th IEEE Symp. Computational Complexity Conference, pp. 75–81 (2004)

    Google Scholar 

  6. Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-checkers. Journal of Computer and Systems Science 60(3), 717–751 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Fischer, E.: On the strength of comparisons in property testing. Information and Computation 189, 107–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldreich, O.: Combinatorial property testing - a survey. Randomization Methods in Algorithm Design, pp. 45–60 (1998)

    Google Scholar 

  10. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connections to learning and approximation. Journal of the ACM 45, 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldreich, O., Ron, D.: A sublinear bipartite tester for bounded degree graphs. Combinatorica 19(3), 335–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica, 302–343 (2002)

    Google Scholar 

  13. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. Random Structures and Algorithms 23(1), 23–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gonen, M., Ron, D.: On the benefits of adaptivity in property testing of dense graphs (2007), available from http://www.eng.tau.ac.il/~danar

  15. Janson, S.: Poisson approximaton for large deviations. Random Structures and Algorithms 1(2), 221–229 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in general graphs. SIAM Journal on Computing 33(6), 1441–1483 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raskhodnikova, S., Smith, A.: A note on adaptivity in testing properties of bounded degree graphs. Technical Report TR06-089, Electronic Colloquium on Computational Complexity (ECCC) (2006), available from http://www.eccc.uni-trier.de/eccc/.

  18. Ron, D.: Property testing. In Handbook on Randomization II, 597–649 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonen, M., Ron, D. (2007). On the Benefits of Adaptivity in Property Testing of Dense Graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics