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Abstract

We investigate the problem of computing a minimum set of timhs that approximates within a
specified accuraaythe Pareto curve of a multiobjective optimization probléffe show that for a broad
class of bi-objective problems (containing many importaidely studied problems such as shortest
paths, spanning tree, and many others), we can computeyingrolal time arc-Pareto set that contains
at most twice as many solutions as the minimum such set. &unibre we show that the factor 2fis
tight for these problems, i.e., it is NP-hard to do better. piéesent upper and lower bounds for three or
more objectives, as well as for the dual problem of computisgecified numbet of solutions which
provide a good approximation to the Pareto curve.
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1 Introduction

In many decision making situations it is typically the cdsattmore than one criteria come into play. For
example, when purchasing a product (car, tv, etc.) we caretéts cost, quality, etc. When choosing a route
we may care about the time it takes, the distance travelted, \When designing a network we may care
about its cost, its capacity (the load it can carry), its cage. This type ofmulticriteria or multiobjective
problems arise across many diverse disciplines, in engirggen economics and business, healthcare, and
others. The area of multiobjective optimization has beenl @ontinues to be) extensively investigated in
the management science and optimization communities wattiyrpapers, conferences and books (see e.g.
[CIi| Ehr,[EG[FGE[ Mit]).

In multiobjective problems there is typically no uniformibest solution in all objectives, but rather a
trade-off between the different objectives. This is cagduby thetrade-off or Pareto curve the set of all
solutions whose vector of objective values is not dominditgdny other solution. The trade-off curve
represents the range of reasonable “optimal” choices irdésign space; they are precisely the optimal
solutions for all possible global “utility” functions thatepend monotonically on the different objectives.
A decision maker, presented with the trade-off curve, céecka solution that corresponds best to his/her
preferences; of course different users generally may hiffeeaht preferences and select different solutions.
The problem is that the trade-off curve has typically expdiaé size (for discrete problems) or is infinite
(for continuous problems), and hence we cannot constrediuthcurve. Thus, we have to contend with an
approximation of the curve: We want to compute efficientlg anesent to the decision makers a small set
of solutions (as small as possible) that represents as webssible the whole range of choices, i.e. that
provides a good approximation to the Pareto curve. Indeisdgtihe underlying goal in much of the re-
search in the multiobjective area, with many heuristicppsed, usually however without any performance
guarantees or complexity analysis as we do in theoretigalpater science.

In recent years we initiated a systematic investigationIPYY] to develop the theory of multiob-
jective approximation along similar rigorous lines as theraximation of single objective problems. The
approximation to the Pareto curve is captured by the cornuieph e-Pareto seta setP. of solutions that
approximately dominates every other solution; that isgfary solutions, the setP. contains a solutior’
that is within a factoil + € of s, or better, in all the objectives. (As usual in approximatiis assumed that
all objective functions take positive values.) Such an agipnation was studied before for certain problems,
e.g. multiobjective shortest paths, for which Hansen [Hamj Warburton[[Wa] showed how to construct
an e-Pareto set in polynomial time (for fixed number of objectilveNote that typically in most real-life
multiobjective problems the number of objectives is smiallfact, the great majority of the multiobjective
literature concerns the case of two objectives.

Consider a multiobjective problem witth objectives, for example shortest path with cost and time
objectives. For a given instance, and error toleraneee would like to compute a smallest set of solutions
that form ane-Pareto set. Can we do it in polynomial time? If not, how walheve approximate the smallest
e-Pareto set? Note that arPareto set is not unique: in general there are many suchssgie of which
can be very small and some very large. First, to have any h@pmust ensure that there exists at least a
polynomial sizee-Pareto set. Indeed, ih [PY1] it was shown that this is the ¢as every multiobjective
problem with a fixed number of polynomially computable olijgzs. Second we must be able to construct
at least one such set in polynomial time. This is not alwayssiibe. A necessary and sufficient condition
for polynomial computability for ale > 0 is the existence of a polynomial algorithm for the following
Gap problem Given a vector of values, either compute a solution that dominate®r determine that no
solution dominate$ by at least a factot + ¢ (in all the objectives). Many multiobjective problems were
shown to have such a routine for the Gap problem (and manyfia&e been shown subsequently).

Construction of a polynomial-size approximate Paretoseseful, but not good enough in itself: For
example, if we plan a trip, we want to examine just a few pdesibutes, not a polynomial number in the



size of the map. More generally, in typical multicriteri&usitions, the selected representative solutions are
investigated more thoroughly by the decision maker (desigohysician, corporation, etc.) to assess the
different choices and pick the most preferable one, basedilflg on additional factors that are perhaps
not formalized or not even quantifiable. We thus want to $edlecsmall a set as possible that achieves a
desired approximation. In_[VY] the problem of constructiagninimume-Pareto set was raised formally
and investigated in a general framework. It was shown thatlfdi-objective problems with a polynomial-
time Gap routine, one can constructaRareto set that contains at most 3 times the number of pofitite
smallest such set; furthermore, the factor 3 is best passitihe sense that for some problems it is NP-hard
to do better. Further results were shown for 3 and more abgsgtand for other related questions. Note that
although the factor 3 of [V] is best possible in general feotobjectives, one may be able to do better for
specific problems.

We show in this paper, that for an important class of bi-dibjecproblems (containing many widely
studied natural ones such as shortest paths, spannincktragesack, scheduling problems and others) we
can obtain &-approximation, and furthermore the factor dfs tight for them, i.e., it is NP-hard to do
better. Our algorithm is a general algorithm that relies omwine for a stronger version of the Gap
problem, namely a routine that solves approximately thiviohg Restricted problem Given a (hard)
boundb, for one objective, compute a solution that optimizes apipnately the second objective subject to
the bound. Many problems (e.g. shortest paths, etc.) haw/agmial time approximation scheme for the
Restricted problem. For all such problem&-approximation to the minimura-Pareto set can be computed
in polynomial time. Furthermore, the number of calls to tlestcted routine (and an associated equivalent
dual routine) is linear in the sizZ8P T, of the optimale-Pareto set.

The bi-objective shortest path problem is probably the madkstudied multiobjective problem. It is
the paradigmatic problem for dynamic programming (thus egoress a variety of problems), and arises
itself directly in many contexts. One area is network ragitivith various QoS criteria (see e.q. [CX2, ESZ,
I[GRH4,VV]). For example, an interesting proposal in a receqgy by Van Mieghen and Vandenberghe [VV]
is to have the network operator advertise a portfolio ofreffieQoS solutions for their network (a trade-off
curve), and then users can select the solutions that bestifitpplications. Obviously, the portfolio cannot
include every single possible route, and it would make semselect carefully an “optimal” set of solutions
that cover well the whole range. Other applications incltftetransportation of hazardous materials (to
minimize risk of accident, and population exposuie) [EMjdanany others; we refer to the references,
e.g. [EG] contains pointers to the extensive literature lortest paths, spanning trees, knapsack, and the
other problems. Our algorithm applies not only to the abdeedard combinatorial problems, but more
generally to any bi-objective problem for which we have klade a routine for the Restricted problem; the
objective functions and the routine itself could be complieces of software without a simple mathematical
expression.

After giving the basic definitions and background in Sedf#pwe present in Sectidd 3 our general lower
and upper bound results for bi-objective problems, as veedigplications to specific problems. In Secfion 4
we present some results foe= 3 and more objectives. Here we assume only a Gap routinehéesetresults
apply to all problems with a polynomial time constructibl®areto set. It was shown in [VY] that far= 3
it is in general impossible to get a constant factor appraxiom to the optima¢-Pareto set, but one has to
relaxe. Combining results froni[VY] and [KP] we show that for ady> ¢ we can construct ad-Pareto
set of sizecOPT,, i.e. within a (large) constant facterof the sizeOPT. of the optimale-Pareto set. For
generald, the problem can be reduced to a Set Cover problem whose Véndion and codimension are at
mostd, and we can construct aftPareto set of sizé(dlog OPT,.)OPT..

We discuss also thBual problem: For a specified numbgrof points, findk points that provide the
best approximation to the Pareto curve, i.e. that forma-Bareto set with the minimum possilieln [VY]
it was shown that fol = 2 objectives the problem is NP-hard, but we can approximaierarily well (i.e.
there is a PTAS) the minimum approximation ratio= 1 + ¢*. As we’ll see, ford = 3 this is not possible,
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in fact one cannot get any multiplicative approximationléss P=NP). We use a relationship of the Dual
problem to the asymmetrik-center problem and techniques from the latter problem ¢avshat the Dual
problem can be approximated (fér= 3) within a constant power, i.e. we can comp#tpoints that cover
every point on the Pareto curve within a factdr= (p*)© or better in all objectives, for some constan(It
follows from our results that < 9.) For smallp*, i.e. when there is a set &fpoints that provides a good
approximation to the Pareto curve, constant factor andtanhpower are related, but in general of course
they are not.

2 Definitions and Background

A multiobjective optimization problenil has a seff;; of valid instancesevery instancd < Zpj has a
set of solutionsS(I). There ared objective functions,fi, ..., f4, each of which maps every instanée
and solutions € S(I) to a valuef;(I,s). The problem specifies for each objective whether it is to be
maximized or minimized. We assume as usual in approximdtiahthe objective functions have positive
rational values, and that they are polynomial-time conmipletaWe usen to denote the maximum number
of bits in numerator and denominator of the objective funttialues.

We say that al-vectoru dominatesanotherd-vectoruv if it is at least as good in all the objectives, i.e.
uj > v; if f; is to be maximized«(; < v; if f; is to be minimized). Similarly, we define domination
between any solutions according to th&ectors of their objective values. Given an instahcéhe Pareto
setP(I) is the set of undominategtvectors of values of the solutions (). Note that for any instance,
the Pareto set is unique. (As usual we are also interestaulutias that realize these values, but we will
often blur the distinction and refer to the Pareto set alsa sst of solutions that achieve these values. If
there is more than one undominated solution with the sarmeztig valuesP(I) contains one of them.)

We say that al-vectoru c-coversanotherd-vectorwv if  is at least as good asup to a factor ot: in all
the objectives, i.eu; > v;/cif f; is to be maximizedi; < cv; if f; is to be minimized). Given an instance
I ande > 0, ane-Pareto setP, (/) is a set ofd-vectors of values of solutions thét + ¢)-cover all vectors
in P(I). For a given instance, there may exist masiyareto sets, and they may have very different sizes. It
is shown in[[PY1] that for every multiobjective optimizatigproblem in the aforementioned framework, for
every instancd ande > 0, there exists an-Pareto set of siz&((4m/e)?~1), i.e. polynomial for fixed!.

An approximate Pareto set always exists, but it may not bstoactible in polynomial time. We say that
a multiobjective problenil has a polynomial time approximation scheme (respectivéiyiya polynomial
time approximation scheme) if there is an algorithm, whaien instanced and a rational number > 0,
constructs ar-Pareto sefP.(I) in time polynomial in the sizél| of the instance (respectively, in time
polynomial in|I|, the representation siz€ of ¢, and in1/¢). Let MPTAS (resp. MFPTAS) denote the class
of multiobjective problems that have a polynomial time pesstively fully polynomial time) approximation
scheme. There is a simple necessary and sufficient conffiti], which relates the efficient computability
of ane-Pareto set for a multi-objective problermto the following GAP Problem given an instancé of
II, a (positive rational)-vectorb, and a rationab > 0, either return a solution whose vector domindies
or report that there does not exist any solution whose vestoetter tharb by at least g1 + ¢§) factor in
all of the coordinates. As shown in[PlY1], a problem is in MET&esp. MFPTAS) if and only if there is
a subroutine GAP that solves the GAP problemTfoin time polynomial in|Z| and|b| (resp. in|I|, |b], |d]
and1/9).

We say that an algorithm that uses a routine as a black boxcesadthe solutions of the multiobjective
problem isgeneric as it is not geared to a particular problem, but appliesliof éhe problems for which the
particular routine is available. All that such an algoritmeeds to know about the input instance is bounds
on the minimum and maximum possible values of the objectivetions. (For example, if the objective
functions are positive rational numbers whose numeratotdsdg@nominators have at most bits, then an




obvious lower bound on the objective valueg1$" and an obvious upper bound%; however, for specific
problems better bounds may be available.) Based on the bothmal algorithm calls the given routine for
certain values of its parameters, and uses the returneltisrtesgompute an approximate Pareto set.

For a given instance, there may exist maRareto sets, and they may have very different sizes. We want
to compute one with the smallest possible size, which wetiateOPT.. [VY] gives generic algorithms
that compute smali-Pareto sets and are applicable to all multiobjective @wisl in M(F)PTAS, i.e. all
problems possessing a (fully) polynomial GAP routine. Tleeysider the following “dual” problems:
Given an instance and an> 0, construct are-Pareto set of as small size as possible. And dually, given
a boundk, compute are-Pareto set with at mogt points that has as small anvalue as possible. In the
case of two objectives, they give an algorithm that compatesPareto set of size at mo3OPT; they
show that no algorithm can be better thgapproximate in this setting. For the dual problem, theynsho
that the optimal value of the rati@ = 1 + ¢ can be approximated arbitrarily closely. For three objesti
they show that no algorithm can beapproximate for any constant unless it is allowed to use a larger
value. They also give an algorithm that constructs’aRareto set of cardinality at mo$©OPT,, for any
€>(1+e?—1.

In a general multiobjective problem we may have both minatian and maximization objectives. In
the remainder, we will assume for convenience that all dibjes are minimization objectives; this is without
loss of generality, since we can simply take the reciproctiaaximization objectives.

Notation: For a positive integen € IN*, we will denote byn] the set{1,2,... ,n}.

3 Two Objectives

We use the following notation in this section. Consider ttag whose coordinates correspond to the two
objectives. Every solution is mapped to a point on this plale user andy as the two coordinates of the
plane. Ifp is a point, we use:(p), y(p) to denote its coordinates; thatjs= (z(p),y(p)).

We consider the class of bi-objective probleth$or which we can approximately minimize one objec-
tive (say they-coordinate) subject to a “hard” constraint on the othee {tftoordinate). Our basic primitive
is a polynomial time (or fully polynomial time) routine fohé following Restricted problentfor the y-
objective): Given an instandec Iy, a (positive rational) boun@ and a parameter > 0, either return a so-
lution points satisfyingz (5) < C andy (5) < (1 + d)-min {y over all solutionss € S(I) havingz(s) < C'}
or correctly report that there does not exist any solutisach that: (s) < C. For simplicity, we will drop
the instance from the notation and use Rest(igtz < C') to denote the solution returned by the corre-
sponding routine. If the routine does not return a solutiwa,will say that it returns NO. We say that a
routine Restrict(y,z < C) runs in polynomial time (resp. fully polynomial time) if itsinning time is
polynomial in|I| and|C| (resp.|I], |C|, |§| and1/0). The Restricted problem for theobjective is defined
analogously. We will also use the Restricted routine witlesinequality bounds; it is easy to see that they
are polynomially equivalent.

Note that in general the two objectives could be nonlinear @mpletely unrelated. Moreover, it is
possible that a bi-objective problem possesses a (fullinomial Restricted routine for the one objective,
but not for the other. The considered class of bi-objectiablems is quite broad and contains many well-
studied natural ones, most notably the bi-objective skbpath and spanning tree problems (see Selction 3.3
for a more detailed list of applications).

The structure of this section is as follows: In Secfiod 3.&,skow that, even if the given bi-objective
problem possesses a fully polynomial Restricted routiméoth objectivesno generic algorithm can guar-
antee an approximation ratio better than(This lower bound appliea fortiori if the Restricted routine
is available for one objective only.) Furthermore, we shbat tfor two such natural problems, namely,
the bi-objective shortest path and spanning tree problérnssNP-hard to do better thai In Sectiof 3.2



we give a matching upper bound: we present an effidespproximation algorithm that applies to all of
the problems that possess a polynomial Restricted routinerfe of the two objectives. In Sectibn13.3 we
discuss some applications.

3.1 Lower bound

To prove a lower bound for a generic procedure, we presentPareto sets which are indistinguishable
from each other using the Restricted routine as a black lEykiose smallegtPareto sets are of different
sizes.

Proposition 3.1. Consider the class of bi-objective problems that possesshagolynomial Restricted
routine for both objectives. Then, for any> 0, there is no polynomial time generic algorithm that approx-
imates the size of the smallesPareto setP* to a factor better thar2.

Proof. Fix arationak > 0 and consider the following set of poinis:= (z(p), y(p)), ¢ = (x(p) 1112:, 3{3{’2)

r= (32 y(m)52), by = (20) + 1Ly)(1 - o)) andp, = (a(p)(1 = 547),5(p) + 1), where
z(p),y(p) > 1+ % (Figure[l). LetP = {p,q,7,pq, pr} @and P’ = {q,r,pq, p, } be the feasible (solution)
sets corresponding to two input instances. Noteztat+ €)-covers all the pointg, does nof(1 + ¢)-cover

r (due to ther coordinate) angh, does not(1 + ¢)-coverq (due to they coordinate). It is easy to see that
the smallest - Pareto set fol? consists of only one point (namely poipt, while the smallest - Pareto set
for P’ mustinclude two points.

We can show that a generic algorithsnguaranteedo tell the difference betweeR and P’ only if 1/
is exponential in the size of the input. The argument is venylar to the proof of Theorem 1 in [VIY]. Let
z(p) = y(p) = M, whereM is an integer value exponential in the size of the input Bid By exploiting
the fact that, in some cases, our primitivenist uniquely defingdwe can argue that a polynomial time
generic algorithm cannot distinguish between instarieesd P’. More specifically, a generic algorithis
guaranteedo tell the difference betweeR and P’ only if the tolerance) is inverse exponential in the size
of the input.

First, note that both pointg andr can be efficiently computed by appropriately using the gir@an
tine; these two points suffice td + ¢)-cover the feasible set in both cases. Distinguishing betwtae
two instances means determining whethes part of the solution. Assume that we use the operation
Restrict(z,y < C), whereC' € [y(p), y(pr)). It is easy to see that this is the only “meaningful” openatio
using this routine as a black box. Then, evenig part of the solution, by definition, Restrjatan returrp,
as long asz(p,) < (1 + d)z(p) or equivalentlys > ﬁ But since we want a polynomial time algorith%q,
has to be polynomial itg M ; hence, the latter constraint must hold. By symmetry, timeesproperty holds
for the Restrici(y, -) routine. Therefore, using each of these routines as a blaxk@polynomial time
algorithm cannot determine jfis part of the solution, and it is thus forced to take at leastpoints, even
when it is presented with the sét Note that the above configuration can be replicated to shawit is
impossible for a generic algorithm to determine whetherstihalleste-Pareto set hak points or2k points
are needed. |

In fact, we can prove something stronger (assuming RP) for the bi-objective shortest patB$%P and
spanning treeBST) problems. In théBSPproblem, we are given a (directed or undirected) graph tigesi
rational “costs” and “delays” for each edge and two specifiedess and¢. The set of feasible solutions is
the set ofs — ¢ paths. The objectives (to be minimized) are linear, i.e tbi@l weight” of a path equals the
sum of the weights of its edges. TB&Tproblem is defined analogously. These problems are wellvkno
to possess polynomial Restricted routinestfoth objectives[[LR| GR]. We show the following:



.q

v

Figure 1: A polynomial time generic algorithm cannot detievenif p is a solution of the given instance.

Theorem 3.2. a. For the BSP problem, for anfyfrom k& = 1 to a polynomial, it is NP-hard to distinguish
the case that the minimum si@&® T, of the optimalk-Pareto set ig: from the case that it ik — 1.
b. The same holds for the BST problem for any fiked

Proof. The reductions are from the Partition probleém[GJ]; we akemia setA of n positive integers
A ={ay,as,...,a,}, and we wish to determine whether it is possible to partitioimto two subsets with
equal sum.

a. For simplicity, we first prove the theorem fbr= 1 and then generalize the construction. Given an
instance of the Partition problem, we construct an instafitke BSPproblem as follows: Le: be a graph
with n + 1 nodesuv;, i € [n + 1] and2n edges{e;,¢’;}, j € [n]. We attach the pair of (parallel) edges
{e;,€/;} fromv; tov; 41, 7 € [n] and sets = v; andt = v,,11. We now specify the two cost functiors:)
andd(-) on the edgesc(e;) = d(e}) = S + 2ea;n andd(e;) = c(e}) = S, whereS = >"" | a;.

Clearly, this simple transformation defines a bijectionn®tn subsets df:] ands — ¢ paths inG; the
setJ C [n] is mapped to the — ¢ pathP; = ;. ;{ei} UU,gs{ei}. Sincec(Py) = nS + 2en(3;c 5 ai)
andd(P,) = nS + 2en(3_,;¢,; a;), eachs — t pathP, satisfies the equation{P) + d(P) = 2(1 + €)nS;
hence, all feasible solutions are undominated.

Now observe that two solution points suffice(to+ ¢)-cover the feasible set; just pick the (“extreme”)
pointsr = ((1 + 2¢)Sn, Sn), I = (Sn, (1 + 2¢)Sn), corresponding to the — ¢ pathsPy, = UL, {ei}
andP, = |J;_,{¢;} respectively. Indeed; (1 + ¢)-covers all the points having cost-€oordinate) at least
(1 +¢€)Sn (since(1+ 2¢)/(1 +€) < 1+ ¢€). Equivalently, it(1 + €)-covers all the solution points having
delay (/-coordinate) up td1 + €)Sn (since all the solutions lie on the line segment y = 2(1 + €)n.S).
Moreover, the point (1 + ¢)-covers all the solution points havingcoordinate at leasil + ¢).Sn.

Since for each feasible solutidn it holds min{c(P),d(P)} > nS (and the “extreme” paths have cost
or delay equal t@.S), it follows that there exists artPareto set containing (exactly) one point if and only if
there exists a path i& with coordinateg (1 + €)Sn, (1 + €)Sn). Itis immediate to verify that such a path
exists if and only if there is a solution to the original insta of the Partition problem.

Note that the above part of the proof does not rule out thellpibigsof an efficientadditiveapproxima-
tion algorithm, i.e. an algorithm that outputs afareto set of cardinality at moStPT. + «, wherea is
an absolute constant. We can rule this out as follows: iaaht we can think of the Pareto set 6fas a
“cluster”. To prove the theorem fdr > 1, the goal is to construct an instance of the problem suchttieat
corresponding Pareto set consistgafuch clusters that aré!’ + ¢)-far” from each other, i.e. no point in a



cluster(1 + ¢)-covers any point in a different cluster.

For theBSPproblem, we can generalize the proof to hold for &ny: poly(n,> - ; log(a;)) and for
all e > 0. This can be achieved by exploiting the combinatorial stnecof the problem; we essentially
replicate the grapli’ £ times and appropriately scale the weights. ‘

Formally, considei (disjoint) copies of the grapty, G = (V7, E7), j € [k], with VI = [J' {o}

1=

andE/ = [JI{e],¢’7}. Add a (source) node, a (sink) nodet; for eachj add an edge from to v] and

one fromu) ,, tot. Thatis, construct the grapt = (Viz, Er) (see Figure[12) with
Vi = {s,t}U | J V7 andEp = [ J{(s,0)) UET U (v} ;,1)}
j=1 j=1
Assign zero cost and delay to each edge incidentdaod and set:

(1426207 Ve(ed) = d(e?)/(1 + 262071 = § + 2easn
(142020 Ve(e]) = d(e])/(1+2°07) =5

From the above equations, it follows that for each ¢ pathP? “using” graphG/, j € [k], it holds:
(1+26)207De(PI) +d(P7) /(1 +26)*U71 = 2(1 + e)nS

This implies that all feasible solutions are undominated. particular, the Pareto set for this instance

is the union ofk disjoint “clusters” with endpointg; = (mzf)%,Sn(l - 26)2(j_1)+1) andr; =
(ng)ﬁ%, Sn(l + 26)2(j_1)) , j € [k]. The solution points in each cluster lie on the line segment

(The objective space for this instance is illustrated iruFe3.)

Now notice that no solution point corresponding tosan ¢ path using grapld:” is (1 + ¢)-covered by
any point corresponding to an— ¢ path using grapl& for j # 1. Indeed, due to the structure of the Pareto
set, it suffices to check that, for eaghe [k — 1], the pointsl; andr;,; do not(1 + €)-cover each other.
This holds by construction:;; is a factor of(1 + 2¢) to the left and'1 + 2¢) abovel;. Therefore, any two
clusters are (1 + ¢)-far” from each other. Thus, anyPareto set for this instance must contain at léast
points.

As in the case ok = 1, for all j € [k], the solution pointd; andr; (1 + ¢)-cover the (solution
points in the)jth cluster. Thus2k solution points suffice td1 + €)-cover the feasible set. Also, th¢h
cluster is(1 + €)-covered by one point if and only if there exists an- ¢ path in H with coordinates

m; = (Uf;)% (1+€)Sn(1 + 26)20'—1)). Similarly, this holds if and only if the original Partition
instance is a Yes instance. So, if there exists a partitioth@fsetA, the smallest-Pareto set contains
exactlyk points. Otherwise, the smallest such set must coraipoints.

To finish the proof, we observe that there existg-&areto set with (at mosf: — 1 points if and only
if there exists anr-Pareto set with exactly points. Indeed, the former statement holds if and ongoihe
cluster is(1 + ¢)-covered byonepoint, i.e. if and only if there exists an— ¢ path in H with coordinates
m; for some;j € [k], which in turn holds if and only if the original Partition itagce is a Yes instance. The
latter holds if and only if the smallestPareto set contains exactypoints.

b. In theBSTproblem, we are given an undirected graph= (V, E), positive rational “costs¢(e) and
“delays” d(e) for each edge € E. The set of feasible solutions is the set of spanning tre€s tie goal is
to minimize cost and delay. Fér= 1, the proof for theBST problem is identical to the proof for tHRSP
problem.

TFor simplicity, we allow zero weights on the edges, sinceefimes not exist any— ¢ path with zero total cost or delay. This
can be easily removed by appropriate perturbation of thghtgi



Figure 2: Graphs in the reduction of Theorem) 3.2.

We give a construction that works for afixed & and for sufficiently smalk; in facte = O(1/k)
suffices. Consider the graghf obtained fromG by adding one node, connected ta; with & parallel
edgesg;, i € [k]. Subtract the valué from all the weights oG and set:c(g;) = {2 — (1 + 2¢)*}Sn,
d(g;) = (1 + 2¢)%'Sn. (These edges play the role offsets) Clearly, as long agl + 2¢)% < 2, all the
weights are in the intervdD, 25n). It is also not hard to see that, under this restriction, the® set of+’
containsk clusters (having)(2") undominated points each) that ai@ “+ ¢)-far” from each other - in the
sense defined above.

The points of the-th cluster; € [k], lie on the line segmem{P)+d(P) = 2(1+¢)n.S with “endpoints”
(c(gi),d(gi) + 2eSn) and (c(g;) + 2eSn,d(g;)); the latter (solution) points suffice td + ¢)-cover the
corresponding cluster. Itis easy to see that there existisiian with coordinate$(1+¢)c(g;), (1+¢€)d(g;))
-i.e. a solution thaf1+¢)-covers the cluster - if and only if there exists a subset wfith sum(1+2¢)%.5/2.

To complete the proof, we use the fact that the follownagant of the Subset Sum problem is NP-hard:
Given A = {ay,a9,...,a,} with the property that (i) either there exiktsubsetsd; C A, i € [k], such
that)", ., = = v'S/2 or (i) nosuch subset exists, decide which one of the two cases hoidar(y fixed
integerk and rationaly > 1 such thaty* < 2). (This can be shown by a reduction from the Partition
problem.) Therefore, it is NP-hard to decide if the smalteBareto set for the instance hWagoints or2k
points are needed. |

Remark3.3. For k = 1 the theoremark says that it is NP-hard to decide if one paiffices or we need at
least2 points for anc-approximation. We proved that the theorem holds also farengenerak to rule out
additive and asymptotic approximations. We can easily ipdle proof so that the graphs in the reductions
are simple. For thBSPproblem, this can be achieved by inserting a new (“dummytjaia the “middle” of
each parallel edge (subdividing the weights arbitrarigr theBSTproblem, this does not suffice, because
all the additional nodes must be covered (by a spanning. tleef)w; be the node inserted in the middle
of e; = (v;,vi41). The problem is solved by setting(v;, w;)) = d((vi,w;)) = 0, c((w;,viz1)) = c(e;)
andd((w;,v;+1)) = d(e;). By scaling the weights of the Partition instance we can lsaethe NP-hardness
holds even in the case where all the edge weights are restriotbe positive integers. Similar hardness
results can be shown for several other related problemsSgetiori 3.B).
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3.2 Two Objectives Algorithm

We have a bi-objective problem with an associated Resiriciatine for they-objective that runs in poly-
nomial (or fully polynomial) time. We are given an instanc& ane, and we wish to construct anPareto
set of as small size as possible. In this subsection, we mrasgeneric algorithm that guarantees r&tio
By the result of the previous subsection, this factor isropti Recall that the algorithm in VY] works for
all problems in MPTAS and is a fact@rapproximation. (The analysis of the latter algorithm itifpr
the class of problems considered here.) In Se¢fion]3.2. shoe that a straightforward greedy approach
cannot guarantee a ratio better tf3aim our setting. We next make a crucial observation that isodbgal in
Sectior 3.Z.R to achieve the optimal factor.

3.2.1 The Greedy Approach Fails

We remark that if the underlying problem has polynomial temactRestricted routines for both objectives
(i.e. Restrict for 6 = 0), then we can efficiently compute tloptimal e-Pareto set by a simple greedy
algorithm. The algorithm is similar to the one given(in JKPYMor the (special) case where all the solution
points are given explicitly in the input. We denote byi,, ymin the minimum values of the objectives
in each dimension. The greedy algorithm proceeds by it@igtiselecting pointg;, ..., g in decreasing
x (increasingy) as follows: We start by computing a poigt having minimumy coordinate among all
feasible solutions (i.ey(q}) = ymin); ¢1 is then selected to be theftmostsolution point satisfying/(q;) <
(1+¢€)y(q})- During thejth iteration ¢ > 2) we initially compute the poing’; with minimumy-coordinate
among all solution points having z(s) < z(g;—1)/(1 + €) and select ag; the leftmost point which
satisfiesy(g;) < (1 + €)y(q}). The algorithm terminates when the last point seleg¢tied- ¢)-covers the
leftmost solution point(s) (i.e. the point(g)havingz(q) = xnn). It follows by an easy induction that
the set{q1,q2,...,qr} is ane-Pareto set of minimum cardinality. (This exact algoritrsrapplicable to
bi-objective linear programming and all problems reduitn it, for example bi-objective flows, the bi-
objectiveglobal min-cut problem[[AZ] and several scheduling problems [CI]r these problems we can
compute ar-Pareto set of minimum cardinality.)

If we have approximate Restricted routines, one may try tdifpohe greedy algorithm in a straightfor-
ward way to take into account the fact that the routines arexsrct. However, as shown below, this modified
greedy algorithm is suboptimal, in particular it does nopiove on the factoB that can be obtained from
the general GAP routine. More care is required to achievetairfa, matching the lower bound.

Suppose that we have a (fully) polynomial Resjriciutine (even for both objectives). Consider the
following scheme, wheré is the “uncertainty parameter’s < e, but1/6 must be polynomially bounded
in the size of the input antl/¢, so that the overall algorithm runs in polynomial time:

Algorithm Greedy

Computeymin andamin.

1 = ymin(l + 6);

q1 = Restricts(z,y < 71);

Q={ahi=1,

While (zpmin < 2(g;)/(1 +¢€)) do

{ 4i, 1 = Restricts(y, » < 2(q;)/(1 + €));
Yir1 = (1 +€) - max{gi, y(qi 1)/ (1 +0)};
qi+1 = Restricts(z,y < Fit1);
Q=QU{g};
i=i+1;}

Return Q.

10



Figure 4: lllustration of the worst-case performance ofgheedy approach.

Since the Restricted routines are now approximate, in dadguarantee that the output set of points is
ane-Pareto set, we had to appropriately modify the algorithisedaon the parametér More specifically,
note that the poing; , ; can havey-coordinate up tg1 + ¢) times the minimurmy over all pointss satisfying
x(s) < z(q;)/(1 + €). In other words, there may exist a solution poirgatisfyingz(s) < x(¢;)/(1 + ¢€)
andy(3) = y(q;,,)/(1 + 6). (The algorithm has “no way of knowing this” unless it usesalue of with
1/6 exponential in the size of the input.) This “uncertainty’tdes the algorithm to select as poipt ,
the leftmost point that satisfiegq;+1) < (1 + €)y(¢i,;)/(1 + ¢). Due to this “weakness”, we have the
following:

Claim 3.4. For anyé > 0, with 1/§ polynomial in the size of the input ande, there exist instances on
which the greedy algorithm above outputs a@etuch that@| = 3k — 1, wherek = OPT..

Proof. Denote byP* = {pj,...,p;} the optimal set, where its point§, i € [k] are ordered in decreasing
order of theirz-coordinate, and) = {q1, ..., q,} the set selected by the greedy algorithm. By exploiting
the uncertaintyintroduced by the parametéywe describe an adversarial scenario suchithat3t — 1.

The idea is the following: Consider the subroutine @all, = Restricts(y,z < x(g:;)/(1 + €)). By
definition, we havey < y(q;,,) < (14 6)y, wherey = min{y(s) | z(s) < x(¢;)/(1 + €)}. Suppose
that the routine returns a poipf, , satisfyingy = y(q;,,). Call this condition(f). If ¢, satisfies this
condition, the optimal poing’ (1 + €)-coveringg;, ; can havey-coordinate up tg1 + €)y(q;, ;), while the
algorithm is forced to select a poigt, ; with y-value at most1 + €)y(q;,;)/(1 + 9).

We refer the reader to Figuré 4 for an illustration. In theanse presented there, the rightmost optimal
pointp; (1+¢)-covers all the solution points that g+ ¢)-covered by the sy, g2}, while, forj > 2, the
optimal pointp; (14 €)-covers all the solution points that afe+ €)-covered by the sdfys;, ¢3j+1, ¢35+2}-
This proves the desired claim. In the following, we expldia situation in detail.

Consider the first poing; € @ selected by the algorithm. By the definition of the Restdateutine
and the fact thag; must be(1 + ¢)-covered bypj, it follows thatz(p}) > z(q1)/(1 + ). Suppose that the
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following scenario occursz(p}) = z(q1)/(1 +0), x(q1)/[(1 + €)(1 + )] < z(q2) < x(q1)/(1 + ¢€) and
there are no solutions with-coordinate in the intervalz(q2) /(1 + €), 2(¢2)). Then, the poinpj (1 + ¢)-
covers all solutions that af@ + ¢)-covered by the seftg, g2 }. Notice that the algorithm only “loses” one
additional point here; we have thatq,) < =(p}). This is due to the fact that we can exactly compute the
minimum y-coordinate. However, since this does not hold for the rtexaiions, the algorithm can “lose”
two additional points for each optimal point.

Now suppose that the poin{g?. g3, ¢5, g4, ¢4 } satisfy the following scenariay; satisfies conditiortt),
y(g3) = [(1+€)/(1+0)]y(q3), y(ay) = (1 +0)y(as), x(qs) = (1 + &)z (p3) andy(p3) = y(q}). Itis easy
to see that these conditions are simultaneously realizgflbserve thap; (1 + ¢)-coversgs.) Finally, if
x(qa)/[(1+€)(140)] < x(gs) < z(qa)/(1+€) and there are no solutions withcoordinates in the interval
[2(g5)/(1 + €),z(gs)), the pointp3 (1 + ¢)-covers all the solutiongl + €)-covered by the sefigs, ¢4, g5}

By replicating the above described configuration, it followductively thap;, ; (1 + ¢)-covers all the
solutions(1 + ¢)-covered by{¢s;, g3i+1, g3i+2}. This completes the proof. [ |

In fact, one can show that the the greedy algorithm guarardefactor3, i.e. the above described
adversarial scenario represents a worst-case instantieef@algorithm. Let us now try to understand why
the greedy approach fails to guarantee a faZtiorthe aforementioned scenario. The problem is that, due to
the uncertainty introduced by the pointp’ can lie arbitrarily to the left ofj3. Thus, the only invariant that
the greedy algorithm can guarantee:{g,) < (1 + d)z(p3).

We can overcome this obstacle by exploiting an additiomatstral property of the considered class of
bi-objective problems. In particular, our generic aldaritwill also use a polynomial routine for the follow-
ing Dual Restricted probler(for the z-objective): Given an instance, a (rational) boundndé > 0, either
return a solutiors satisfyingy (5) < (1 + ¢) D andz (5) < min {z(s) over all solutionss havingy(s) < D}
or correctly report that there does not exist any solutissuch thaty (s) < D. Similarly, we drop the
instance from the notation and use DualRestficty < D) to denote the solution returned by the corre-
sponding routine. If the routine does not return a solutiwe,will say that it returns NO. We say that the
corresponding routine runs in polynomial time (resp. fplbjynomial time) if its running time is polynomial
in|I| and|D| (resp.|I|, 0| and1/9).

The following lemma establishes the fact that any bi-oljegbroblem that possesses a (fully) polyno-
mial Restricted routine for the one objective, also posseaqfully) polynomiaDual Restrictedoutine for
the other.

Lemma 3.5. For any bi-objective optimization problem, the problemstRet; (v, -) and DualRestrict (x, -)
are polynomially equivalent.

Proof. The proof of (both directions of) this equivalence uses tyirsearch on the range of values of one
objective with an application of the polynomial routiner(tbe other objective) at each step of the search.
Let m be an upper bound on the number of bits in the objectives]lrbed 1 is polynomially bounded in
the size of the instance. Observe that (the absolute vajubefninimum possible difference between the
objective values of any two solutions is at least™.

First, we argue that a polynomial time algorithm Restrict;(y, z < C') can be used as a black box to
obtain a polynomial time algorithm fddualRestricts(z,y < D).

Given an upper bound and a (rational) error toleran@e> 0, the following algorithm computes the
function DualRestricts(z,y < D):

1. If Restricts(y, z < 2™) returns a solutio havingy(sg) > (1 + 6)D or returns “NO”, then output
HNOH.

2. Otherwise, do a binary search on the paramgtierthe rangg2~", 2| calling Restrict;(y, z < C)
in each step, until you find a value such that:

12



(@) Restricts(y,z < C) returns a solutioi satisfyingz(3) < C andy(3) < (14 6)D.

(b) Restricts(y, z < C' — 272™) either returns a solutiosf havingz(s') < C — 272" andy(s') >
(14 6)D or returns “NO”.

Output the solutiors.

The number of calls to the routinRestricts(y,z < C) is O(m), so the overall algorithm runs in
polynomial time. It remains to argue about the correctnssase 1, either there are no feasible solutions
or all solutions have coordinate strictly greater thah. In case 2, all solutions havingz(s) < C—22m
also satisfyy(s) > D. Since there are no solutions withcoordinate strictly between(3) andC' — 2~
C < min{z over all solution points havingy(s) < D}.

Conversely, given an upper bouddand a (rational) error tolerancge > 0, the following algorithm
computes the functioRestrict;s(y, < C') using as a black box an algorithm for DualRestriat, y < D):

1. If DualRestricts(z,y < 2™) returns a solutiors, havingz(sy) > C or returns “NO”, then output
HNO".

2. Otherwise, do a binary search on the parameterthe rangg2~", 2] calling DualRestrict;(z, y <
D) in each step, until you find a value such that:

(a) DualRestricts(z,y < D) returns a solution satisfyingz(3) < C andy(3) < (1 + §)D.

(b) DualRestricts(z,y < D — 272™) either returns a solutios’ havingz(s') > C (andy(s') <
(14 8)(D —272™) or returns “NO”.

Output the solutiors.

The justification is similar. The number of calls to the roetDualRestricts(z,y < D) is ©(m), so
the overall running time is polynomial. For the correctnéssase 1, either there are no feasible solutions
or all solutions have: coordinate strictly greater thai. In case 2, all solutions havingy(s) < D —272m
also satisfyz(s) > C'. Since there are no solutions wigrcoordinate strictly between(3) andD — 2-2™,
D < min{z over all solution points havingz(s) < D}. |

3.2.2 Algorithm Description

We first give a high-level overview of the&-approximation algorithm. The algorithm iteratively sgkea
set of solution pointqq,...,q,} (in decreasinge) by judiciously combining the two routines. The idea
is, in addition to the Restricted routine (for thecoordinate), to use the Dual Restricted routine (for the
x-coordinate) in a way that circumvents the problems preshpidentified for the greedy algorithm. More
specifically, after computing the poipf in essentially the same way as the greedy algorithm, we ptbce
as follows. We select ag a point that: (i) hag/-coordinate at mostl + €)y(¢.)/(1 + §) and (ii) has
x-coordinateat mostthe minimumz over all solutionss with y(s) < (1 + €)y(q})/(1 + 6)? for a suitable

0. This can be done by a call to the Dual Restricted routinetieritobjective. Intuitively this selection
means that we give some “slack” in thecoordinate to “gain” some slack in thecoordinate. Also notice
that, by selecting the poinf; in this manner, there may exist solution points wjtivalues in the interval
(L +e)y(g)/(1+6)2, (1 + €)y(q))/(1 + &)] whosez-coordinate isarbitrarily smaller thane(g;). In fact,
the optimal point(1 + ¢)-coveringg; can be such a point. However, it turns out that this is sufficfer
our purposes and, if is chosen appropriately, this scheme can guarantee thabtheg,; lies to the left
(or has the same-value) of thei-th rightmost point of the optimal solution. We now proceeithvihe
formal description of the algorithm. In what follows, the@rtolerance is sett6 = /1 +¢ — 1 (=~ ¢/3
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for smalle). (For the case that the Restricted routine is availabld@h objectives, we have a variant of
this algorithm that achieves a ratio ®find is slightly more efficient in the sense that it uses eol@rance
8 =+/1+e—1)If /1 + eisnotrational, we let be a rational that approximatesl + ¢ — 1 from below,

e. (1+6)% < (1 +¢), and which has representation sjge= O (|e|) (i.e. number of bits in the numerator
and denominator). The set of points computed by the algorighshown in Figurd 15.

Algorithm 2-Approximation
If Restrictsy1(y,z < 2™) = NO then halt.
= Restricts(y,z < 2™);
qieft = DualRestricts,1(2,y < 2™);  Tmin = 2(qeft);
g1 =y(q))(1+9);
= DualRestricts(z,y < 71);
1 =xz(q1)/(1 +¢);
Q={n}li=1
While (Z; > xmin) dO
{ 411 = Restricts(y, v < z;);
Jirr = [(1 +€)/(1 +0)] - max{g;, y(q;41)/(1 + 0) };
¢i+1 = DualRestricts(z,y < §it1);
Tiv1 = 2(qiv1)/(1 +€);
Q=QU{gi1};
i=i+1;}
Return Q.

3.2.3 Analysis

Recall tha2™ is an upper bound on the values of the objectives. Thuesdfricts, 1 (y,z < 2™) = NO,
there are no feasible solutions, in which case we can jusiate the algorithm. So, we can assume that the
solution set is nonempty. In this case, the subroutine oéllses 2 and 3 indeed return a solution; moreover,
(i) the solution poinger has minimume-value among all feasible solutions arig ¢; hasy-valueat most
(1 + 6)ymin- Now observe thag,in < 7; < g;+1 andz; > xn;y, for all the values of for which the body
of the while loop is executed. It is thus easy to see that ealofoatine call returns a point; so, all the points
are well-defined.

Let@ = {q1, 4, - .., q } be the set of solution points produced by the algorithm. Weprave that the
set() is ane-Pareto set whose size is at most twice the optimum. We netottowing simple properties.

Fact 3.6. We have the following:
1. For eachi € [r — 1] it holds (i) z(¢j ;) < x(g;)/(1 + €) and (ii) for each solution point with

z(t) < x(q:)/(1 +€), we havey(t) > y(g;,,)/(1 +9).
2. For eachi € [r] it holds (i) y(¢:) < (1 + ¢)g; and (ii) for each solution point with y(¢) < ¢; we have

z(t) > (q;)-
Proof. The properties are just restatements of the definition ofWloesubroutines. |
We can now prove the following lemmata (all properties useldw refer to the above fact).

Lemma 3.7. Thexz coordinates of the pointg, ¢, . . . , ¢, of ) form a strictly decreasing sequence.

Proof. Consider two successive elementsy; 1 of Q). For theirz coordinates we will argue tha(g; 1) <
x(q;)/(1 + €). First observe thag(q;, ) < 7i+1. S0, property 2i() implies thatz(g;11) < (g}, ;). Now
from property 1-() we getz(q;,,) < #(g:;)/(1 + ¢) and the argument is complete. |
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The following lemma shows th#} is indeed are-Pareto set.

Lemma 3.8. 1. The pointg; (1 + ¢)-covers all of the solution points that hawecoordinate at least
w(q)/(1+e).

2. Foreachi € [r]\ {1} the pointg; (1 + €)-covers all of the solution points that have theicoordinate in
the interval [z(g;)/(1 + €), z(gi—1)/(1 + €)).

3. There are no solution points witlrcoordinate smaller tham (g, )/(1 + €).

Proof. 1. Lett be a solution point with:(t) > x(g1)/(1 + €). We need to show thatis (1 + ¢)-covered
by ¢1. It clearly suffices to argue thatt) > y(q1)/(1 + €). Indeed, by property 2i#) we havey(q;) <
(1+6)y1 = (1+0)2y(q}) and the definition of; implies thaty(t) > y(q})/(1+6), for any solution point.
By combining these facts we get that for any solution poitholdsy(t) > y(q1)/(1+6)% > y(q1)/(1+¢).
2. Lett be a solution point satisfying(q;)/(1 + €¢) < x(t) < z(gi—1)/(1 + €); we will show thatt is
(1 + €)-covered byg; or equivalently that(¢) > y(q;)/(1 + €). The proof is by contradiction. Suppose
that there exists such a poiatwith y(t) < y(q;)/(1 + €). By property 2-() and the definition ofy;
this impliesy(t) < max{g;—1,y(q¢})/(1 + ¢)}. Now sincexz(t) < z(g;—1)/(1 + €), property 1-{) gives
y(t) > y(q})/(1 4+ ¢). Furthermore, since(t) < xz(g;—1), by property 2-f) it follows thaty(t) > ;1.
This provides the desired contradiction.

3. The termination condition of the algorithma$g,.) /(1 + €) < Zmin. [ ]

Remark3.9. We show in LemmBg3.10 below that the &ts of cardinality|Q| < 20PT.. So, the algorithm
could output this set of points. However, we observe thast#i€) may contain “redundant” points: The
y-coordinates of the pointg, . . . , ¢, do not necessarily form an increasing sequence. In fagtgif.1) <
(1+ 9)y;, it may happen thag(q;+1) < y(¢;) (in which case the poiny; is redundant). (Note however that
if y(gi+1) > (14 0)y;, then by property 2#{ we gety(¢;+1) > y(¢;).) This observation can be further
exploited for a post-processing step. For examplg(df;) < (1 + J)y2;—1, we can safely discard the point
qoi—1 as implied by (the proof of) Lemnia3.8.

We now bound the size of the set of poidisn terms of the size of the optimaiPareto set.

Lemma 3.10. Let P = {p],p5,...,p;} be the optimak-Pareto set, where its points’, i € [k], are
ordered in (strictly) increasing order of thei- and (strictly) decreasing order of their-coordinate. Then,
Q| =r < 2k.

Proof. We prove the following:

Claim 3.11. If the algorithm selects a solution poigt; 1 (i.e. if 2i — 1 < r), then there must exist a point
p; in P (i.e. it holds: < k) and if the algorithm selects a point;, thenz(p}) > z(q2i).

The desired result follows directly from this. The claim i®yed by induction ori.

Basis ( = 1). The first statement of the claim trivially holds. To shove thalidity of the second
statement observe that for the rightmost poinPsf we must have (p3) < y(q))(1+¢€) =g1(1+¢€)/(1+
§) < 2. The firstinequality holds since the solution pajhimust be {+ €)-covered byP* and in particular
by the point of P having the minimuny-coordinate. The two other inequalities follow from the deions
of 7, andg2. Now an application of property 2t} givesz(pj) > x(¢2) and the base case is proved.

Induction step. Suppose that the claim holds for index (more specifically that(p}_;) > x(g2i—2));
we will prove it fori. We will prove each statement in turn.

Assume first that the algorithm selects a pajgt ; (i.e. that2i — 1 < r). We will show thatP*
contains a poinp; (i.e. thati < k). By the termination condition of the algorithm, our asstioypimplies
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thatz(g2i—2) > (1 + €)zmin. Therefore, by the induction hypothesis it follows thép! ;) > (1 + €)Zmin;
that is, pointp?_; doesnot (1 + ¢)-cover the leftmost solution point, which means there mxist & point
p} in the optimal set.

Now assume that the algorithm selects a paint We will show thatz(p}) > x(ge;). First note that
by property 1-() and the induction hypothesis(¢), ) < z(p_;)/(1 + €). So, the poinp}_, doesnot
(1+ ¢)-cover the pointy,,_, in thez-coordinate. Clearly, the latter point must (et ¢)-covered by a point
in 7. Since thep}'s are sorted in decreasing order of theicoordinates, we conclude thait is the only
eligible point for that purpose, i.ef,, _; must be mustl + ¢)-covered byp;. To complete the argument,
we need the following fact:

Fact 3.12. There does not exist any solution pointvith z(¢) < x(ge;) such thatt (1 4 €)-covers point
/
92i—1-

Proof. We want to prove that for all solutiortshavingz(t) < xz(g2;) it holdsy(t) > (1 + €)y(g;_,). For
such a solution pointwe havey(t) > ya; > g2i—1(1+¢€)/(14+9) > (1+€)y(gh;_,). The latter inequalities,
in the order they appear, follow by applying propertyii3-¢nd the definition ofj; (for j = 2i — 1,2:). W

The above fact implies directly thatp}) > z(q2;) and the proof is complete. |

Thus far, we have proved that the ggtis ane-Pareto set of siz&)| < 20PT.. We now analyze the
running time of the algorithm. Let be the number of points in the smallesPareto setsx = OPT.. The
algorithm involvesr < 2k iterations of the while loop; each iteration involves twdl#o the subroutines.
Therefore, the total running time is bounded4dysubroutine calls. In summary, we proved the following
theorem.

Theorem 3.13. The above described algorithm computexapproximation to the smallestPareto set in
time O(OPT.) subroutine calls, wheré/é = O(1/e).

3.3 Applications

Our result can be applied to all of the problems which have lgnponial (or fully polynomial) time Re-
stricted routine for one of the two objectives. It should ressed that our algorithm is quite general;
it does not assume for example linearity of the objectivegpli&ations include the shortest path prob-
lem [Han,[Wa[ ESHZ, LR] and generalizations [EV, GR+, CX2,|V¥pst-time trade-offs in query evalua-
tion [PY?2], spanning trees (and more generally matroid jemols, see below) [GR, HL] and related prob-
lems [CX]. The aforementioned problems possess a polyridRastricted routine foboth objectives. In
essence, for most of the aforementioned problems (With [®¥ihg a notable exception), the two objec-
tives are “the same” and we can efficiently optimize each efrtlseparately. For several other problems
[ABK1] ABK2] CJK|[DJSS], the Restricted routine is availalibr one objectivenly (because it is NP-hard
to separately optimize this objective). An example is tHiofang classical scheduling problem: We are
given a set of: jobs and a fixed numben of machines. Executing jopon machine requires timep;; and
incurs cost;;. We are interested in the trade-off between makespan andMosmizing the makespan is
NP-hard, even fom = 2; hence, the Dual Restricted problem for this objective {edently, the Restricted
problem for the cost objective) does not have a PTAS: I§ fixed, a fully polynomial timédual Restricted
routine for the cost objective is given in [ABK1]. (By Lemrmdd3his implies an FPTAS for the Restricted
problem for the makespan objective.)

For the bi-objective shortest path problem, a polynomiasgt fully polynomial) Restricted routine
corresponds to a polynomial (resp. fully polynomial) tinpgeoximation scheme for tHeestricted Shortest
Path problem: given a bound on the cost of the path, minimize thaydef the path subject to the bound

17



on the cost. This problem has been studied in a number of pdes, Wa| LR ESZ]. The problem is
NP-hard and has a fully polynomial time approximation scheifhe best current algorithms approximate
the optimal restricted path within factdr+ € in time O(en/¢) for acyclic (directed) graphs [E$SZ], and
time O(en(loglogn + 1/¢) for general (directed) graphs_[LR], whereis the number of nodes and

is the number of edges. Moreover, the Dual Restricted pnoldéso admits an FPTAS with the same
time complexity. Thus, our algorithm runs @(en(loglogn + 1/¢)OPT.) time for general graphs and
O(enOPT,/e) for acyclic graphs. The time complexity is comparable otdyethan previous algorithms
[Han,/Wa[TZ], which furthermore do not provide any guarasten the size.

For the bi-objective spanning tree problem a polynomialtiR#ed routine corresponds to a polynomial
time approximation scheme for ti@onstrained Spanning Trd€ST) problem [GR]: given a bound on the
cost of the tree, minimize the delay of the tree subject tdbthend on the cost. This problem is also NP-
hard and is known to have a polynomial time approximatiorest[GR| HL]. (In fact, the aforementioned
papers provide a PTAS for the more general problem of findingramum cost base of a matroid subject
to a bound on the total length, as long as there is a polynainial independence oracle for the matroid.)
The best current algorithm for the problem [HL] has runniiget O((1/€)'/n?). As a corollary, our
generic algorithm can compute2eapproximation to the smallestPareto set in ime((1/¢)'/<n30PT,).
Whether such &-approximation can be computedfuily polynomial time is conditional on the existence
of an FPTAS for theCST problem (which is an interesting open question). In comtiag the results of
[PY1],[VY], a 3-approximation can be computed in fully polynomial time.

4 d Objectives

The results in this section use the GAP routine and thus @pgit problems in MPTAS.

4.1 Approximation of the optimal e-Pareto set.

Recall that ford > 3 objectives we are forced to compute @Pareto set, wheré > e, if we are to have a
guarantee on its size [VY]. For amy > ¢, a logarithmic approximation for the problem is given[in [}/ ¥y

a straightforward reduction to the Set Cover problem. Westarpen this result, by exploiting additional
properties of the corresponding set system.

Theorem 4.1. 1. For anye’ > ¢ there exists a polynomial time generic algorithm that cotepuane’-
Pareto set) such that|@Q| < O(dlog OPT.)OPT,. The algorithm use€)((m/5)?) GAP; calls, where
1/6 =0(1/(¢ —¢)).

2. For d = 3, the algorithm outputs ad-Pareto set) satisfying|@| < cOPT,, wherec is a constant.

Consider the following problen® (P, ¢): Given a set of: points P C Ri as input ana > 0, compute
the smallest-Pareto set of. It should be stressed that, by definition, the set of paihts givenexplicitly
in the input. (Note the major difference with our settingr &otypical multiobjective problem there are
exponentially many solution points and they are not givaplieitly.) This problem can be solved in linear
time ford = 2 by a simple greedy algorithm. Fdr= 3 it is NP-hard and can be approximated within some
(large) constant factar [KP]. If d is arbitrary (i.e. part of the input, e.gl = n), the problem is hard to
approximate better than withinta(log n) factor (unles® = NP) [VY].

The following simple fact, implicit in[[VY], relates the apgximability of @ with the problem of com-
puting a smalle’-Pareto set for a multiobjective problefh, given the GAP primitive. Let > 0 be a
given rational number. For any > ¢, we can find & > 0 such thatl/§ = O(1/(¢’ — ¢)) satisfying
L+ >(1+e)(1+9)>%
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Lemma 4.2. Suppose that there exists affactor approximation algorithm fo©. Then, for any’ > ¢, we
can compute a#'-Pareto set), such thaiQ| < rOPT. usingO((m/§)%) GAP; calls.

Proof. The algorithm proceeds in two phases; in the first phase, wgpuate as-Pareto set, by using the
original algorithm of [PY1] and in the second phase we pestess the points produced by the latter
algorithm by using the-approximation algorithm fo@ as a black box.

For the given instancé € Ty, let X(I) be the set ofl-vectors of values of solutions in the objective
space and fix an optimatPareto sef’” = P*(I). Let R be thej-Pareto set produced in the first stage. We
apply ther-approximation algorithm fo® on input R to produce a seR’ C R that(1 + ¢)(1 + d)-covers
R. (Since|R| < (m/5)?!, it follows that the overall algorithm runs in polynomiairte.) R’ is clearly
an ¢’-Pareto set for the feasible s¥&t7). We will argue thai R'| < rOPT,. Let R* denote the smallest
(14 €)(1 + &)-cover for R usingonly pointsfrom R; we have|R'| < r|R*|. The following simple claim
completes the argument:

Claim 4.3. |R*| < OPT..

Proof. It suffices to show that there exists é&h+ ¢)(1 + J)-coverC for R of cardinality at mosOPT..
SinceR is ad-Pareto set, for any solution poiate X(I), there exists a solution pointe R that(1 + ¢)-
coverss. C'is constructed as follows: For eashe P pick anr € R that (1 + d)-covers it. Then,
|C| < |P¥| = OPT.. Every pointr € R is (1 + ¢)-covered by a point € P, which in turn is(1 + 9)-
covered by a point € C. ThereforeC' (1 + €)(1 + ¢)-covers all points of?. [
|

Part 2 of Theorem 411 follows immediately from the fact tidais constant factor approximable for
d = 3 [KP] and LemmdZ4.2. We consider the case of genéiialthe remainder. To proceed, we need the
following definition.

Definition 4.4. A set system is a paliiU, R), whereU is a set andR is a collection of subsets &f. For a
set system{U, R), we say thatX C U is shatteredby R if for any Y C X, there exists a sd® € R with

X NR =Y. The VC-dimension[VC] of the set system is the maximum sizany set shattered bi. Let
T C U be afinite set and € (1, 00) be a parameter. A séf C T'is called anl/r-net for (7', R) [HW], if

NNS#0forall S € R having|S| > |T|/r.

The problemQ(P, ¢) can be formulated as a set cover problem as follows: For eaictt ¢ € P and
e >0, defineS,. = {z € R | ¢ < (1 +¢)-x}. S, is the subset oR? that is(1 + ¢)-covered byy; itis a
closed convex cone iR? (a translation of the nonnegative orthant by the vegi@i + ¢)). For each point
r € P,ris (1+4¢)-covered by, if and only if - € S, . Now consider the set systeR( P, ¢) = (P, S(P,¢)),
whereS(P,¢) = {P; = PN S, | ¢ € P}. Clearly, there is a bijection between set cover§¢P, ¢) and
e-Pareto sets aP. We now establish the following:

Lemma 4.5. a. For any finite set of point® C R¢ ande > 0, it holds VC-diniF (P, ¢)) < d.
b. There exists a set of pointssuch that VC-diriF (P, ¢)) = d.

Proof. a. LetP be a set of points ilR? ande > 0. We must argue thato subsetP’ C P of cardinality
d + 1 can be shattered h§(P, ¢). Note that any such sdét’ C P (of cardinalityd + 1) contains a point
r none of whose coordinates is minimal, that is, a peistich that for ali € [d] there exists some point
q' € P’ (different fromr) with the property(¢’); < r;. We claim that we cannot “separate’from the
remaining points of”’ by any convex cone (as defined above). Indeed, a pointthat)-covers the;'’s is
guaranteed té1 + ¢)-coverr (or equivalently, the “dichotomy¥q’, i € [d]} cannot be realized).

b. Consider aseP = AU C, where|A| = d and|C| = 2%. Let A = {ay,...,aq}. We select the
a;’ s'in A as follows: For each € [d], theith coordinate ofi; is equal to 1 and all the rest are equal to
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1 + 2¢. The setA has two properties: (i) no two of its poinf$ + ¢)-cover each other and (ii) for any
two pointsp, ¢ € A, we haveargmin;p; # argmin;q;. The setC is selected such that each subsetiak
(1 + €)-covered by some point i@ In particular, letX = | J;c7(x{a:} be a subset ofl. We add the point
cx in C having each coordinate indexed ByX ) equal tol + € and all the rest equal tb+ 2¢. Clearly, the
pointcx (1 + €)-coversexactlythe elements oX'. [

Forg € P ande > 0, defineSP. = {x € R? | z < (1+ ¢) - ¢}; the coneS?. is the subset oR“
that (1 + €)-coversq. A pointr (1 + ¢)-coversq if and only if r € SP.. The “dual” set system of (P, ¢)
is defined asF” (P, ¢) = (P,S”(P,¢)), whereSP(P,e) = {PL. = PN SP | ¢ € P}. In words, the

elements are the points &f and for each poingy € P we have a set consisting of the pointss P that
(1 + €)-coverq. An e-Pareto set o is equivalent to a hitting set of .

It is well-known [Ag] that, if a set system has VC-dimensiamestd, the VC-dimension of the dual set
system is upper bounded B§*' — 1. However, in our setting, essentially the same proof asdrptievious
lemma establishes the following:

Lemma 4.6. For any finite set of point® C R? ande > 0, it holds VC-diniF? (P, ¢)) < d. This bound is
tight.

Proof. Let P be a set of points ilR? ande > 0. We must argue thato subsetP’ C P of cardinalityd + 1
can be shattered ky” (P, ¢). Similarly to the previous lemma, any set ¢ P of cardinalityd + 1 contains
a pointr such that for ali € [d] there exists some poigt € P’ (¢* # r) satisfying(q*); > r;. We claim
that we cannot “separate”from the remaining points. Indeed, if some pointis+ €)-covered by all the
q"’s, then is alsq1 + ¢)-covered byr. The tightness is similar. |

It is well-known that, for a set system of VC-dimension at imgsve can efficiently construct aryr-
net of sizes(r) = O(drlog r) [KPWI]; this bound is tight in general [PW, KPW)]. As shown inG3ERS],
for such a set system, there exists a polynomial t@PT)/OPT-factor approximation algorithm for the
minimum hitting setproblem, wheréOPT is the cost of the optimal solution. If we apply this resulthe
dual set systenF” (P, ¢) we conclude:

Proposition 4.7. ProblemQ can be approximated within a factor 6f(d log OPT.).

Part 1 of Theorer 411 follows by combining Lemmal4.2 and Psitjpm[4.7.

Remarld.8. If s(r) = O(r), the reduction in[B#E, ERS] implies a polynomial time comstactor approxi-
mation algorithm for the corresponding hitting set problérhis is exactly the approach in [KP]: they show
that, ford = 3, FP (P, ¢) admits anl /7-net of sizes(r) = O(r) and that such a net can be efficiently con-
structed. Note that the constant approximation ratioplied for set cover using this approach is identified
with the constant hidden in the big-Oh of the net-size). The corresponding constant in the construction
of [KP], itself based on a result of [CV], is quite large andgmod bounds have been calculated for it. A
recent result[PR] implies that the dual set system indugealfimite set of points and translates of an orthant
in R3 (a generalization afF P (P, ¢)) admits anl /r-net of size at mos5r (that is efficiently constructible).
Hence, ford = 3, problem@ can be efficiently approximated within a factorajand the constantin (the
second statement of) Theorém]4.1 is at n¥stimproving the value of this constant is an interesting open
problem.
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4.2 The Dual Problem

For ad-objective problemlIl with an associated>AP routine, given a parametér, we want to findk
solution points that provide the best approximation to theef curve, i.e. such that every Pareto point is
p*-covered by one of thé selected points for the minimum possible ratio= 1 + ¢*. It was shown in
[VY] that for d = 2 the problem is NP-hard but has a PTAS. We show below (Seciidd ¢that ford = 3
any multiplicative factor for the dual problem is impossibéven for explicitly given points; we can only
hope for a constant power, and only above a certain constant.

In [VY] the dual problem was related to the asymmetricenter problem, and this was used to show that
(i) for any d, a set ofk points can be computed that approximates the Pareto cutheatio (p*)O(log* k),
and (ii) for unbounded and explicitly given points, it is hard to do much better. &inhe metrig for the
dual problem is a ratio (multiplicative coverage) versisatice (additive coverage) in thecenter problem,
in some sense the analogue of constant factor approximitiche Dual problem is constant power. Can
we achieve a constant powgs* )¢ for all problems in MPTAS with a fixed numbet of objectives? We
show (Section 4.2]12) that the answer is Yesdat 3 and provide a conjecture that implies it for genetal

4.2.1 Lower Bound

Consider the probler®( P, k) (dual problem with explicitly given points): We are giverplicitly a setP of

n points in]Ri and a positive integer and we want to compute a subsetfobf cardinality (at mostk that
p-coversP with minimum ratiop. Letp* = 1+ ¢* denote the optimal value of the ratio. Note that problems
Q andD are polynomially equivalent with respect to exact optirti@a- as opposed to approximation. As
shown in [KR],Q is NP-hard ford > 3; hence, ford > 3, problemD is also NP-hard.

By further exploiting the properties of the aforementiomeduction in[[KP], we can show that problem
D is NP-hard to approximate. Before we proceed with the forstetement and proof of this fact, it will
be helpful to give some remarks regarding the notion of “aegipnate coverage” in the definition of the
approximate Pareto set. Throughout this paper, our nofi@owerage isnultiplicative for p > 1, a point
u € ]Ri p-Covers a poiny € ]Ri iff u < p-wv (coordinate-wise). Alternatively, one could define theiomot
of coverage additively: for > 0, the pointu € ]Ri additively c-coversv € Ri iff u; < v; + cforalli.

A notion of additive c-Pareto set can be naturally defined using the additive ageer(Note that with the
additive definition of coverage Pareto sets and approxifateto sets are invariant under translation of the
input set, while with our multiplicative definition they airevariant under scaling.)

On the one hand, the selection of multiplicative metric adard and more natural in the context of
approximation algorithms. On the other hand, it is esskemtiaur setting in the following sense: For a
(implicitly represented) multiobjective combinatorigdtomization problem, the basic existence theorem of
[PY1] (i.e. the fact that there always exists @Rareto set of polynomial size) is based crucially on the
multiplicative coverage. (In fact, it clearly does not haldder the additive coverage. This, of course,
rules out the possibility of efficient algorithms for comimgt (any) approximate Pareto set in this context.)
However, for the case that the set of points is given explidit the input (i.e. for problem& andD) the
aforementioned obstacle does not occur and one can sadat#finition of coverage that is more appropriate
for the specific application.

We will denote bylog @ andlog D the primal and dual problems respectively under additive@me.
We now try to relate the problem paif€, log Q) and(D, log D) with respect to their approximability. To
this end, we need a couple of more definitions. For two pginisc Ri theratio distancebetweerp and
q is defined by:RD(p, ¢) = max{max;(p;/q;),1}. (The ratio distance betwegnandgq is the minimum
valuep* = 1+ ¢* of the ratiop such thap p-coversq.) Theadditive distancdetweerp andgq is defined by:
AD(p, q) = max{max;(p; — ¢;),0}. (Analogously, the additive distance betweeandq is the minimum
value ¢* of the distance: such thatp additively c-coversq.) It is easy to see thalD(-, ) is a directed
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pseudo-metric.

We claim that the problem@ andlog Q are in some sense “equivalent” with respect to approxiritgbil
Indeed, it is easy to see that afapproximation algorithm for probler® implies anr-approximation for
problemlog Q and vice-versa (by taking logarithms and exponentials ®ttiordinates respectively). Sup-
pose for example that there exists a faetapproximation fotog Q. We argue that it can be used as a black
box to obtain an-approximation forQ. Given an instancép, ¢) of Q, we construct the following instance
of log Q: We take the set of point8’, whereP’ contains a poinp’ for every pointp € P whose coordinates
are the logarithms of the corresponding coordinates. &/e also take: = log(1 + ¢€). That is, we ask for
the smallesadditive c-Pareto set of”’. If p/, ¢’ € P’ are the images af, ¢ € P respectively, we have that
RD(p,q) = 2AD(W'.4') | Hence, there exists a bijection betweeRareto sets oP and additivec-Pareto
sets of P/, i.e. this simple transformation is an approximation fagireserving reduction of to log Q.
There is however a subtle point regarding the bit complexityhe produced instance: the coordinates of the
points in P’ (and the desired additive coveragemay be irrational, thus not computable exactly. We argue
that this is not a significant problem below.

Consider an instancg”’, ¢) of log Q. (The following remarks also hold fa@ and the dual problems.)
Clearly, the feasible solutions to the problem, i.e. thalitac) c-Pareto sets of”’, do not depend on the
actual coordinates of the points i, but only on the additive distance between every pair offsoidence,
the only information an (exact or approximate) algorithmlfg Q needs to know about the input instance
is the set of pairwise distances. In fact, such an algoritbesdot need an explicit representation of these
distances as rational numbers. It is sufficient to have aistictepresentation that allows: (i) efficiently
computing a succinct representation of the sum of two (ore)ndistances (ii) efficiently comparing any
two (sums of) distances and (iii) efficiently comparing (suof) distances witle. Now the aforementioned
transformation produces instanc@?’, ¢) of problemlog Q that clearly satisfy these properties (since we
have an explicit representation of the starting instaf¥ée) of Q and we take logarithms). Hence, an
approximation algorithm folog Q can be used as a black box to obtainraapproximation forQ. Similar
arguments may be used for the other direction.

For the dual problem, the choice of coverage (multipli@atikersus additive) changes the objective
function, which affects the approximability. Roughly skieg, a factor--approximation algorithm faiog D
is “equivalent” to a(p*)"-approximation algorithm foD, wherep* is the value of the optimal ratio for the
latter problem. For example, it is easy to see (by takingrittyas as above) that a facterapproximation
for log D implies a(p*)"-approximation forD.

We have the following:

Theorem 4.9. Consider the probler® (P, k) for d = 3 objectives.
1. It is NP-hard to approximate the minimum rafd within any polynomial multiplicative factor.
2. Itis NP-hard to computé points that approximate the Pareto curve with ratio bett&xrt(p*)3/ 2,

Proof. To prove both parts we take advantage of the properties ilNBvardness reduction df [KP]. It
is shown there that probleing Q is NP-hard ford = 3 via a reduction fron8-SAT. Given an instance of
3-SAT, the reduction produces an instariée c) of log Q such that the smallest additivePareto set of”
reveals whether th& SAT formula is satisfiable. We will not repeat the reducti@ne, but we will just give
the properties of the construction below needed for ourgaep. We prove each part separately.

1. The crucial property we need here is that the reductiofiKF] [is strongly polynomial: Given an
instance (formula)y of 3-SAT with n-clauses, the reduction constructs an instance®t) (or log D),
consisting of a sef” of points in 3 dimensions and an additive error bounsuch that, if the formula
 is satisfiable ther” has a (additive)-cover with g points (for some parameterof the construction),
whereas ifp is not satisfiable then everycover must contain at leagt 1 points. The construction has the
property that all the points aP have rational coordinates with(log n) bits and the error bound~ 1/n?
(to be precise¢ = 1/4n?). This property implies that in the (additive) dual problésg D with a bound
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k = g for the number of points in the cover, the additive “gap” ie tlalue of the optimal covering distance
between the Yes case (satisfiable 3-SAT instapcand the No case (hon-satisfiable 3-SAT instance) is at
least inverse polynomial in, i.e. atleast = 1/n", for a (small) constant: If the 3-SAT instancep is
satisfiable, the optimal value of the covering distance lieldg D instanceP with k = g is ¢; if ¢ is not
satisfiable, the optimal distance is at ledst ¢ + ¢. By multiplying all the coordinates of the constructed
instance by a factor dfn"+!, wherel > 0 is a constant, and rounding to the nearest integer, we geva ne
instance oflog D where all the points have integer coordinates and the vdltieecadditive gap between
the satisfiable and the unsatisfiable case is at {¢ast/e then exponentiate each coordinate-§ 2%). The
number of bits remains polynomial in the size of the origiB®AT instance (thus the overall reduction
takes polynomial time) and the value of thmultiplicativegap is now2"' .

2. To prove this part, it suffices to show that problemD does not have an approximation ratio better
than3/2. The reduction in([KP] uses a numbgof gadgets. The construction has gadgets for the variables
and for the clauses, which are connected by paths of flip-famgets that cross using crossover gadgets.
If the formula is satisfiable, then we can cover the pointhaiditive distance with g points, one from
each gadget. Otherwise, this is not possible. We thus skleetg and ask for the “beskt points” and
the corresponding optimal covering distante As previously mentioned, if the formula is satisfiable, we
havec® = ¢. Now, if the formula is not satisfiable, we argue below tha&t tiptimal covering distance is
c* > 3c¢/2. The proof follows directly from this.

Suppose that th&-SAT formula is not satisfiable and we want to select the besdints. First, we note
that we still need one point from each gadget because otbemili the points of a gadget must be covered
by points in other gadgets that are “far away” (much furtlientc), since the gadgets are well-separated;
that is, if some gadget contains no point of the solution ttiencovering distance is much larger than
Since the formula is not satisfiable, after selecympints, at least one gadget will remain “badly covered”,
i.e. the point we selected must cover more points of its gatlga itsc-neighborhood. An examination
of the three types of gadgets used in the construction shomishis gives covering distan@e for both
the flip-flop and clause gadgets and at least for the crossover gadgets. Hence, if the formula is not
satisfiable, the optimal covering distanceis> 3¢/2. [ |

4.2.2 Upper Bound

Consider the followingyeneralizationQ’ (A, P,1 + ¢) of problemQ: Given a set ofx pointsP C R?, a
subsetd C P ande > 0, compute the smallest subget(A) C P that(1 + ¢)-coversA. Itis easy to see
that ford = 3 the arguments of [KP, PR] fa@ can be applied t@’ as well showing that it admits a constant
factor approximation (see Remark}4.8). We believe thatdnfiar all fixed d there may well be a constant
factor approximation. Proving (or disproving) this tbr> 3 seems quite challenging. The following weaker
statement seems more manageable:

Conjecture 4.10. For any fixedd, there exists a polynomial tin{él + €)*(¢), 3(d))-bicriterion approxima-
tion algorithm forQ’(A, P, 1+¢), i.e. an algorithm that outputs afl +¢)*(®-coverC' C P of A, satisfying
|C| < B(d) - |P*(A)|, for some functions, 3 : IN — IN.

Ford = 3, Conjecturd_4.10 holds with(3) < 2, and3(3) < 4. This can be shown by a technical
adaptation of th&-objectives algorithm in [VY].

For general implicitly represented multiobjective prabewith a polynomialGAP; routine, we for-
mulate the following conjecture:

Conjecture 4.11. For any fixedd, there exists a polynomial time generic algorithm, thatpots an(1 +
€)*(4)-coverC, whose cardinality i$C| < 3(d) - OPT,, for some functions, 5 : IN — IN.
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The case ofl = 3 is proved in[[VY] with «(3) = any constant greater th&mend(3) = 4. Note that,
by (a variant of) Lemm&4l2, Conjecture 4.10 implies Conjesftf.11. The converse is also partially true:
Conjecturd_4.11 implies Conjecture 4.10, if in the statenudrthe latter, problenQ’ is substituted with
problemQ.

In the following theorem, we show that a constant factoriteidon approximation forQ’ implies a
constant power approximation for the dual problem, giveGA P routine.

Theorem 4.12. Consider a (implicitly represented}-objective problem in MPTAS and suppose that the
minimum achievable ratio with points isp*.

1. Ford = 3 objectives we can compuiepoints which approximate the Pareto set with rafig(p*)?),
usingO((m/5)?) GAP; calls, wherel /6 = O(1/(¢' — ¢)).

2. If Conjecturd 4.0 holds, then for any fixéave can computé points which approximate the Pareto set
with ratio O((p*)¢), usingO((m/§)%) GAP; calls, wherel /6 = O(1/(€' — ¢)) andc = ¢(d).

Proof. Part 1 follows from 2 since Conjecture 4110 holds fbe= 3. (It will follow from the proof that
c(3) < 9.) To show Part 2, we exploit the relation of proble®(P, k) with the asymmetrid:-center
problem. As observed i [VIY], the problelog D is an instance of the asymmetfiecenter problem, which
we now define for the sake of completeness. In the asymmieitienter problem we are given a set of
n verticesV with distancesdist(u,v) that must satisfy the triangle inequality, but may be asyinme
i.e. dist(u,v) # dist(v,u). We are asked to find a subdét C V, |U| = k, that minimizesdist™ =

max mi[I} dist(u,v). (Note thatlog D(P, k) is an instance of this problem, where there exists a bijectio
veV ue

between vertices o and points ofP and the distance between points (vertices) € P is defined as
d(p,q) = AD(p.q).)

We claim that, if problem’ (A, P, 1 + ¢) admits a((1 + ¢)*9), 3(d))-bicriterion approximation, then
problemD(P, k) admits a(p*)c(d) approximation for some function (that depends on and3). This is
implied by the aforementioned reduction and the followingrengeneral fact: If we have an instance of the
asymmetridc-center problem (probletog D( P, k) in our setting) such that a certain collection of associated
set cover subproblems (which are instances of probiten®’(A, P, 1 + ¢) here) admits a constant factor
bicriterion approximation (an algorithm that blows up botfieria by a constant factor), then this instance
admits a constant factarnicriterion approximation (an algorithm that outputs a set of no mora tha
centers). This implication is not stated in [FV, Arl], butinsplicit in their work. One way to prove it is
to apply Lemma 5 of [PV] in a recursive manner. We will deserén alternative method [Ar2] that yields
better constants. We prove this implication, appropnwatielnslated to our setting, in Lemma4.14.

For a general multiobjective problem where the solutiomfsare not given explicitly, we impose a
geometricy/1 + 4 grid for a suitable’, call GAP; at the grid points, and then apply the above algorithm to
the set of points returned. Then the sef:qfoints computed by the algorithm provide la+ ¢')<(®)-cover
of the Pareto curve, wheile+ ¢ = (1 + €)(1 + §)2. [ |

Remark4.13 Even though th® (log* k)-approximation ratio is best possible for the (generaljrasgtric
k-center probleni[CG+], the corresponding hardness reegk dot apply fotog D as long as the dimension
d is fixed.

Let H(«) denote the harmonic number extended to fractional argwsrigntinear interpolation (i.e.
H(a) = S 1/i + (o = |a))/[a]). For a functiong, let g denote the function iteratedtimes.
Finally, forb > 1 define H; (o) = min{i : H®(a) < b}. The following lemma completes the proof of
Theoreni 4.1P.

Lemma 4.14. Suppose that there exists &l + €)“, 3)-bicriterion approximation forQ’(A, P,1 + ¢).
Then, problenD (P, k) admits a(p*)¢ approximation, where = Hz/g(ﬁ) + a+4. In particular, fora = 2
andj = 4, we can get = 9.
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Proof. The desired result can be shown by a careful applicationeofe¢bhniques introduced in [PV, Arl].
We describe an algorithm — that we den®teP, k), as the corresponding problem — which, giveipd, 3)-
bicriterion approximation algorithm, denot&{ A, P, p), for problemQ’(A, P, p) as a black box, computes
a set@) C P of (at most)k points that(p*)¢-cover the seP, wherep* is the minimum ratio achievable with
k points. We will denote byB( A, P, p) the set of points output by the algorithfhon input(A, P, p).

We first note the simple (and well-known) fact that it is ncslo$ generality to assume that the algorithm
D(P, k) “knows” the optimal ratigo*; this is becausg* will be one of theO(| P|?) pairwise ratio distances,
hence we can try the algorithm for all of them and pick the bekition (or do an appropriate binary search,
see e.g.[JArl)).

To describe the algorithm, we appropriately translate titeons from [PV Arl] to the current setting.
For the sake of completeness, we also provide a mostly coenpteof of correctness.

We begin with a basic definition.

Definition 4.15. For a pointy € P and a parameter > 1, we denotd' " (¢, p) = {p € P | ¢ < p - p} the
set of points inP p-covered byy andI'~ (¢, p) = {p € P | p < p - q} the set of points irP that p-covergq.
We naturally extend this notation to setsC P: T+(S,p) = {p € P | p € I'(s, p) for somes € S}. We
say that the poing € P is ap-center capturing vertefdenotedo-CCV) if it satisfiesI'~ (¢, p) € T (q, p).

Consider an instance of the probléM P, k) as defined above. Suppose that p*. In this case, if
the pointq is a p-CCV, it p-covers at least one point of the optimal solution — in patéc the pointg*
that p*-coversq. Indeed,¢* € T (q,p*) € I'"(q,p) C I't(q,p). Hence,q p-covers every point inP
p-covered by the poing*. This simple property is crucial for the algorithm.

The algorithm in[[PV] has two phases. In the first phase, riyghpreprocesses the input set by
iteratively finding CCV’s and in the second phase it uses arsage set cover procedure to cover the points
not covered in the first stage. (The algorithm[in [Ar1] replathe second phase by an LP-based method.)

The algorithmD(P, k) works in three phases. The first phase is identical to theplirase in[[PV], ArL]:
We preprocess the input sBtby iteratively findingp*-CCVs. In the second phasP, calls the bicriterion
approximation algorithnB (with appropriately selected values of its parameters)oiecthe subset oP
that is not covered in the first phase. The remaining phassvies a careful application of the recursive
greedy set cover procedure bf [PV] followed by an applicatib the greedy set cover algorithm. To show
correctness of the last step, we use the structural lemnf& @f (itself a variant of a similar lemma iR [BV],
albeit with improved constants).

The algorithm is presented in detail below:

We now proceed with an intuitive explanation of the diffdretieps in tandem with a proof of correctness.
We explain first what happens during the first phase. We havepas the setP, the parametek and the
optimal ratiop*. (Recall that the algorithm can “guess” the optimal rat\/@ iteratively selecp*-CCV’s
as follows: For each*-CCV we find, we remove from the “active” set (initialized to P) all the points
(p*)2-covered by it, until no more CCV's exist id. Let C' be the set of CCV's thus discovered’( < k)
andA = P\ I'"(C, (p*)?) be the set of points i not (p*)2-covered by any point i. At this point, we
note the following simple fact:

Fact 4.16. The setd := P\ I'T(C, (p*)?) can bep*-covered bys’ = k — |C| points inP \ T*(C, p*).

If |C] =k (K = 0, A = (), we have selected a set bfpoints that(p*)?-cover the set” and we can
just terminate the algorithm. Otherwise, we proceed withritbxt phase. In the second phase, we call the
algorithm B to p*-cover the setd. By Fac{4.16, there existsg-cover of A with £’ points. Moreover, it
is clear that such a cover lies il \ I' (C, p*). Hence, we get a sety C P \ I'"(C, p*) of cardinality
|So| < - K that(p*)“-coversA. To motivate the next step, we note the following immediatglication

of Fac{4.16:
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Algorithm D(P, k)
(The optimal radiug™ is known to the algorithm.)
(Phase 1)
A=P;K =k, C =0
While there exists @*-CCV g € A andk’ > 0 do
{C=CU{q};
A=A\T*(q,(p")?);
EF=kK-1;}
(Phase2)
So = B(A, P\T*(C,p"),p");
(Phase 3)
So = So \TH(C, (p*)?);
S = Rec-Cover(Sy, A, P, p*, k');
S1=S1\THC, (p")"); _
S, = Greedy-Set-CovefSy, P, (p*)3);
Return Q := C U Ss.

Routine Rec-Cover(Input: S, A, P, p,1)
(There exist vertices inP that p-cover.sS,
whereS C AC P.)

S0 =8;i=0;
While |S?| > 41/3 do
{

Run Greedy Set Cover {@cover S’ using points
of P and letSi*! C P be the produced set.
Sitl — g+l 4:
i=1i+1;

¥

Return S°.

Fact 4.17.LetS C A. ThenS can bep*-covered by’ points inP \ T (C, p*).

We also recall the following well-known fadt [Chv, Jéh, [Losfhout the performance guarantee of the
greedy set cover algorithm:

Fact 4.18. For a set systenilU, R) suppose that there exists a set cover of cardinalityrhen the greedy
algorithm outputs a cover of size at mestH (|U|/p).

At this point, we apply the recursive greedy set cover praoedrom [PV] to cove@o = Sp N A using
points fromA. (The points inSp \ §0 are (p*)2-covered byC.) Note that in each round of the recursive
cover, we attempt to cover only those points from the lastdahat do not lie i+ (C, (p*)?), sinceC' will
cover those ones. We thus get a SetC P of cardinality |S;| < 4k’/3 with the property thafS; covers
So \ ' (C, (p*)HHZ/S(B)) with ratio (p*)HZ/3(6). The latter statement can be shown by induction, using
Fact4.1V as an invariant. Since this essentially appedA\M (see e.g. Lemma3 in [Arl]), we do
not repeat it here. To motivate the next step, we need theWwly combinatorial lemma from [Af1]:

Lemma 4.19(Theorem 17 in[TArl], rephrased)letC C PandA = P\ I'*(C, (p*)?). Supposed has
no p*-CCV's and that there exigt’ centers (points inP) that p*-cover A. Then there exists a set 2f'/3
centers inP \ 't (C, p*) that (p*)3-coversA’ = P\ TH(C, (p*)*).

As a final step of the algorithm, we apply the greedy set colgarihm — that may be viewed as one
iteration of the recursive procedure — with paraméfen? to coverS; = S; \ T'H(C, (p*)*) using points
from P (so that the optimum has cardinality at m@ét /3, according to Lemma _4.19). (Note that the
points in S; \ S, are (p*)*-covered byC.) We thus get a se$, C P of cardinality at mos{2%’/3) -

H ((4K'/3)/(2K'/3)) = (2K'/3) - H(2) = k' with the property that, coversS; within (p*)3. We output
the set@) := C' U Sy; this set has cardinality at moktand it remains to argue that it covelswith ratio
(p*)4+°‘+H5/3(6). Indeed, every point € P falls in one of the following categories:

e The pointp is (p*)2-covered by a point i, i.e. p € T (C, (p*)?). (Note that if this isnot the case,
i.e.ifp € A, thenitis(p*)“-covered bySj.)
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e The pointp is (p*)*-covered by a poinpy € Sy that isnot (p*)HZ/S(B) - covered bysS;. In this case,

po € TH(C, (p*) THisP)y s0C coversp within ratio (p*) T Hiss (DT,
» The pointp is (p*)*-covered by a poing € Sy that is(p*)""i/s?
not (p*)*-covered bySs. In this casep; € I'*(C, (p*)*), soC coversp within ratio (p*)

- covered by a point; € S, thatis
4+HZ/3(B)+O‘_

e The pointp is (p*)“-covered by a poinp, € Sy that is(p*)HZ/ff(B)

is in turn (p*)3-covered byp, € S. In this case, the point, coversp within ratio (p*)

- covered by a poinp; € Sy that
3+H 5 (B)+a

A+H} 5 (B)+

Hence the overall covering ratio () “, which completes the proof. |

Remark4.2Q0 We note here that the recursive set cover procedure (usétt ialkiove lemma) was useful
merely to improve the constants in the reduction. One canraltively prove a (quantitatively inferior)
version of the lemma by the following two-phase algorithmtHe first phase, preprocess the input’Rdéty
iteratively findingp-CCVs for appropriately chosen values of the parametén the second phase, call the
algorithm 3 to “cover” the subset o that is not covered in the first phase. The analysis of thésradtive
algorithm is based on repeated applications of Lefnmd 4.19.

Remark4.21. We should remark that the algorithms of this section aredatisfactory that the bi-objective
algorithm of the previous section (and the 2-d and 3-d allgais of [VY]) in several respects. One weakness
is that the constantsobtained (ford = 3) are quite large: in the case of Theoreml 4.1, the best canstan
we can get follows from the net construction [of [PR] (and iswt25). In the case of Theorem 4112 there is
still a large gap between the upper boundqpénd the lower bound (df/2) in the exponent.

A second weakness of the algorithms is that they start byyaygpthe general method df [PY1] calling
the GAP routine on a grid, and thus incur always the worse-tiase complexity even if there is a very small
e-Pareto set. Thus, we view our algorithms in this sectiomiyais theoretical proofs of principle, i.e. that
certain (constant) approximations can be computed in jpolyal time, but it would be very desirable and
important to improve both the constants and the time.

5 Conclusion

We investigated the problem of computing a minimum set ofittemhs for a multiobjective optimization
problem that represents approximately the whole Paretgeonithin a desired accuragy We developed
tight approximation algorithms for the bi-objective stemttpath problem, spanning tree, and a host of other
bi-objective problems. Our algorithms compute efficierstyapproximate Pareto set that contains at most
twice as many solutions as the minimum one; furthermore avipg on the factor 2 for these specific
problems is NP-Hard. The algorithm works in general for a&bhjective problems for which we have a
routine for the Restricted problem of approximating onesotiye subject to a (hard) bound on the other.
The algorithm calls this Restricted routine and a dual onkelask boxes and makes quite effective use of
them: for every instance, the number of calls is linear (astMdimes) in the number of points in the optimal
solution for that instance.

We presented also results for three and more objectivels,fbothe problem of computing an optimal
e-Pareto set and for the dual problem of selecting a specifiedber k£ of points that provide the best
approximation of the full Pareto curve. As we indicated &t ¢émd of the last section, there is still a lot of
room for improvement both in the time complexity and the ¢ants of the approximations achieved. We
would like especially to resolve Conjecture 4.11, hopgfplbsitively. It would be great to have a general

27



efficient method for any (small) fixed numberof objectives that computes for every instance a succinct
approximate Pareto set with small constant loss in accumadyin the number of points, and do it in time
proportional to the number of computed points, i.e., thénagit approximate Pareto set for the instance in

hand.

Acknowledgements.We would like to thank Aaron Archer for useful discussionated to the asymmetric
k-center problem.
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