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Abstract

We investigate the problem of computing a minimum set of solutions that approximates within a
specified accuracyǫ the Pareto curve of a multiobjective optimization problem.We show that for a broad
class of bi-objective problems (containing many importantwidely studied problems such as shortest
paths, spanning tree, and many others), we can compute in polynomial time anǫ-Pareto set that contains
at most twice as many solutions as the minimum such set. Furthermore we show that the factor of2 is
tight for these problems, i.e., it is NP-hard to do better. Wepresent upper and lower bounds for three or
more objectives, as well as for the dual problem of computinga specified numberk of solutions which
provide a good approximation to the Pareto curve.
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1 Introduction

In many decision making situations it is typically the case that more than one criteria come into play. For
example, when purchasing a product (car, tv, etc.) we care about its cost, quality, etc. When choosing a route
we may care about the time it takes, the distance travelled, etc. When designing a network we may care
about its cost, its capacity (the load it can carry), its coverage. This type ofmulticriteria or multiobjective
problems arise across many diverse disciplines, in engineering, in economics and business, healthcare, and
others. The area of multiobjective optimization has been (and continues to be) extensively investigated in
the management science and optimization communities with many papers, conferences and books (see e.g.
[Cli, Ehr, EG, FGE, Mit]).

In multiobjective problems there is typically no uniformlybest solution in all objectives, but rather a
trade-off between the different objectives. This is captured by thetrade-offor Pareto curve, the set of all
solutions whose vector of objective values is not dominatedby any other solution. The trade-off curve
represents the range of reasonable “optimal” choices in thedesign space; they are precisely the optimal
solutions for all possible global “utility” functions thatdepend monotonically on the different objectives.
A decision maker, presented with the trade-off curve, can select a solution that corresponds best to his/her
preferences; of course different users generally may have different preferences and select different solutions.
The problem is that the trade-off curve has typically exponential size (for discrete problems) or is infinite
(for continuous problems), and hence we cannot construct the full curve. Thus, we have to contend with an
approximation of the curve: We want to compute efficiently and present to the decision makers a small set
of solutions (as small as possible) that represents as well as possible the whole range of choices, i.e. that
provides a good approximation to the Pareto curve. Indeed this is the underlying goal in much of the re-
search in the multiobjective area, with many heuristics proposed, usually however without any performance
guarantees or complexity analysis as we do in theoretical computer science.

In recent years we initiated a systematic investigation [PY1, VY] to develop the theory of multiob-
jective approximation along similar rigorous lines as the approximation of single objective problems. The
approximation to the Pareto curve is captured by the conceptof an ǫ-Pareto set, a setPǫ of solutions that
approximately dominates every other solution; that is, forevery solutions, the setPǫ contains a solutions′

that is within a factor1+ ǫ of s, or better, in all the objectives. (As usual in approximation, it is assumed that
all objective functions take positive values.) Such an approximation was studied before for certain problems,
e.g. multiobjective shortest paths, for which Hansen [Han]and Warburton [Wa] showed how to construct
an ǫ-Pareto set in polynomial time (for fixed number of objectives). Note that typically in most real-life
multiobjective problems the number of objectives is small.In fact, the great majority of the multiobjective
literature concerns the case of two objectives.

Consider a multiobjective problem withd objectives, for example shortest path with cost and time
objectives. For a given instance, and error toleranceǫ, we would like to compute a smallest set of solutions
that form anǫ-Pareto set. Can we do it in polynomial time? If not, how well can we approximate the smallest
ǫ-Pareto set? Note that anǫ-Pareto set is not unique: in general there are many such sets, some of which
can be very small and some very large. First, to have any hope we must ensure that there exists at least a
polynomial sizeǫ-Pareto set. Indeed, in [PY1] it was shown that this is the case for every multiobjective
problem with a fixed number of polynomially computable objectives. Second we must be able to construct
at least one such set in polynomial time. This is not always possible. A necessary and sufficient condition
for polynomial computability for allǫ > 0 is the existence of a polynomial algorithm for the following
Gap problem: Given a vector of valuesb, either compute a solution that dominatesb, or determine that no
solution dominatesb by at least a factor1 + ǫ (in all the objectives). Many multiobjective problems were
shown to have such a routine for the Gap problem (and many others have been shown subsequently).

Construction of a polynomial-size approximate Pareto set is useful, but not good enough in itself: For
example, if we plan a trip, we want to examine just a few possible routes, not a polynomial number in the
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size of the map. More generally, in typical multicriteria situations, the selected representative solutions are
investigated more thoroughly by the decision maker (designer, physician, corporation, etc.) to assess the
different choices and pick the most preferable one, based possibly on additional factors that are perhaps
not formalized or not even quantifiable. We thus want to select as small a set as possible that achieves a
desired approximation. In [VY] the problem of constructinga minimumǫ-Pareto set was raised formally
and investigated in a general framework. It was shown that for all bi-objective problems with a polynomial-
time Gap routine, one can construct anǫ-Pareto set that contains at most 3 times the number of pointsof the
smallest such set; furthermore, the factor 3 is best possible in the sense that for some problems it is NP-hard
to do better. Further results were shown for 3 and more objectives, and for other related questions. Note that
although the factor 3 of [VY] is best possible in general for two objectives, one may be able to do better for
specific problems.

We show in this paper, that for an important class of bi-objective problems (containing many widely
studied natural ones such as shortest paths, spanning tree,knapsack, scheduling problems and others) we
can obtain a2-approximation, and furthermore the factor of2 is tight for them, i.e., it is NP-hard to do
better. Our algorithm is a general algorithm that relies on aroutine for a stronger version of the Gap
problem, namely a routine that solves approximately the following Restricted problem: Given a (hard)
boundb1 for one objective, compute a solution that optimizes approximately the second objective subject to
the bound. Many problems (e.g. shortest paths, etc.) have a polynomial time approximation scheme for the
Restricted problem. For all such problems, a2-approximation to the minimumǫ-Pareto set can be computed
in polynomial time. Furthermore, the number of calls to the Restricted routine (and an associated equivalent
dual routine) is linear in the sizeOPTǫ of the optimalǫ-Pareto set.

The bi-objective shortest path problem is probably the mostwell-studied multiobjective problem. It is
the paradigmatic problem for dynamic programming (thus canexpress a variety of problems), and arises
itself directly in many contexts. One area is network routing with various QoS criteria (see e.g. [CX2, ESZ,
GR+, VV]). For example, an interesting proposal in a recent paper by Van Mieghen and Vandenberghe [VV]
is to have the network operator advertise a portfolio of offered QoS solutions for their network (a trade-off
curve), and then users can select the solutions that best fit their applications. Obviously, the portfolio cannot
include every single possible route, and it would make senseto select carefully an “optimal” set of solutions
that cover well the whole range. Other applications includethe transportation of hazardous materials (to
minimize risk of accident, and population exposure) [EV], and many others; we refer to the references,
e.g. [EG] contains pointers to the extensive literature on shortest paths, spanning trees, knapsack, and the
other problems. Our algorithm applies not only to the above standard combinatorial problems, but more
generally to any bi-objective problem for which we have available a routine for the Restricted problem; the
objective functions and the routine itself could be complexpieces of software without a simple mathematical
expression.

After giving the basic definitions and background in Section2, we present in Section 3 our general lower
and upper bound results for bi-objective problems, as well as applications to specific problems. In Section 4
we present some results ford = 3 and more objectives. Here we assume only a Gap routine; i.e. these results
apply to all problems with a polynomial time constructibleǫ-Pareto set. It was shown in [VY] that ford = 3
it is in general impossible to get a constant factor approximation to the optimalǫ-Pareto set, but one has to
relax ǫ. Combining results from [VY] and [KP] we show that for anyǫ′ > ǫ we can construct anǫ′-Pareto
set of sizecOPTǫ, i.e. within a (large) constant factorc of the sizeOPTǫ of the optimalǫ-Pareto set. For
generald, the problem can be reduced to a Set Cover problem whose VC dimension and codimension are at
mostd, and we can construct anǫ′-Pareto set of sizeO(d log OPTǫ)OPTǫ.

We discuss also theDual problem: For a specified numberk of points, findk points that provide the
best approximation to the Pareto curve, i.e. that form anǫ-Pareto set with the minimum possibleǫ. In [VY]
it was shown that ford = 2 objectives the problem is NP-hard, but we can approximate arbitrarily well (i.e.
there is a PTAS) the minimum approximation ratioρ∗ = 1+ ǫ∗. As we’ll see, ford = 3 this is not possible,
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in fact one cannot get any multiplicative approximation (unless P=NP). We use a relationship of the Dual
problem to the asymmetrick-center problem and techniques from the latter problem to show that the Dual
problem can be approximated (ford = 3) within a constant power, i.e. we can computek points that cover
every point on the Pareto curve within a factorρ′ = (ρ∗)c or better in all objectives, for some constantc. (It
follows from our results thatc ≤ 9.) For smallρ∗, i.e. when there is a set ofk points that provides a good
approximation to the Pareto curve, constant factor and constant power are related, but in general of course
they are not.

2 Definitions and Background

A multiobjective optimization problemΠ has a setIΠ of valid instances, every instanceI ∈ IΠ has a
set of solutionsS(I). There ared objective functions,f1, . . . , fd, each of which maps every instanceI
and solutions ∈ S(I) to a valuefj(I, s). The problem specifies for each objective whether it is to be
maximized or minimized. We assume as usual in approximationthat the objective functions have positive
rational values, and that they are polynomial-time computable. We usem to denote the maximum number
of bits in numerator and denominator of the objective function values.

We say that ad-vectoru dominatesanotherd-vectorv if it is at least as good in all the objectives, i.e.
uj ≥ vj if fj is to be maximized (uj ≤ vj if fj is to be minimized). Similarly, we define domination
between any solutions according to thed-vectors of their objective values. Given an instanceI, thePareto
setP (I) is the set of undominatedd-vectors of values of the solutions inS(I). Note that for any instance,
the Pareto set is unique. (As usual we are also interested in solutions that realize these values, but we will
often blur the distinction and refer to the Pareto set also asa set of solutions that achieve these values. If
there is more than one undominated solution with the same objective values,P (I) contains one of them.)

We say that ad-vectoru c-coversanotherd-vectorv if u is at least as good asv up to a factor ofc in all
the objectives, i.e.uj ≥ vj/c if fj is to be maximized (uj ≤ cvj if fj is to be minimized). Given an instance
I andǫ > 0, anǫ-Pareto setPǫ(I) is a set ofd-vectors of values of solutions that(1 + ǫ)-cover all vectors
in P (I). For a given instance, there may exist manyǫ-Pareto sets, and they may have very different sizes. It
is shown in [PY1] that for every multiobjective optimization problem in the aforementioned framework, for
every instanceI andǫ > 0, there exists anǫ-Pareto set of sizeO((4m/ǫ)d−1), i.e. polynomial for fixedd.

An approximate Pareto set always exists, but it may not be constructible in polynomial time. We say that
a multiobjective problemΠ has a polynomial time approximation scheme (respectively afully polynomial
time approximation scheme) if there is an algorithm, which,given instanceI and a rational numberǫ > 0,
constructs anǫ-Pareto setPǫ(I) in time polynomial in the size|I| of the instanceI (respectively, in time
polynomial in|I|, the representation size|ǫ| of ǫ, and in1/ǫ). Let MPTAS (resp. MFPTAS) denote the class
of multiobjective problems that have a polynomial time (respectively fully polynomial time) approximation
scheme. There is a simple necessary and sufficient condition[PY1], which relates the efficient computability
of an ǫ-Pareto set for a multi-objective problemΠ to the followingGAP Problem: given an instanceI of
Π, a (positive rational)d-vectorb, and a rationalδ > 0, either return a solution whose vector dominatesb
or report that there does not exist any solution whose vectoris better thanb by at least a(1 + δ) factor in
all of the coordinates. As shown in [PY1], a problem is in MPTAS (resp. MFPTAS) if and only if there is
a subroutine GAP that solves the GAP problem forΠ in time polynomial in|I| and|b| (resp. in|I|, |b|, |δ|
and1/δ).

We say that an algorithm that uses a routine as a black box to access the solutions of the multiobjective
problem isgeneric, as it is not geared to a particular problem, but applies to all of the problems for which the
particular routine is available. All that such an algorithmneeds to know about the input instance is bounds
on the minimum and maximum possible values of the objective functions. (For example, if the objective
functions are positive rational numbers whose numerators and denominators have at mostm bits, then an
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obvious lower bound on the objective values is2−m and an obvious upper bound is2m; however, for specific
problems better bounds may be available.) Based on the bounds, the algorithm calls the given routine for
certain values of its parameters, and uses the returned results to compute an approximate Pareto set.

For a given instance, there may exist manyǫ-Pareto sets, and they may have very different sizes. We want
to compute one with the smallest possible size, which we’ll denoteOPTǫ. [VY] gives generic algorithms
that compute smallǫ-Pareto sets and are applicable to all multiobjective problems in M(F)PTAS, i.e. all
problems possessing a (fully) polynomial GAP routine. Theyconsider the following “dual” problems:
Given an instance and anǫ > 0, construct anǫ-Pareto set of as small size as possible. And dually, given
a boundk, compute anǫ-Pareto set with at mostk points that has as small anǫ value as possible. In the
case of two objectives, they give an algorithm that computesan ǫ-Pareto set of size at most3OPTǫ; they
show that no algorithm can be better than3-approximate in this setting. For the dual problem, they show
that the optimal value of the ratioρ = 1 + ǫ can be approximated arbitrarily closely. For three objectives,
they show that no algorithm can bec-approximate for any constantc, unless it is allowed to use a largerǫ
value. They also give an algorithm that constructs anǫ′-Pareto set of cardinality at most4OPTǫ, for any
ǫ′ > (1 + ǫ)2 − 1.

In a general multiobjective problem we may have both minimization and maximization objectives. In
the remainder, we will assume for convenience that all objectives are minimization objectives; this is without
loss of generality, since we can simply take the reciprocalsof maximization objectives.

Notation: For a positive integern ∈ N
∗, we will denote by[n] the set{1, 2, . . . , n}.

3 Two Objectives

We use the following notation in this section. Consider the plane whose coordinates correspond to the two
objectives. Every solution is mapped to a point on this plane. We usex andy as the two coordinates of the
plane. Ifp is a point, we usex(p), y(p) to denote its coordinates; that is,p =

(
x(p), y(p)

)
.

We consider the class of bi-objective problemsΠ for which we can approximately minimize one objec-
tive (say they-coordinate) subject to a “hard” constraint on the other (thex-coordinate). Our basic primitive
is a polynomial time (or fully polynomial time) routine for the following Restricted problem(for the y-
objective): Given an instanceI ∈ IΠ, a (positive rational) boundC and a parameterδ > 0, either return a so-
lution points̃ satisfyingx (s̃) ≤ C andy (s̃) ≤ (1 + δ)·min {y over all solutionss ∈ S(I) havingx(s) ≤ C}
or correctly report that there does not exist any solutions such thatx (s) ≤ C. For simplicity, we will drop
the instance from the notation and use Restrictδ (y, x ≤ C) to denote the solution returned by the corre-
sponding routine. If the routine does not return a solution,we will say that it returns NO. We say that a
routine Restrictδ (y, x ≤ C) runs in polynomial time (resp. fully polynomial time) if itsrunning time is
polynomial in|I| and|C| (resp.|I|, |C|, |δ| and1/δ). The Restricted problem for thex-objective is defined
analogously. We will also use the Restricted routine with strict inequality bounds; it is easy to see that they
are polynomially equivalent.

Note that in general the two objectives could be nonlinear and completely unrelated. Moreover, it is
possible that a bi-objective problem possesses a (fully) polynomial Restricted routine for the one objective,
but not for the other. The considered class of bi-objective problems is quite broad and contains many well-
studied natural ones, most notably the bi-objective shortest path and spanning tree problems (see Section 3.3
for a more detailed list of applications).

The structure of this section is as follows: In Section 3.1, we show that, even if the given bi-objective
problem possesses a fully polynomial Restricted routinefor both objectives, no generic algorithm can guar-
antee an approximation ratio better than2. (This lower bound appliesa fortiori if the Restricted routine
is available for one objective only.) Furthermore, we show that for two such natural problems, namely,
the bi-objective shortest path and spanning tree problems,it is NP-hard to do better than2. In Section 3.2
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we give a matching upper bound: we present an efficient2-approximation algorithm that applies to all of
the problems that possess a polynomial Restricted routine for one of the two objectives. In Section 3.3 we
discuss some applications.

3.1 Lower bound

To prove a lower bound for a generic procedure, we present twoPareto sets which are indistinguishable
from each other using the Restricted routine as a black box, yet whose smallestǫ-Pareto sets are of different
sizes.

Proposition 3.1. Consider the class of bi-objective problems that possess a fully polynomial Restricted
routine for both objectives. Then, for anyǫ > 0, there is no polynomial time generic algorithm that approx-
imates the size of the smallestǫ-Pareto setP ∗ǫ to a factor better than2.

Proof. Fix a rationalǫ > 0 and consider the following set of points:p = (x(p), y(p)), q =
(
x(p)1+2ǫ

1+ǫ ,
y(p)
1+ǫ

)
,

r =
(
x(p)
1+ǫ , y(p)

1+2ǫ
1+ǫ

)
, pq =

(
x(p) + 1, y(p)(1 − 1

x(p))
)

and pr =
(
x(p)(1− 1

y(p)), y(p) + 1
)

, where

x(p), y(p) > 1 + 1
ǫ (Figure 1). LetP = {p, q, r, pq , pr} andP ′ = {q, r, pq, pr} be the feasible (solution)

sets corresponding to two input instances. Note thatp (1+ ǫ)-covers all the points,pq does not(1+ ǫ)-cover
r (due to thex coordinate) andpr does not(1 + ǫ)-coverq (due to they coordinate). It is easy to see that
the smallestǫ - Pareto set forP consists of only one point (namely pointp), while the smallestǫ - Pareto set
for P ′ mustinclude two points.

We can show that a generic algorithmis guaranteedto tell the difference betweenP andP ′ only if 1/δ
is exponential in the size of the input. The argument is very similar to the proof of Theorem 1 in [VY]. Let
x(p) = y(p) = M , whereM is an integer value exponential in the size of the input and1/ǫ. By exploiting
the fact that, in some cases, our primitive isnot uniquely defined, we can argue that a polynomial time
generic algorithm cannot distinguish between instancesP andP ′. More specifically, a generic algorithmis
guaranteedto tell the difference betweenP andP ′ only if the toleranceδ is inverse exponential in the size
of the input.

First, note that both pointsq andr can be efficiently computed by appropriately using the givenrou-
tine; these two points suffice to(1 + ǫ)-cover the feasible set in both cases. Distinguishing between the
two instances means determining whetherp is part of the solution. Assume that we use the operation
Restrictδ(x, y ≤ C), whereC ∈ [y(p), y(pr)). It is easy to see that this is the only “meaningful” operation
using this routine as a black box. Then, even ifp is part of the solution, by definition, Restrictδ can returnpq
as long asx(pq) ≤ (1 + δ)x(p) or equivalentlyδ ≥ 1

M . But since we want a polynomial time algorithm,1
δ

has to be polynomial inlgM ; hence, the latter constraint must hold. By symmetry, the same property holds
for the Restrictδ(y, ·) routine. Therefore, using each of these routines as a black box, a polynomial time
algorithm cannot determine ifp is part of the solution, and it is thus forced to take at least two points, even
when it is presented with the setP . Note that the above configuration can be replicated to show that it is
impossible for a generic algorithm to determine whether thesmallestǫ-Pareto set hask points or2k points
are needed. �

In fact, we can prove something stronger (assuming P6= NP) for the bi-objective shortest path (BSP) and
spanning tree (BST) problems. In theBSPproblem, we are given a (directed or undirected) graph, positive
rational “costs” and “delays” for each edge and two specifiednodess andt. The set of feasible solutions is
the set ofs− t paths. The objectives (to be minimized) are linear, i.e. the“total weight” of a path equals the
sum of the weights of its edges. TheBSTproblem is defined analogously. These problems are well-known
to possess polynomial Restricted routines forbothobjectives [LR, GR]. We show the following:
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Figure 1: A polynomial time generic algorithm cannot determine if p is a solution of the given instance.

Theorem 3.2. a. For the BSP problem, for anyk from k = 1 to a polynomial, it is NP-hard to distinguish
the case that the minimum sizeOPTǫ of the optimalǫ-Pareto set isk from the case that it is2k − 1.
b. The same holds for the BST problem for any fixedk.

Proof. The reductions are from the Partition problem [GJ]; we are given a setA of n positive integers
A = {a1, a2, . . . , an}, and we wish to determine whether it is possible to partitionA into two subsets with
equal sum.

a. For simplicity, we first prove the theorem fork = 1 and then generalize the construction. Given an
instance of the Partition problem, we construct an instanceof theBSPproblem as follows: LetG be a graph
with n + 1 nodesvi, i ∈ [n + 1] and2n edges{ej , e′j}, j ∈ [n]. We attach the pair of (parallel) edges
{ei, e′i} from vi to vi+1, i ∈ [n] and sets ≡ v1 andt ≡ vn+1. We now specify the two cost functionsc(·)
andd(·) on the edges:c(ei) = d(e′i) = S + 2ǫain andd(ei) = c(e′i) = S, whereS =

∑n
i=1 ai.

Clearly, this simple transformation defines a bijection between subsets of[n] ands − t paths inG; the
setJ ⊆ [n] is mapped to thes − t pathPJ =

⋃
i∈J{ei} ∪

⋃
i 6∈J{e′i}. Sincec(PJ ) = nS + 2ǫn(

∑
i∈J ai)

andd(PJ) = nS + 2ǫn(
∑

i 6∈J ai), eachs − t pathP, satisfies the equationc(P) + d(P) = 2(1 + ǫ)nS;
hence, all feasible solutions are undominated.

Now observe that two solution points suffice to(1 + ǫ)-cover the feasible set; just pick the (“extreme”)
pointsr = ((1 + 2ǫ)Sn, Sn), l = (Sn, (1 + 2ǫ)Sn), corresponding to thes − t pathsP[n] =

⋃n
i=1{ei}

andP∅ =
⋃n

i=1{e′i} respectively. Indeed,r (1 + ǫ)-covers all the points having cost (x-coordinate) at least
(1 + ǫ)Sn (since(1 + 2ǫ)/(1 + ǫ) < 1 + ǫ). Equivalently, it(1 + ǫ)-covers all the solution points having
delay (y-coordinate) up to(1 + ǫ)Sn (since all the solutions lie on the line segmentx+ y = 2(1 + ǫ)nS).
Moreover, the pointl (1 + ǫ)-covers all the solution points havingy-coordinate at least(1 + ǫ)Sn.

Since for each feasible solutionP it holdsmin{c(P), d(P)} ≥ nS (and the “extreme” paths have cost
or delay equal tonS), it follows that there exists anǫ-Pareto set containing (exactly) one point if and only if
there exists a path inG with coordinates((1 + ǫ)Sn, (1 + ǫ)Sn). It is immediate to verify that such a path
exists if and only if there is a solution to the original instance of the Partition problem.

Note that the above part of the proof does not rule out the possibility of an efficientadditiveapproxima-
tion algorithm, i.e. an algorithm that outputs anǫ-Pareto set of cardinality at mostOPTǫ + α, whereα is
an absolute constant. We can rule this out as follows: Intuitively, we can think of the Pareto set ofG as a
“cluster”. To prove the theorem fork > 1, the goal is to construct an instance of the problem such thatthe
corresponding Pareto set consists ofk such clusters that are “(1 + ǫ)-far” from each other, i.e. no point in a
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cluster(1 + ǫ)-covers any point in a different cluster.
For theBSPproblem, we can generalize the proof to hold for anyk = poly(n,

∑n
i=1 log(ai)) and for

all ǫ > 0. This can be achieved by exploiting the combinatorial structure of the problem; we essentially
replicate the graphG k times and appropriately scale the weights.

Formally, considerk (disjoint) copies of the graphG, Gj = (V j , Ej), j ∈ [k], with V j =
⋃n+1

i=1 {v
j
i }

andEj =
⋃n

i=1{e
j
i , e
′j
i}. Add a (source) nodes, a (sink) nodet; for eachj add an edge froms to vj1 and

one fromvjn+1 to t. That is, construct the graphH = (VH , EH) (see Figure 2) with

VH = {s, t} ∪
k⋃

j=1

V j andEH =

k⋃

j=1

{(s, vj1) ∪ Ej ∪ (vjn+1, t)}

Assign zero cost and delay to each edge incident tos or t† and set:

(1 + 2ǫ)2(j−1)c(eji ) = d(e′
j
i )/(1 + 2ǫ)2(j−1) = S + 2ǫain

(1 + 2ǫ)2(j−1)c(e′
j
i ) = d(eji )/(1 + 2ǫ)2(j−1) = S

From the above equations, it follows that for eachs− t pathPj “using” graphGj , j ∈ [k], it holds:

(1 + 2ǫ)2(j−1)c(Pj) + d(Pj)/(1 + 2ǫ)2(j−1) = 2(1 + ǫ)nS

This implies that all feasible solutions are undominated. In particular, the Pareto set for this instance

is the union ofk disjoint “clusters” with endpointslj =
(

Sn
(1+2ǫ)2(j−1) , Sn(1 + 2ǫ)2(j−1)+1

)
and rj =

(
Sn

(1+2ǫ)2(j−1)−1 , Sn(1 + 2ǫ)2(j−1)
)

, j ∈ [k]. The solution points in each cluster lie on the line segmentljrj.

(The objective space for this instance is illustrated in Figure 3.)
Now notice that no solution point corresponding to ans − t path using graphGj is (1 + ǫ)-covered by

any point corresponding to ans− t path using graphGl for j 6= l. Indeed, due to the structure of the Pareto
set, it suffices to check that, for eachj ∈ [k − 1], the pointslj andrj+1 do not(1 + ǫ)-cover each other.
This holds by construction:rj+1 is a factor of(1 + 2ǫ) to the left and(1 + 2ǫ) abovelj . Therefore, any two
clusters are “(1 + ǫ)-far” from each other. Thus, anyǫ-Pareto set for this instance must contain at leastk
points.

As in the case ofk = 1, for all j ∈ [k], the solution pointslj and rj (1 + ǫ)-cover the (solution
points in the)jth cluster. Thus,2k solution points suffice to(1 + ǫ)-cover the feasible set. Also, thejth
cluster is(1 + ǫ)-covered by one point if and only if there exists ans − t path inH with coordinates

mj =
(

(1+ǫ)Sn

(1+2ǫ)2(j−1) , (1 + ǫ)Sn(1 + 2ǫ)2(j−1)
)

. Similarly, this holds if and only if the original Partition

instance is a Yes instance. So, if there exists a partition ofthe setA, the smallestǫ-Pareto set contains
exactlyk points. Otherwise, the smallest such set must contain2k points.

To finish the proof, we observe that there exists anǫ-Pareto set with (at most)2k − 1 points if and only
if there exists anǫ-Pareto set with exactlyk points. Indeed, the former statement holds if and only ifsome
cluster is(1 + ǫ)-covered byonepoint, i.e. if and only if there exists ans − t path inH with coordinates
mj for somej ∈ [k], which in turn holds if and only if the original Partition instance is a Yes instance. The
latter holds if and only if the smallestǫ-Pareto set contains exactlyk points.

b. In theBSTproblem, we are given an undirected graphG = (V,E), positive rational “costs”c(e) and
“delays”d(e) for each edgee ∈ E. The set of feasible solutions is the set of spanning trees ofG; the goal is
to minimize cost and delay. Fork = 1, the proof for theBSTproblem is identical to the proof for theBSP
problem.

†For simplicity, we allow zero weights on the edges, since there does not exist anys− t path with zero total cost or delay. This
can be easily removed by appropriate perturbation of the weights.
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Figure 2: Graphs in the reduction of Theorem 3.2.

We give a construction that works for anyfixed k and for sufficiently smallǫ; in fact ǫ = O(1/k)
suffices. Consider the graphG′ obtained fromG by adding one nodev0 connected tov1 with k parallel
edgesgi, i ∈ [k]. Subtract the valueS from all the weights ofG and set:c(gi) =

{
2 − (1 + 2ǫ)2i

}
Sn,

d(gi) = (1 + 2ǫ)2iSn. (These edges play the role ofoffsets.) Clearly, as long as(1 + 2ǫ)2k < 2, all the
weights are in the interval(0, 2Sn). It is also not hard to see that, under this restriction, the Pareto set ofG′

containsk clusters (havingO(2n) undominated points each) that are “(1 + ǫ)-far” from each other - in the
sense defined above.

The points of thei-th cluster,i ∈ [k], lie on the line segmentc(P)+d(P) = 2(1+ǫ)nS with “endpoints”
(c(gi), d(gi) + 2ǫSn) and (c(gi) + 2ǫSn, d(gi)); the latter (solution) points suffice to(1 + ǫ)-cover the
corresponding cluster. It is easy to see that there exists a solution with coordinates((1+ǫ)c(gi), (1+ǫ)d(gi))
- i.e. a solution that(1+ǫ)-covers the cluster - if and only if there exists a subset ofA with sum(1+2ǫ)2iS/2.

To complete the proof, we use the fact that the followingvariant of the Subset Sum problem is NP-hard:
GivenA = {a1, a2, . . . , an} with the property that (i) either there existk subsetsAi ⊆ A, i ∈ [k], such
that

∑
x∈Ai

x = γiS/2 or (ii) no such subset exists, decide which one of the two cases holds (for any fixed
integerk and rationalγ > 1 such thatγk < 2). (This can be shown by a reduction from the Partition
problem.) Therefore, it is NP-hard to decide if the smallestǫ-Pareto set for the instance hask points or2k
points are needed. �

Remark3.3. For k = 1 the theoremark says that it is NP-hard to decide if one point suffices or we need at
least2 points for anǫ-approximation. We proved that the theorem holds also for more generalk to rule out
additive and asymptotic approximations. We can easily modify the proof so that the graphs in the reductions
are simple. For theBSPproblem, this can be achieved by inserting a new (“dummy”) node in the “middle” of
each parallel edge (subdividing the weights arbitrarily).For theBSTproblem, this does not suffice, because
all the additional nodes must be covered (by a spanning tree). Let wi be the node inserted in the middle
of ei = (vi, vi+1). The problem is solved by settingc((vi, wi)) = d((vi, wi)) = 0, c((wi, vi+1)) = c(ei)
andd((wi, vi+1)) = d(ei). By scaling the weights of the Partition instance we can see that the NP-hardness
holds even in the case where all the edge weights are restricted to be positive integers. Similar hardness
results can be shown for several other related problems (seeSection 3.3).
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3.2 Two Objectives Algorithm

We have a bi-objective problem with an associated Restricted routine for they-objective that runs in poly-
nomial (or fully polynomial) time. We are given an instance and anǫ, and we wish to construct anǫ-Pareto
set of as small size as possible. In this subsection, we present a generic algorithm that guarantees ratio2.
By the result of the previous subsection, this factor is optimal. Recall that the algorithm in [VY] works for
all problems in MPTAS and is a factor3 approximation. (The analysis of the latter algorithm is tight for
the class of problems considered here.) In Section 3.2.1, weshow that a straightforward greedy approach
cannot guarantee a ratio better than3 in our setting. We next make a crucial observation that is exploited in
Section 3.2.2 to achieve the optimal factor.

3.2.1 The Greedy Approach Fails

We remark that if the underlying problem has polynomial timeexactRestricted routines for both objectives
(i.e. Restrictδ for δ = 0), then we can efficiently compute theoptimal ǫ-Pareto set by a simple greedy
algorithm. The algorithm is similar to the one given in [KP, VY] for the (special) case where all the solution
points are given explicitly in the input. We denote byxmin, ymin the minimum values of the objectives
in each dimension. The greedy algorithm proceeds by iteratively selecting pointsq1, . . . , qk in decreasing
x (increasingy) as follows: We start by computing a pointq′1 having minimumy coordinate among all
feasible solutions (i.e.y(q′1) = ymin); q1 is then selected to be theleftmostsolution point satisfyingy(q1) ≤
(1 + ǫ)y(q′1). During thejth iteration (j ≥ 2) we initially compute the pointq′j with minimumy-coordinate
among all solution pointss having x(s) < x(qj−1)/(1 + ǫ) and select asqj the leftmost point which
satisfiesy(qj) ≤ (1 + ǫ)y(q′j). The algorithm terminates when the last point selected(1 + ǫ)-covers the
leftmost solution point(s) (i.e. the point(s)q havingx(q) = xmin). It follows by an easy induction that
the set{q1, q2, . . . , qk} is an ǫ-Pareto set of minimum cardinality. (This exact algorithm is applicable to
bi-objective linear programming and all problems reducible to it, for example bi-objective flows, the bi-
objectiveglobal min-cut problem [AZ] and several scheduling problems [CJK]. For these problems we can
compute anǫ-Pareto set of minimum cardinality.)

If we have approximate Restricted routines, one may try to modify the greedy algorithm in a straightfor-
ward way to take into account the fact that the routines are not exact. However, as shown below, this modified
greedy algorithm is suboptimal, in particular it does not improve on the factor3 that can be obtained from
the general GAP routine. More care is required to achieve a factor 2, matching the lower bound.

Suppose that we have a (fully) polynomial Restrictδ routine (even for both objectives). Consider the
following scheme, whereδ is the “uncertainty parameter” -δ < ǫ, but 1/δ must be polynomially bounded
in the size of the input and1/ǫ, so that the overall algorithm runs in polynomial time:

Algorithm Greedy
Computeymin andxmin.
ȳ1 = ymin(1 + ǫ);
q1 = Restrictδ(x, y ≤ ȳ1);
Q = {q1}; i = 1;
While (xmin < x(qi)/(1 + ǫ)) do
{ q′i+1 = Restrictδ(y, x < x(qi)/(1 + ǫ));

ȳi+1 = (1 + ǫ) ·max{ȳi, y(q′i+1)/(1 + δ)};
qi+1 = Restrictδ(x, y ≤ ȳi+1);
Q = Q ∪ {qi+1};
i = i+ 1; }

Return Q.
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Figure 4: Illustration of the worst-case performance of thegreedy approach.

Since the Restricted routines are now approximate, in orderto guarantee that the output set of points is
anǫ-Pareto set, we had to appropriately modify the algorithm based on the parameterδ. More specifically,
note that the pointq′i+1 can havey-coordinate up to(1+ δ) times the minimumy over all pointss satisfying
x(s) < x(qi)/(1 + ǫ). In other words, there may exist a solution points̃ satisfyingx(s̃) < x(qi)/(1 + ǫ)
andy(s̃) = y(q′i+1)/(1 + δ). (The algorithm has “no way of knowing this” unless it uses a value ofδ with
1/δ exponential in the size of the input.) This “uncertainty” forces the algorithm to select as pointqi+1

the leftmost point that satisfiesy(qi+1) ≤ (1 + ǫ)y(q′i+1)/(1 + δ). Due to this “weakness”, we have the
following:

Claim 3.4. For any δ > 0, with 1/δ polynomial in the size of the input and1/ǫ, there exist instances on
which the greedy algorithm above outputs a setQ such that|Q| = 3k − 1, wherek = OPTǫ.

Proof. Denote byP ∗ǫ = {p∗1, . . . , p∗k} the optimal set, where its pointsp∗i , i ∈ [k] are ordered in decreasing
order of theirx-coordinate, andQ = {q1, . . . , qr} the set selected by the greedy algorithm. By exploiting
theuncertaintyintroduced by the parameterδ, we describe an adversarial scenario such thatr = 3k − 1.

The idea is the following: Consider the subroutine callq′i+1 = Restrictδ(y, x < x(qi)/(1 + ǫ)). By
definition, we havẽy ≤ y(q′i+1) ≤ (1 + δ)ỹ, whereỹ = min{y(s) | x(s) < x(qi)/(1 + ǫ)}. Suppose
that the routine returns a pointq′i+1 satisfying ỹ = y(q′i+1). Call this condition(†). If q′i+1 satisfies this
condition, the optimal pointp∗j (1 + ǫ)-coveringq′i+1 can havey-coordinate up to(1 + ǫ)y(q′i+1), while the
algorithm is forced to select a pointqi+1 with y-value at most(1 + ǫ)y(q′i+1)/(1 + δ).

We refer the reader to Figure 4 for an illustration. In the instance presented there, the rightmost optimal
pointp∗1 (1+ǫ)-covers all the solution points that are(1+ǫ)-covered by the set{q1, q2}, while, forj ≥ 2, the
optimal pointp∗j (1+ ǫ)-covers all the solution points that are(1+ ǫ)-covered by the set{q3j , q3j+1, q3j+2}.
This proves the desired claim. In the following, we explain the situation in detail.

Consider the first pointq1 ∈ Q selected by the algorithm. By the definition of the Restricted routine
and the fact thatq′1 must be(1 + ǫ)-covered byp∗1, it follows thatx(p∗1) ≥ x(q1)/(1 + δ). Suppose that the
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following scenario occurs:x(p∗1) = x(q1)/(1 + δ), x(q1)/[(1 + ǫ)(1 + δ)] ≤ x(q2) < x(q1)/(1 + ǫ) and
there are no solutions withx-coordinate in the interval

[
x(q2)/(1 + ǫ), x(q2)

)
. Then, the pointp∗1 (1 + ǫ)-

covers all solutions that are(1 + ǫ)-covered by the set{q1, q2}. Notice that the algorithm only “loses” one
additional point here; we have thatx(q2) < x(p∗1). This is due to the fact that we can exactly compute the
minimumy-coordinate. However, since this does not hold for the next iterations, the algorithm can “lose”
two additional points for each optimal point.

Now suppose that the points{p∗2, q3, q′3, q4, q′4} satisfy the following scenario:q′3 satisfies condition(†),
y(q3) = [(1 + ǫ)/(1 + δ)]y(q′3), y(q

′
4) = (1 + δ)y(q3), x(q4) = (1 + δ)x(p∗2) andy(p∗2) = y(q′4). It is easy

to see that these conditions are simultaneously realizable. (Observe thatp∗2 (1 + ǫ)-coversq′3.) Finally, if
x(q4)/[(1+ ǫ)(1+δ)] ≤ x(q5) < x(q4)/(1+ ǫ) and there are no solutions withx-coordinates in the interval[
x(q5)/(1 + ǫ), x(q5)

)
, the pointp∗2 (1 + ǫ)-covers all the solutions(1 + ǫ)-covered by the set{q3, q4, q5}.

By replicating the above described configuration, it follows inductively thatp∗i+1 (1 + ǫ)-covers all the
solutions(1 + ǫ)-covered by{q3i, q3i+1, q3i+2}. This completes the proof. �

In fact, one can show that the the greedy algorithm guarantees a factor3, i.e. the above described
adversarial scenario represents a worst-case instance forthe algorithm. Let us now try to understand why
the greedy approach fails to guarantee a factor2 in the aforementioned scenario. The problem is that, due to
the uncertainty introduced byδ, the pointp∗2 can lie arbitrarily to the left ofq3. Thus, the only invariant that
the greedy algorithm can guarantee isx(q4) ≤ (1 + δ)x(p∗2).

We can overcome this obstacle by exploiting an additional structural property of the considered class of
bi-objective problems. In particular, our generic algorithm will also use a polynomial routine for the follow-
ing Dual Restricted problem(for thex-objective): Given an instance, a (rational) boundD andδ > 0, either
return a solutioñs satisfyingy (s̃) ≤ (1 + δ)D andx (s̃) ≤ min {x(s) over all solutionss havingy(s) ≤ D}
or correctly report that there does not exist any solutions such thaty (s) ≤ D. Similarly, we drop the
instance from the notation and use DualRestrictδ (x, y ≤ D) to denote the solution returned by the corre-
sponding routine. If the routine does not return a solution,we will say that it returns NO. We say that the
corresponding routine runs in polynomial time (resp. fullypolynomial time) if its running time is polynomial
in |I| and|D| (resp.|I|, |D|, |δ| and1/δ).

The following lemma establishes the fact that any bi-objective problem that possesses a (fully) polyno-
mial Restricted routine for the one objective, also possesses a (fully) polynomialDual Restrictedroutine for
the other.

Lemma 3.5. For any bi-objective optimization problem, the problems Restrictδ (y, ·) and DualRestrictδ (x, ·)
are polynomially equivalent.

Proof. The proof of (both directions of) this equivalence uses binary search on the range of values of one
objective with an application of the polynomial routine (for the other objective) at each step of the search.
Let m be an upper bound on the number of bits in the objectives; recall that m is polynomially bounded in
the size of the instance. Observe that (the absolute value of) the minimum possible difference between the
objective values of any two solutions is at least2−2m.

First, we argue that a polynomial time algorithm forRestrictδ(y, x ≤ C) can be used as a black box to
obtain a polynomial time algorithm forDualRestrictδ(x, y ≤ D).

Given an upper boundD and a (rational) error toleranceδ > 0, the following algorithm computes the
functionDualRestrictδ(x, y ≤ D):

1. If Restrictδ(y, x ≤ 2m) returns a solutions0 havingy(s0) > (1 + δ)D or returns “NO”, then output
“NO”.

2. Otherwise, do a binary search on the parameterC in the range[2−m, 2m] callingRestrictδ(y, x ≤ C)
in each step, until you find a valuẽC such that:
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(a) Restrictδ(y, x ≤ C̃) returns a solutioñs satisfyingx(s̃) ≤ C̃ andy(s̃) ≤ (1 + δ)D.

(b) Restrictδ(y, x ≤ C̃ − 2−2m) either returns a solutions′ havingx(s′) ≤ C̃ − 2−2m andy(s′) >
(1 + δ)D or returns “NO”.

Output the solutioñs.

The number of calls to the routineRestrictδ(y, x ≤ C) is Θ(m), so the overall algorithm runs in
polynomial time. It remains to argue about the correctness.In case 1, either there are no feasible solutions
or all solutions havey coordinate strictly greater thanD. In case 2, all solutionss havingx(s) ≤ C̃ − 2−2m

also satisfyy(s) > D. Since there are no solutions withx coordinate strictly betweenx(s̃) andC̃ − 2−2m,
C̃ ≤ min{x over all solution pointss havingy(s) ≤ D}.

Conversely, given an upper boundC and a (rational) error toleranceδ > 0, the following algorithm
computes the functionRestrictδ(y, x ≤ C) using as a black box an algorithm for DualRestrictδ (x, y ≤ D):

1. If DualRestrictδ(x, y ≤ 2m) returns a solutions0 havingx(s0) > C or returns “NO”, then output
“NO”.

2. Otherwise, do a binary search on the parameterD in the range[2−m, 2m] callingDualRestrictδ(x, y ≤
D) in each step, until you find a valuẽD such that:

(a) DualRestrictδ(x, y ≤ D̃) returns a solutioñs satisfyingx(s̃) ≤ C andy(s̃) ≤ (1 + δ)D̃.

(b) DualRestrictδ(x, y ≤ D̃ − 2−2m) either returns a solutions′ havingx(s′) > C (andy(s′) ≤
(1 + δ)(D̃ − 2−2m) or returns “NO”.

Output the solutioñs.

The justification is similar. The number of calls to the routineDualRestrictδ(x, y ≤ D) is Θ(m), so
the overall running time is polynomial. For the correctness, in case 1, either there are no feasible solutions
or all solutions havex coordinate strictly greater thanC. In case 2, all solutionss havingy(s) ≤ D̃− 2−2m

also satisfyx(s) > C. Since there are no solutions withy coordinate strictly betweeny(s̃) andD̃ − 2−2m,
D̃ ≤ min{x over all solution pointss havingx(s) ≤ D}. �

3.2.2 Algorithm Description

We first give a high-level overview of the2-approximation algorithm. The algorithm iteratively selects a
set of solution points{q1, . . . , qr} (in decreasingx) by judiciously combining the two routines. The idea
is, in addition to the Restricted routine (for they-coordinate), to use the Dual Restricted routine (for the
x-coordinate) in a way that circumvents the problems previously identified for the greedy algorithm. More
specifically, after computing the pointq′i in essentially the same way as the greedy algorithm, we proceed
as follows. We select asqi a point that: (i) hasy-coordinate at most(1 + ǫ)y(q′i)/(1 + δ) and (ii) has
x-coordinateat mostthe minimumx over all solutionss with y(s) ≤ (1 + ǫ)y(q′i)/(1 + δ)2 for a suitable
δ. This can be done by a call to the Dual Restricted routine for thex-objective. Intuitively this selection
means that we give some “slack” in they-coordinate to “gain” some slack in thex-coordinate. Also notice
that, by selecting the pointqi in this manner, there may exist solution points withy-values in the interval
((1 + ǫ)y(q′i)/(1 + δ)2, (1 + ǫ)y(q′i)/(1 + δ)] whosex-coordinate isarbitrarily smaller thanx(qi). In fact,
the optimal point(1 + ǫ)-coveringqi can be such a point. However, it turns out that this is sufficient for
our purposes and, ifδ is chosen appropriately, this scheme can guarantee that thepoint q2i lies to the left
(or has the samex-value) of thei-th rightmost point of the optimal solution. We now proceed with the
formal description of the algorithm. In what follows, the error tolerance is set toδ

.
= 3

√
1 + ǫ − 1 (≈ ǫ/3
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for small ǫ). (For the case that the Restricted routine is available forboth objectives, we have a variant of
this algorithm that achieves a ratio of2 and is slightly more efficient in the sense that it uses error tolerance
δ′

.
=

√
1 + ǫ−1.) If 3

√
1 + ǫ is not rational, we letδ be a rational that approximates3

√
1 + ǫ−1 from below,

i.e. (1+ δ)3 ≤ (1+ ǫ), and which has representation size|δ| = O (|ǫ|) (i.e. number of bits in the numerator
and denominator). The set of points computed by the algorithm is shown in Figure 5.

Algorithm 2-Approximation
If Restrictδ0←1(y, x ≤ 2m) = NO then halt.
q′1 = Restrictδ(y, x ≤ 2m);
qleft = DualRestrictδ0←1(x, y ≤ 2m); xmin = x(qleft);
ȳ1 = y(q′1)(1 + δ);
q1 = DualRestrictδ(x, y ≤ ȳ1);
x̄1 = x(q1)/(1 + ǫ);
Q = {q1}; i = 1;
While (x̄i > xmin) do
{ q′i+1 = Restrictδ(y, x < x̄i);

ȳi+1 = [(1 + ǫ)/(1 + δ)] ·max{ȳi, y(q′i+1)/(1 + δ)};
qi+1 = DualRestrictδ(x, y ≤ ȳi+1);
x̄i+1 = x(qi+1)/(1 + ǫ);
Q = Q ∪ {qi+1};
i = i+ 1; }

Return Q.

3.2.3 Analysis

Recall that2m is an upper bound on the values of the objectives. Thus, ifRestrictδ0←1 (y, x ≤ 2m) = NO,
there are no feasible solutions, in which case we can just terminate the algorithm. So, we can assume that the
solution set is nonempty. In this case, the subroutine callsof lines 2 and 3 indeed return a solution; moreover,
(i) the solution pointqleft has minimumx-value among all feasible solutions and (ii ) q′1 hasy-valueat most
(1 + δ)ymin. Now observe thatymin ≤ ȳi ≤ ȳi+1 andx̄i > xmin for all the values ofi for which the body
of the while loop is executed. It is thus easy to see that each subroutine call returns a point; so, all the points
are well-defined.

LetQ = {q1, q2, . . . , qr} be the set of solution points produced by the algorithm. We will prove that the
setQ is anǫ-Pareto set whose size is at most twice the optimum. We note the following simple properties.

Fact 3.6. We have the following:
1. For eachi ∈ [r − 1] it holds (i) x(q′i+1) < x(qi)/(1 + ǫ) and (ii) for each solution pointt with
x(t) < x(qi)/(1 + ǫ), we havey(t) ≥ y(q′i+1)/(1 + δ).
2. For eachi ∈ [r] it holds (i) y(qi) ≤ (1 + δ)ȳi and (ii) for each solution pointt with y(t) ≤ ȳi we have
x(t) ≥ x(qi).

Proof. The properties are just restatements of the definition of thetwo subroutines. �

We can now prove the following lemmata (all properties used below refer to the above fact).

Lemma 3.7. Thex coordinates of the pointsq1, q2, . . . , qr ofQ form a strictly decreasing sequence.

Proof. Consider two successive elementsqi, qi+1 of Q. For theirx coordinates we will argue thatx(qi+1) <
x(qi)/(1 + ǫ). First observe thaty(q′i+1) ≤ ȳi+1. So, property 2-(ii ) implies thatx(qi+1) ≤ x(q′i+1). Now
from property 1-(i) we getx(q′i+1) < x(qi)/(1 + ǫ) and the argument is complete. �
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The following lemma shows thatQ is indeed anǫ-Pareto set.

Lemma 3.8. 1. The pointq1 (1 + ǫ)-covers all of the solution points that havex-coordinate at least
x(q1)/(1 + ǫ).
2. For eachi ∈ [r] \ {1} the pointqi (1+ ǫ)-covers all of the solution points that have theirx-coordinate in
the interval

[
x(qi)/(1 + ǫ), x(qi−1)/(1 + ǫ)

)
.

3. There are no solution points withx-coordinate smaller thanx(qr)/(1 + ǫ).

Proof. 1. Let t be a solution point withx(t) ≥ x(q1)/(1 + ǫ). We need to show thatt is (1 + ǫ)-covered
by q1. It clearly suffices to argue thaty(t) ≥ y(q1)/(1 + ǫ). Indeed, by property 2-(ii) we havey(q1) ≤
(1+δ)ȳ1 = (1+δ)2y(q′1) and the definition ofq′1 implies thaty(t) ≥ y(q′1)/(1+δ), for any solution pointt.
By combining these facts we get that for any solution pointt it holdsy(t) ≥ y(q1)/(1+δ)3 ≥ y(q1)/(1+ǫ).
2. Let t be a solution point satisfyingx(qi)/(1 + ǫ) ≤ x(t) < x(qi−1)/(1 + ǫ); we will show thatt is
(1 + ǫ)-covered byqi or equivalently thaty(t) ≥ y(qi)/(1 + ǫ). The proof is by contradiction. Suppose
that there exists such a pointt with y(t) < y(qi)/(1 + ǫ). By property 2-(i) and the definition of̄yi
this impliesy(t) < max{ȳi−1, y(q′i)/(1 + δ)}. Now sincex(t) < x(qi−1)/(1 + ǫ), property 1-(ii ) gives
y(t) ≥ y(q′i)/(1 + δ). Furthermore, sincex(t) < x(qi−1), by property 2-(ii ) it follows that y(t) > ȳi−1.
This provides the desired contradiction.
3. The termination condition of the algorithm isx(qr)/(1 + ǫ) ≤ xmin. �

Remark3.9. We show in Lemma 3.10 below that the setQ is of cardinality|Q| ≤ 2OPTǫ. So, the algorithm
could output this set of points. However, we observe that thesetQ may contain “redundant” points: The
y-coordinates of the pointsq1, . . . , qr do not necessarily form an increasing sequence. In fact, ify(qi+1) ≤
(1 + δ)ȳi, it may happen thaty(qi+1) ≤ y(qi) (in which case the pointyi is redundant). (Note however that
if y(qi+1) > (1 + δ)ȳi, then by property 2-(i) we gety(qi+1) > y(qi).) This observation can be further
exploited for a post-processing step. For example, ify(q2i) ≤ (1 + δ)ȳ2i−1, we can safely discard the point
q2i−1 as implied by (the proof of) Lemma 3.8.

We now bound the size of the set of pointsQ in terms of the size of the optimalǫ-Pareto set.

Lemma 3.10. Let P ∗ǫ = {p∗1, p∗2, . . . , p∗k} be the optimalǫ-Pareto set, where its pointsp∗i , i ∈ [k], are
ordered in (strictly) increasing order of theiry- and (strictly) decreasing order of theirx-coordinate. Then,
|Q| = r ≤ 2k.

Proof. We prove the following:

Claim 3.11. If the algorithm selects a solution pointq2i−1 (i.e. if 2i− 1 ≤ r), then there must exist a point
p∗i in P ∗ǫ (i.e. it holdsi ≤ k) and if the algorithm selects a pointq2i, thenx(p∗i ) ≥ x(q2i).

The desired result follows directly from this. The claim is proved by induction oni.

Basis (i = 1). The first statement of the claim trivially holds. To show the validity of the second
statement observe that for the rightmost point ofP ∗ǫ , we must havey (p∗1) ≤ y(q′1)(1+ ǫ) = ȳ1(1+ ǫ)/(1+
δ) ≤ ȳ2. The first inequality holds since the solution pointq′1 must be (1+ǫ)-covered byP ∗ǫ and in particular
by the point ofP ∗ǫ having the minimumy-coordinate. The two other inequalities follow from the definitions
of ȳ1 andȳ2. Now an application of property 2-(ii ) givesx(p∗1) ≥ x(q2) and the base case is proved.

Induction step. Suppose that the claim holds for indexi−1 (more specifically thatx(p∗i−1) ≥ x(q2i−2));
we will prove it for i. We will prove each statement in turn.

Assume first that the algorithm selects a pointq2i−1 (i.e. that2i − 1 ≤ r). We will show thatP ∗ǫ
contains a pointp∗i (i.e. thati ≤ k). By the termination condition of the algorithm, our assumption implies
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thatx(q2i−2) > (1 + ǫ)xmin. Therefore, by the induction hypothesis it follows thatx(p∗i−1) > (1 + ǫ)xmin;
that is, pointp∗i−1 doesnot (1 + ǫ)-cover the leftmost solution point, which means there must exist a point
p∗i in the optimal set.

Now assume that the algorithm selects a pointq2i. We will show thatx(p∗i ) ≥ x(q2i). First note that
by property 1-(i) and the induction hypothesisx(q′2i−1) < x(p∗i−1)/(1 + ǫ). So, the pointp∗i−1 doesnot
(1+ ǫ)-cover the pointq′2i−1 in thex-coordinate. Clearly, the latter point must be(1+ ǫ)-covered by a point
in P ∗ǫ . Since thep∗j ’s are sorted in decreasing order of theirx-coordinates, we conclude thatp∗i is the only
eligible point for that purpose, i.e.q′2i−1 must be must(1 + ǫ)-covered byp∗i . To complete the argument,
we need the following fact:

Fact 3.12. There does not exist any solution pointt with x(t) < x(q2i) such thatt (1 + ǫ)-covers point
q′2i−1.

Proof. We want to prove that for all solutionst havingx(t) < x(q2i) it holdsy(t) > (1 + ǫ)y(q′2i−1). For
such a solution pointt we havey(t) > ȳ2i ≥ ȳ2i−1(1+ǫ)/(1+δ) ≥ (1+ǫ)y(q′2i−1). The latter inequalities,
in the order they appear, follow by applying property 2-(ii ) and the definition of̄yj (for j = 2i− 1, 2i). �

The above fact implies directly thatx(p∗i ) ≥ x(q2i) and the proof is complete. �

Thus far, we have proved that the setQ is anǫ-Pareto set of size|Q| ≤ 2OPTǫ. We now analyze the
running time of the algorithm. Letk be the number of points in the smallestǫ-Pareto set,k = OPTǫ. The
algorithm involvesr ≤ 2k iterations of the while loop; each iteration involves two calls to the subroutines.
Therefore, the total running time is bounded by4k subroutine calls. In summary, we proved the following
theorem.

Theorem 3.13.The above described algorithm computes a2-approximation to the smallestǫ-Pareto set in
timeO(OPTǫ) subroutine calls, where1/δ = O(1/ǫ).

3.3 Applications

Our result can be applied to all of the problems which have a polynomial (or fully polynomial) time Re-
stricted routine for one of the two objectives. It should be stressed that our algorithm is quite general;
it does not assume for example linearity of the objectives. Applications include the shortest path prob-
lem [Han, Wa, ESZ, LR] and generalizations [EV, GR+, CX2, VV], cost-time trade-offs in query evalua-
tion [PY2], spanning trees (and more generally matroid problems, see below) [GR, HL] and related prob-
lems [CX]. The aforementioned problems possess a polynomial Restricted routine forboth objectives. In
essence, for most of the aforementioned problems (with [PY2] being a notable exception), the two objec-
tives are “the same” and we can efficiently optimize each of them separately. For several other problems
[ABK1, ABK2, CJK, DJSS], the Restricted routine is available for one objectiveonly (because it is NP-hard
to separately optimize this objective). An example is the following classical scheduling problem: We are
given a set ofn jobs and a fixed numberm of machines. Executing jobj on machinei requires timepij and
incurs costcij . We are interested in the trade-off between makespan and cost. Minimizing the makespan is
NP-hard, even form = 2; hence, the Dual Restricted problem for this objective (equivalently, the Restricted
problem for the cost objective) does not have a PTAS. Ifm is fixed, a fully polynomial timeDual Restricted
routine for the cost objective is given in [ABK1]. (By Lemma 3.5 this implies an FPTAS for the Restricted
problem for the makespan objective.)

For the bi-objective shortest path problem, a polynomial (resp. fully polynomial) Restricted routine
corresponds to a polynomial (resp. fully polynomial) time approximation scheme for theRestricted Shortest
Pathproblem: given a bound on the cost of the path, minimize the delay of the path subject to the bound
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on the cost. This problem has been studied in a number of papers [Has, Wa, LR, ESZ]. The problem is
NP-hard and has a fully polynomial time approximation scheme. The best current algorithms approximate
the optimal restricted path within factor1 + ǫ in time O(en/ǫ) for acyclic (directed) graphs [ESZ], and
time O(en(log log n + 1/ǫ) for general (directed) graphs [LR], wheren is the number of nodes ande
is the number of edges. Moreover, the Dual Restricted problem also admits an FPTAS with the same
time complexity. Thus, our algorithm runs inO(en(log log n + 1/ǫ)OPTǫ) time for general graphs and
O(enOPTǫ/ǫ) for acyclic graphs. The time complexity is comparable or better than previous algorithms
[Han, Wa, TZ], which furthermore do not provide any guarantees on the size.

For the bi-objective spanning tree problem a polynomial Restricted routine corresponds to a polynomial
time approximation scheme for theConstrained Spanning Tree(CST) problem [GR]: given a bound on the
cost of the tree, minimize the delay of the tree subject to thebound on the cost. This problem is also NP-
hard and is known to have a polynomial time approximation scheme [GR, HL]. (In fact, the aforementioned
papers provide a PTAS for the more general problem of finding aminimum cost base of a matroid subject
to a bound on the total length, as long as there is a polynomialtime independence oracle for the matroid.)
The best current algorithm for the problem [HL] has running time O((1/ǫ)1/ǫn3). As a corollary, our
generic algorithm can compute a2-approximation to the smallestǫ-Pareto set in timeO((1/ǫ)1/ǫn3OPTǫ).
Whether such a2-approximation can be computed infully polynomial time is conditional on the existence
of an FPTAS for theCSTproblem (which is an interesting open question). In contrast, by the results of
[PY1, VY], a 3-approximation can be computed in fully polynomial time.

4 d Objectives

The results in this section use the GAP routine and thus applyto all problems in MPTAS.

4.1 Approximation of the optimal ǫ-Pareto set.

Recall that ford ≥ 3 objectives we are forced to compute anǫ′-Pareto set, whereǫ′ > ǫ, if we are to have a
guarantee on its size [VY]. For anyǫ′ > ǫ, a logarithmic approximation for the problem is given in [VY], by
a straightforward reduction to the Set Cover problem. We cansharpen this result, by exploiting additional
properties of the corresponding set system.

Theorem 4.1. 1. For anyǫ′ > ǫ there exists a polynomial time generic algorithm that computes anǫ′-
Pareto setQ such that|Q| ≤ O

(
d log OPTǫ

)
OPTǫ. The algorithm usesO((m/δ)d) GAPδ calls, where

1/δ = O(1/(ǫ′ − ǫ)) .
2. For d = 3, the algorithm outputs anǫ′-Pareto setQ satisfying|Q| ≤ cOPTǫ, wherec is a constant.

Consider the following problemQ(P, ǫ): Given a set ofn pointsP ⊆ R
d
+ as input andǫ > 0, compute

the smallestǫ-Pareto set ofP . It should be stressed that, by definition, the set of pointsP is givenexplicitly
in the input. (Note the major difference with our setting: for a typical multiobjective problem there are
exponentially many solution points and they are not given explicitly.) This problem can be solved in linear
time ford = 2 by a simple greedy algorithm. Ford = 3 it is NP-hard and can be approximated within some
(large) constant factorc [KP]. If d is arbitrary (i.e. part of the input, e.g.d = n), the problem is hard to
approximate better than within aΩ(log n) factor (unlessP = NP) [VY].

The following simple fact, implicit in [VY], relates the approximability of Q with the problem of com-
puting a smallǫ′-Pareto set for a multiobjective problemΠ, given the GAP primitive. Letǫ > 0 be a
given rational number. For anyǫ′ > ǫ, we can find aδ > 0 such that1/δ = O(1/(ǫ′ − ǫ)) satisfying
1 + ǫ′ ≥ (1 + ǫ)(1 + δ)2.
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Lemma 4.2. Suppose that there exists anr-factor approximation algorithm forQ. Then, for anyǫ′ > ǫ, we
can compute anǫ′-Pareto setQ, such that|Q| ≤ rOPTǫ usingO((m/δ)d) GAPδ calls.

Proof. The algorithm proceeds in two phases; in the first phase, we compute aδ-Pareto set, by using the
original algorithm of [PY1] and in the second phase we post-process the points produced by the latter
algorithm by using ther-approximation algorithm forQ as a black box.

For the given instanceI ∈ IΠ, let X(I) be the set ofd-vectors of values of solutions in the objective
space and fix an optimalǫ-Pareto setP ∗ǫ = P ∗ǫ (I). LetR be theδ-Pareto set produced in the first stage. We
apply ther-approximation algorithm forQ on inputR to produce a setR′ ⊆ R that(1 + ǫ)(1 + δ)-covers
R. (Since|R| ≤ (m/δ)d−1, it follows that the overall algorithm runs in polynomial time.) R′ is clearly
an ǫ′-Pareto set for the feasible setX(I). We will argue that|R′| ≤ rOPTǫ. Let R∗ denote the smallest
(1 + ǫ)(1 + δ)-cover forR usingonly points from R; we have|R′| ≤ r|R∗|. The following simple claim
completes the argument:

Claim 4.3. |R∗| ≤ OPTǫ.

Proof. It suffices to show that there exists an(1 + ǫ)(1 + δ)-coverC for R of cardinality at mostOPTǫ.
SinceR is aδ-Pareto set, for any solution points ∈ X(I), there exists a solution pointr ∈ R that(1 + δ)-
coverss. C is constructed as follows: For eachs ∈ P ∗ǫ pick an r ∈ R that (1 + δ)-covers it. Then,
|C| ≤ |P ∗ǫ | = OPTǫ. Every pointr ∈ R is (1 + ǫ)-covered by a points ∈ P ∗ǫ , which in turn is(1 + δ)-
covered by a pointc ∈ C. Therefore,C (1 + ǫ)(1 + δ)-covers all points ofR. �

�

Part 2 of Theorem 4.1 follows immediately from the fact thatQ is constant factor approximable for
d = 3 [KP] and Lemma 4.2. We consider the case of generald in the remainder. To proceed, we need the
following definition.

Definition 4.4. A set system is a pair(U,R), whereU is a set andR is a collection of subsets ofU . For a
set system(U,R), we say thatX ⊆ U is shatteredby R if for any Y ⊆ X, there exists a setR ∈ R with
X ∩R = Y . The VC-dimension [VC] of the set system is the maximum size of any set shattered byR. Let
T ⊆ U be a finite set andr ∈ (1,∞) be a parameter. A setN ⊆ T is called an1/r-net for(T,R) [HW], if
N ∩ S 6= ∅ for all S ∈ R having|S| > |T |/r.

The problemQ(P, ǫ) can be formulated as a set cover problem as follows: For each point q ∈ P and
ǫ > 0, defineSq,ǫ = {x ∈ R

d | q ≤ (1 + ǫ) · x}. Sq,ǫ is the subset ofRd that is(1 + ǫ)-covered byq; it is a
closed convex cone inRd (a translation of the nonnegative orthant by the vectorq/(1 + ǫ)). For each point
r ∈ P , r is (1+ǫ)-covered byq if and only if r ∈ Sq,ǫ. Now consider the set systemF(P, ǫ) = (P,S(P, ǫ)),
whereS(P, ǫ) = {Pq,ǫ ≡ P ∩ Sq,ǫ | q ∈ P}. Clearly, there is a bijection between set covers ofF(P, ǫ) and
ǫ-Pareto sets ofP . We now establish the following:

Lemma 4.5. a. For any finite set of pointsP ⊆ R
d andǫ > 0, it holds VC-dim(F(P, ǫ)) ≤ d.

b. There exists a set of pointsP such that VC-dim(F(P, ǫ)) = d.

Proof. a. LetP be a set of points inRd andǫ > 0. We must argue thatno subsetP ′ ⊆ P of cardinality
d + 1 can be shattered byS(P, ǫ). Note that any such setP ′ ⊆ P (of cardinalityd + 1) contains a point
r none of whose coordinates is minimal, that is, a pointr such that for alli ∈ [d] there exists some point
qi ∈ P ′ (different fromr) with the property(qi)i ≤ ri. We claim that we cannot “separate”r from the
remaining points ofP ′ by any convex cone (as defined above). Indeed, a point that(1+ ǫ)-covers theqi’s is
guaranteed to(1 + ǫ)-coverr (or equivalently, the “dichotomy”{qi, i ∈ [d]} cannot be realized).

b. Consider a setP = A ∪ C, where|A| = d and |C| = 2d. Let A = {a1, . . . , ad}. We select the
ai’ s in A as follows: For eachi ∈ [d], the ith coordinate ofai is equal to 1 and all the rest are equal to
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1 + 2ǫ. The setA has two properties: (i) no two of its points(1 + ǫ)-cover each other and (ii) for any
two pointsp, q ∈ A, we haveargminipi 6= argminiqi. The setC is selected such that each subset ofA is
(1 + ǫ)-covered by some point inC. In particular, letX =

⋃
i∈I(X){ai} be a subset ofA. We add the point

cX in C having each coordinate indexed byI(X) equal to1+ ǫ and all the rest equal to1+ 2ǫ. Clearly, the
point cX (1 + ǫ)-coversexactlythe elements ofX. �

For q ∈ P andǫ > 0, defineSD
q,ǫ = {x ∈ R

d | x ≤ (1 + ǫ) · q}; the coneSD
q,ǫ is the subset ofRd

that(1 + ǫ)-coversq. A point r (1 + ǫ)-coversq if and only if r ∈ SD
q,ǫ. The “dual” set system ofF(P, ǫ)

is defined asFD(P, ǫ) = (P,SD(P, ǫ)), whereSD(P, ǫ) = {PD
q,ǫ ≡ P ∩ SD

q,ǫ | q ∈ P}. In words, the
elements are the points ofP and for each pointq ∈ P we have a set consisting of the pointsr ∈ P that
(1 + ǫ)-coverq. An ǫ-Pareto set ofP is equivalent to a hitting set ofFD.

It is well-known [As] that, if a set system has VC-dimension at mostd, the VC-dimension of the dual set
system is upper bounded by2d+1 − 1. However, in our setting, essentially the same proof as in the previous
lemma establishes the following:

Lemma 4.6. For any finite set of pointsP ⊆ R
d andǫ > 0, it holds VC-dim(FD(P, ǫ)) ≤ d. This bound is

tight.

Proof. Let P be a set of points inRd andǫ > 0. We must argue thatnosubsetP ′ ⊆ P of cardinalityd+ 1
can be shattered bySD(P, ǫ). Similarly to the previous lemma, any setP ′ ⊂ P of cardinalityd+1 contains
a pointr such that for alli ∈ [d] there exists some pointqi ∈ P ′ (qi 6= r) satisfying(qi)i ≥ ri. We claim
that we cannot “separate”r from the remaining points. Indeed, if some point is(1 + ǫ)-covered by all the
qi’s, then is also(1 + ǫ)-covered byr. The tightness is similar. �

It is well-known that, for a set system of VC-dimension at most d, we can efficiently construct an1/r-
net of sizes(r) = O(dr log r) [KPW]; this bound is tight in general [PW, KPW]. As shown in [BG, ERS],
for such a set system, there exists a polynomial times(OPT)/OPT-factor approximation algorithm for the
minimumhitting setproblem, whereOPT is the cost of the optimal solution. If we apply this result tothe
dual set systemFD(P, ǫ) we conclude:

Proposition 4.7. ProblemQ can be approximated within a factor ofO(d log OPTǫ).

Part 1 of Theorem 4.1 follows by combining Lemma 4.2 and Proposition 4.7.

Remark4.8. If s(r) = O(r), the reduction in [BG, ERS] implies a polynomial time constant factor approxi-
mation algorithm for the corresponding hitting set problem. This is exactly the approach in [KP]: they show
that, ford = 3, FD(P, ǫ) admits an1/r-net of sizes(r) = O(r) and that such a net can be efficiently con-
structed. Note that the constant approximation ratioc implied for set cover using this approach is identified
with the constant hidden in the big-Oh of the net-sizes(r). The corresponding constant in the construction
of [KP], itself based on a result of [CV], is quite large and nogood bounds have been calculated for it. A
recent result [PR] implies that the dual set system induced by a finite set of points and translates of an orthant
in R

3 (a generalization ofFD(P, ǫ)) admits an1/r-net of size at most25r (that is efficiently constructible).
Hence, ford = 3, problemQ can be efficiently approximated within a factor of25 and the constantc in (the
second statement of) Theorem 4.1 is at most25. Improving the value of this constant is an interesting open
problem.
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4.2 The Dual Problem

For a d-objective problemΠ with an associatedGAP routine, given a parameterk, we want to findk
solution points that provide the best approximation to the Pareto curve, i.e. such that every Pareto point is
ρ∗-covered by one of thek selected points for the minimum possible ratioρ∗ = 1 + ǫ∗. It was shown in
[VY] that for d = 2 the problem is NP-hard but has a PTAS. We show below (Section 4.2.1) that ford = 3
any multiplicative factor for the dual problem is impossible, even for explicitly given points; we can only
hope for a constant power, and only above a certain constant.

In [VY] the dual problem was related to the asymmetrick-center problem, and this was used to show that
(i) for any d, a set ofk points can be computed that approximates the Pareto curve with ratio (ρ∗)O(log∗ k),
and (ii) for unboundedd and explicitly given points, it is hard to do much better. Since the metricρ for the
dual problem is a ratio (multiplicative coverage) versus distance (additive coverage) in thek-center problem,
in some sense the analogue of constant factor approximationfor the Dual problem is constant power. Can
we achieve a constant power(ρ∗)c for all problems in MPTAS with a fixed numberd of objectives? We
show (Section 4.2.2) that the answer is Yes ford = 3 and provide a conjecture that implies it for generald.

4.2.1 Lower Bound

Consider the problemD(P, k) (dual problem with explicitly given points): We are givenexplicitlya setP of
n points inRd

+ and a positive integerk and we want to compute a subset ofP of cardinality (at most)k that
ρ-coversP with minimum ratioρ. Letρ∗ = 1+ ǫ∗ denote the optimal value of the ratio. Note that problems
Q andD are polynomially equivalent with respect to exact optimization - as opposed to approximation. As
shown in [KP],Q is NP-hard ford ≥ 3; hence, ford ≥ 3, problemD is also NP-hard.

By further exploiting the properties of the aforementionedreduction in [KP], we can show that problem
D is NP-hard to approximate. Before we proceed with the formalstatement and proof of this fact, it will
be helpful to give some remarks regarding the notion of “approximate coverage” in the definition of the
approximate Pareto set. Throughout this paper, our notion of coverage ismultiplicative: for ρ ≥ 1, a point
u ∈ R

d
+ ρ-covers a pointv ∈ R

d
+ iff u ≤ ρ · v (coordinate-wise). Alternatively, one could define the notion

of coverage additively: forc ≥ 0, the pointu ∈ R
d
+ additivelyc-coversv ∈ R

d
+ iff ui ≤ vi + c for all i.

A notion of additivec-Pareto set can be naturally defined using the additive coverage. (Note that with the
additive definition of coverage Pareto sets and approximatePareto sets are invariant under translation of the
input set, while with our multiplicative definition they areinvariant under scaling.)

On the one hand, the selection of multiplicative metric is standard and more natural in the context of
approximation algorithms. On the other hand, it is essential in our setting in the following sense: For a
(implicitly represented) multiobjective combinatorial optimization problem, the basic existence theorem of
[PY1] (i.e. the fact that there always exists anǫ-Pareto set of polynomial size) is based crucially on the
multiplicative coverage. (In fact, it clearly does not holdunder the additive coverage. This, of course,
rules out the possibility of efficient algorithms for computing (any) approximate Pareto set in this context.)
However, for the case that the set of points is given explicitly in the input (i.e. for problemsQ andD) the
aforementioned obstacle does not occur and one can select the definition of coverage that is more appropriate
for the specific application.

We will denote bylogQ andlogD the primal and dual problems respectively under additive coverage.
We now try to relate the problem pairs(Q, logQ) and(D, logD) with respect to their approximability. To
this end, we need a couple of more definitions. For two pointsp, q ∈ R

d
+ the ratio distancebetweenp and

q is defined by:RD(p, q) = max{maxi(pi/qi), 1}. (The ratio distance betweenp andq is the minimum
valueρ∗ = 1+ ǫ∗ of the ratioρ such thatp ρ-coversq.) Theadditive distancebetweenp andq is defined by:
AD(p, q) = max{maxi(pi − qi), 0}. (Analogously, the additive distance betweenp andq is the minimum
value c∗ of the distancec such thatp additively c-coversq.) It is easy to see thatAD(·, ·) is a directed
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pseudo-metric.
We claim that the problemsQ andlogQ are in some sense “equivalent” with respect to approximability.

Indeed, it is easy to see that anr-approximation algorithm for problemQ implies anr-approximation for
problemlogQ and vice-versa (by taking logarithms and exponentials of the coordinates respectively). Sup-
pose for example that there exists a factorr approximation forlogQ. We argue that it can be used as a black
box to obtain anr-approximation forQ. Given an instance(P, ǫ) of Q, we construct the following instance
of logQ: We take the set of pointsP ′, whereP ′ contains a pointp′ for every pointp ∈ P whose coordinates
are the logarithms of the corresponding coordinates ofp. We also takec = log(1 + ǫ). That is, we ask for
the smallestadditivec-Pareto set ofP ′. If p′, q′ ∈ P ′ are the images ofp, q ∈ P respectively, we have that
RD(p, q) = 2AD(p

′,q′) . Hence, there exists a bijection betweenǫ-Pareto sets ofP and additivec-Pareto
sets ofP ′, i.e. this simple transformation is an approximation factor preserving reduction ofQ to logQ.
There is however a subtle point regarding the bit complexityof the produced instance: the coordinates of the
points inP ′ (and the desired additive coveragec) may be irrational, thus not computable exactly. We argue
that this is not a significant problem below.

Consider an instance(P ′, c) of logQ. (The following remarks also hold forQ and the dual problems.)
Clearly, the feasible solutions to the problem, i.e. the (additive) c-Pareto sets ofP ′, do not depend on the
actual coordinates of the points inP ′, but only on the additive distance between every pair of points. Hence,
the only information an (exact or approximate) algorithm for logQ needs to know about the input instance
is the set of pairwise distances. In fact, such an algorithm does not need an explicit representation of these
distances as rational numbers. It is sufficient to have a succinct representation that allows: (i) efficiently
computing a succinct representation of the sum of two (or more) distances (ii) efficiently comparing any
two (sums of) distances and (iii) efficiently comparing (sums of) distances withc. Now the aforementioned
transformation produces instances(P ′, c) of problemlogQ that clearly satisfy these properties (since we
have an explicit representation of the starting instance(P, ǫ) of Q and we take logarithms). Hence, anr-
approximation algorithm forlogQ can be used as a black box to obtain anr-approximation forQ. Similar
arguments may be used for the other direction.

For the dual problem, the choice of coverage (multiplicative versus additive) changes the objective
function, which affects the approximability. Roughly speaking, a factorr-approximation algorithm forlogD
is “equivalent” to a(ρ∗)r-approximation algorithm forD, whereρ∗ is the value of the optimal ratio for the
latter problem. For example, it is easy to see (by taking logarithms as above) that a factorr approximation
for logD implies a(ρ∗)r-approximation forD.

We have the following:

Theorem 4.9. Consider the problemD(P, k) for d = 3 objectives.
1. It is NP-hard to approximate the minimum ratioρ∗ within any polynomial multiplicative factor.
2. It is NP-hard to computek points that approximate the Pareto curve with ratio better than(ρ∗)3/2.

Proof. To prove both parts we take advantage of the properties in theNP-hardness reduction of [KP]. It
is shown there that problemlogQ is NP-hard ford = 3 via a reduction from3-SAT. Given an instance of
3-SAT, the reduction produces an instance(P, c) of logQ such that the smallest additivec-Pareto set ofP
reveals whether the3-SAT formula is satisfiable. We will not repeat the reductionhere, but we will just give
the properties of the construction below needed for our purposes. We prove each part separately.

1. The crucial property we need here is that the reduction in [KP] is strongly polynomial: Given an
instance (formula)ϕ of 3-SAT with n-clauses, the reduction constructs an instance oflogQ (or logD),
consisting of a setP of points in 3 dimensions and an additive error boundc such that, if the formula
ϕ is satisfiable thenP has a (additive)c-cover withg points (for some parameterg of the construction),
whereas ifϕ is not satisfiable then everyc-cover must contain at leastg+1 points. The construction has the
property that all the points ofP have rational coordinates withO(log n) bits and the error boundc ∼ 1/n2

(to be precise,c = 1/4n2). This property implies that in the (additive) dual problemlogD with a bound
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k = g for the number of points in the cover, the additive “gap” in the value of the optimal covering distance
between the Yes case (satisfiable 3-SAT instanceϕ) and the No case (non-satisfiable 3-SAT instance) is at
least inverse polynomial inn, i.e. at leastδ = 1/nr, for a (small) constantr: If the 3-SAT instanceϕ is
satisfiable, the optimal value of the covering distance for the logD instanceP with k = g is c; if ϕ is not
satisfiable, the optimal distance is at leastc′ = c + δ. By multiplying all the coordinates of the constructed
instance by a factor of2nr+l, wherel > 0 is a constant, and rounding to the nearest integer, we get a new
instance oflogD where all the points have integer coordinates and the value of the additive gap between
the satisfiable and the unsatisfiable case is at leastnl. We then exponentiate each coordinate (x → 2x). The
number of bits remains polynomial in the size of the original3-SAT instance (thus the overall reduction
takes polynomial time) and the value of themultiplicativegap is now2n

l
.

2. To prove this part, it suffices to show that problemlogD does not have an approximation ratio better
than3/2. The reduction in [KP] uses a numberg of gadgets. The construction has gadgets for the variables
and for the clauses, which are connected by paths of flip-flop gadgets that cross using crossover gadgets.
If the formula is satisfiable, then we can cover the points with additive distancec with g points, one from
each gadget. Otherwise, this is not possible. We thus selectk = g and ask for the “bestk points” and
the corresponding optimal covering distancec∗. As previously mentioned, if the formula is satisfiable, we
havec∗ = c. Now, if the formula is not satisfiable, we argue below that the optimal covering distance is
c∗ ≥ 3c/2. The proof follows directly from this.

Suppose that the3-SAT formula is not satisfiable and we want to select the bestg points. First, we note
that we still need one point from each gadget because otherwise all the points of a gadget must be covered
by points in other gadgets that are “far away” (much further thanc), since the gadgets are well-separated;
that is, if some gadget contains no point of the solution thenthe covering distance is much larger thanc.
Since the formula is not satisfiable, after selectingg points, at least one gadget will remain “badly covered”,
i.e. the point we selected must cover more points of its gadget than itsc-neighborhood. An examination
of the three types of gadgets used in the construction shows that this gives covering distance2c for both
the flip-flop and clause gadgets and at least3c/2 for the crossover gadgets. Hence, if the formula is not
satisfiable, the optimal covering distance isc∗ ≥ 3c/2. �

4.2.2 Upper Bound

Consider the followinggeneralizationQ′(A,P, 1 + ǫ) of problemQ: Given a set ofn pointsP ⊆ R
d
+, a

subsetA ⊆ P andǫ > 0, compute the smallest subsetP ∗ǫ (A) ⊆ P that(1 + ǫ)-coversA. It is easy to see
that ford = 3 the arguments of [KP, PR] forQ can be applied toQ′ as well showing that it admits a constant
factor approximation (see Remark 4.8). We believe that in fact for all fixedd there may well be a constant
factor approximation. Proving (or disproving) this ford > 3 seems quite challenging. The following weaker
statement seems more manageable:

Conjecture 4.10. For any fixedd, there exists a polynomial time((1 + ǫ)α(d), β(d))-bicriterionapproxima-
tion algorithm forQ′(A,P, 1+ǫ), i.e. an algorithm that outputs an(1+ǫ)α(d)-coverC ⊆ P ofA, satisfying
|C| ≤ β(d) · |P ∗ǫ (A)|, for some functionsα, β : N → N.

For d = 3, Conjecture 4.10 holds withα(3) ≤ 2, andβ(3) ≤ 4. This can be shown by a technical
adaptation of the3-objectives algorithm in [VY].

For general implicitly represented multiobjective problems with a polynomialGAPδ routine, we for-
mulate the following conjecture:

Conjecture 4.11. For any fixedd, there exists a polynomial time generic algorithm, that outputs an(1 +
ǫ)α(d)-coverC, whose cardinality is|C| ≤ β(d) ·OPTǫ, for some functionsα, β : N → N.
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The case ofd = 3 is proved in [VY] withα(3) = any constant greater than2 andβ(3) = 4. Note that,
by (a variant of) Lemma 4.2, Conjecture 4.10 implies Conjecture 4.11. The converse is also partially true:
Conjecture 4.11 implies Conjecture 4.10, if in the statement of the latter, problemQ′ is substituted with
problemQ.

In the following theorem, we show that a constant factor bicriterion approximation forQ′ implies a
constant power approximation for the dual problem, given theGAP routine.

Theorem 4.12. Consider a (implicitly represented)d-objective problem in MPTAS and suppose that the
minimum achievable ratio withk points isρ∗.
1. For d = 3 objectives we can computek points which approximate the Pareto set with ratioO((ρ∗)9),
usingO((m/δ)d) GAPδ calls, where1/δ = O(1/(ǫ′ − ǫ)).
2. If Conjecture 4.10 holds, then for any fixedd we can computek points which approximate the Pareto set
with ratio O((ρ∗)c), usingO((m/δ)d) GAPδ calls, where1/δ = O(1/(ǫ′ − ǫ)) andc = c(d).

Proof. Part 1 follows from 2 since Conjecture 4.10 holds ford = 3. (It will follow from the proof that
c(3) ≤ 9.) To show Part 2, we exploit the relation of problemD(P, k) with the asymmetrick-center
problem. As observed in [VY], the problemlogD is an instance of the asymmetrick-center problem, which
we now define for the sake of completeness. In the asymmetrick-center problem we are given a set of
n verticesV with distances,dist(u, v) that must satisfy the triangle inequality, but may be asymmetric,
i.e. dist(u, v) 6= dist(v, u). We are asked to find a subsetU ⊆ V , |U | = k, that minimizesdist∗ =
max
v∈V

min
u∈U

dist(u, v). (Note thatlogD(P, k) is an instance of this problem, where there exists a bijection

between vertices ofV and points ofP and the distance between points (vertices)p, q ∈ P is defined as
d(p, q) = AD(p, q).)

We claim that, if problemQ′(A,P, 1 + ǫ) admits a((1 + ǫ)α(d), β(d))-bicriterion approximation, then
problemD(P, k) admits a(ρ∗)c(d) approximation for some functionc (that depends onα andβ). This is
implied by the aforementioned reduction and the following more general fact: If we have an instance of the
asymmetrick-center problem (problemlogD(P, k) in our setting) such that a certain collection of associated
set cover subproblems (which are instances of problemlogQ′(A,P, 1 + ǫ) here) admits a constant factor
bicriterion approximation (an algorithm that blows up bothcriteria by a constant factor), then this instance
admits a constant factorunicriterion approximation (an algorithm that outputs a set of no more than k
centers). This implication is not stated in [PV, Ar1], but isimplicit in their work. One way to prove it is
to apply Lemma 5 of [PV] in a recursive manner. We will describe an alternative method [Ar2] that yields
better constants. We prove this implication, appropriately translated to our setting, in Lemma 4.14.

For a general multiobjective problem where the solution points are not given explicitly, we impose a
geometric

√
1 + δ grid for a suitableδ, callGAPδ at the grid points, and then apply the above algorithm to

the set of points returned. Then the set ofk points computed by the algorithm provide a(1 + ǫ′)c(d)-cover
of the Pareto curve, where1 + ǫ′ = (1 + ǫ)(1 + δ)2. �

Remark4.13. Even though theO(log∗ k)-approximation ratio is best possible for the (general) asymmetric
k-center problem [CG+], the corresponding hardness result does not apply forlogD as long as the dimension
d is fixed.

Let H(α) denote the harmonic number extended to fractional arguments by linear interpolation (i.e.

H(α) =
∑⌊α⌋

i=1 1/i + (α − ⌊α⌋)/⌈α⌉). For a functiong, let g(i) denote the function iteratedi times.
Finally, for b > 1 defineH∗b (α) = min{i : H(i)(α) ≤ b}. The following lemma completes the proof of
Theorem 4.12.

Lemma 4.14. Suppose that there exists an((1 + ǫ)α, β)-bicriterion approximation forQ′(A,P, 1 + ǫ).
Then, problemD(P, k) admits a(ρ∗)c approximation, wherec = H∗4/3(β)+α+4. In particular, forα = 2
andβ = 4, we can getc = 9.
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Proof. The desired result can be shown by a careful application of the techniques introduced in [PV, Ar1].
We describe an algorithm – that we denoteD(P, k), as the corresponding problem – which, given a(ρα, β)-
bicriterion approximation algorithm, denotedB(A,P, ρ), for problemQ′(A,P, ρ) as a black box, computes
a setQ ⊆ P of (at most)k points that(ρ∗)c-cover the setP , whereρ∗ is the minimum ratio achievable with
k points. We will denote byB(A,P, ρ) the set of points output by the algorithmB on input(A,P, ρ).

We first note the simple (and well-known) fact that it is no loss of generality to assume that the algorithm
D(P, k) “knows” the optimal ratioρ∗; this is becauseρ∗ will be one of theO(|P |2) pairwise ratio distances,
hence we can try the algorithm for all of them and pick the bestsolution (or do an appropriate binary search,
see e.g. [Ar1]).

To describe the algorithm, we appropriately translate the notions from [PV, Ar1] to the current setting.
For the sake of completeness, we also provide a mostly complete proof of correctness.

We begin with a basic definition.

Definition 4.15. For a pointq ∈ P and a parameterρ > 1, we denoteΓ+(q, ρ) = {p ∈ P | q ≤ ρ · p} the
set of points inP ρ-covered byq andΓ−(q, ρ) = {p ∈ P | p ≤ ρ · q} the set of points inP thatρ-coverq.
We naturally extend this notation to setsS ⊆ P : Γ±(S, ρ) = {p ∈ P | p ∈ Γ±(s, ρ) for somes ∈ S}. We
say that the pointq ∈ P is aρ-center capturing vertex(denotedρ-CCV) if it satisfiesΓ−(q, ρ) ⊆ Γ+(q, ρ).

Consider an instance of the problemD(P, k) as defined above. Suppose thatρ ≥ ρ∗. In this case, if
the pointq is a ρ-CCV, it ρ-covers at least one point of the optimal solution – in particular, the pointq∗

that ρ∗-coversq. Indeed,q∗ ∈ Γ−(q, ρ∗) ⊆ Γ−(q, ρ) ⊆ Γ+(q, ρ). Hence,q ρ2-covers every point inP
ρ-covered by the pointq∗. This simple property is crucial for the algorithm.

The algorithm in [PV] has two phases. In the first phase, roughly, it preprocesses the input set by
iteratively finding CCV’s and in the second phase it uses a recursive set cover procedure to cover the points
not covered in the first stage. (The algorithm in [Ar1] replaces the second phase by an LP-based method.)

The algorithmD(P, k) works in three phases. The first phase is identical to the firstphase in [PV, Ar1]:
We preprocess the input setP by iteratively findingρ∗-CCVs. In the second phase,D calls the bicriterion
approximation algorithmB (with appropriately selected values of its parameters) to cover the subset ofP
that is not covered in the first phase. The remaining phase involves a careful application of the recursive
greedy set cover procedure of [PV] followed by an application of the greedy set cover algorithm. To show
correctness of the last step, we use the structural lemma of [Ar1] (itself a variant of a similar lemma in [PV],
albeit with improved constants).

The algorithm is presented in detail below:

We now proceed with an intuitive explanation of the different steps in tandem with a proof of correctness.
We explain first what happens during the first phase. We have asinput the setP , the parameterk and the
optimal ratioρ∗. (Recall that the algorithm can “guess” the optimal ratio.)We iteratively selectρ∗-CCV’s
as follows: For eachρ∗-CCV we find, we remove from the “active” setA (initialized toP ) all the points
(ρ∗)2-covered by it, until no more CCV’s exist inA. LetC be the set of CCV’s thus discovered (|C| ≤ k)
andA = P \ Γ+(C, (ρ∗)2) be the set of points inP not (ρ∗)2-covered by any point inC. At this point, we
note the following simple fact:

Fact 4.16. The setA := P \ Γ+(C, (ρ∗)2) can beρ∗-covered byk′ = k − |C| points inP \ Γ+(C, ρ∗).

If |C| = k (k′ = 0, A = ∅), we have selected a set ofk points that(ρ∗)2-cover the setP and we can
just terminate the algorithm. Otherwise, we proceed with the next phase. In the second phase, we call the
algorithmB to ρ∗-cover the setA. By Fact 4.16, there exists aρ∗-cover ofA with k′ points. Moreover, it
is clear that such a cover lies inP \ Γ+(C, ρ∗). Hence, we get a setS0 ⊆ P \ Γ+(C, ρ∗) of cardinality
|S0| ≤ β · k′ that (ρ∗)α-coversA. To motivate the next step, we note the following immediate implication
of Fact 4.16:
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Algorithm D(P, k)
(The optimal radiusρ∗ is known to the algorithm.)

(Phase 1)
A = P ; k′ = k; C = ∅;
While there exists aρ∗-CCV q ∈ A andk′ > 0 do
{ C = C ∪ {q};

A = A \ Γ+(q, (ρ∗)2);
k′ = k′ − 1; }

(Phase 2 )
S0 = B(A,P \ Γ+(C, ρ∗), ρ∗);

(Phase 3)
Ŝ0 = S0 \ Γ+(C, (ρ∗)2);
S1 = Rec-Cover(Ŝ0, A, P, ρ

∗, k′);

Ŝ1 = S1 \ Γ+(C, (ρ∗)4);
S2 = Greedy-Set-Cover(Ŝ1, P, (ρ

∗)3);

Return Q := C ∪ S2.

Routine Rec-Cover(Input: S,A, P, ρ, l)
(There existl vertices inP thatρ-coverS,
whereS ⊆ A ⊆ P .)

S0 = S; i = 0;
While |Si| > 4l/3 do
{

Run Greedy Set Cover toρ-coverSi using points
of P and letS̃i+1 ⊆ P be the produced set.

Si+1 = S̃i+1 ∩A;
i = i+ 1;

}
Return Si.

Fact 4.17. LetS ⊆ A. ThenS can beρ∗-covered byk′ points inP \ Γ+(C, ρ∗).

We also recall the following well-known fact [Chv, Joh, Lov]about the performance guarantee of the
greedy set cover algorithm:

Fact 4.18. For a set system(U,R) suppose that there exists a set cover of cardinalityp. Then the greedy
algorithm outputs a cover of size at mostp ·H(|U |/p).

At this point, we apply the recursive greedy set cover procedure from [PV] to cover̂S0 = S0 ∩A using
points fromA. (The points inS0 \ Ŝ0 are(ρ∗)2-covered byC.) Note that in each round of the recursive
cover, we attempt to cover only those points from the last round that do not lie inΓ+(C, (ρ∗)2), sinceC will
cover those ones. We thus get a setS1 ⊆ P of cardinality |S1| ≤ 4k′/3 with the property thatS1 covers

S0 \ Γ+(C, (ρ∗)
1+H∗

4/3
(β)

) with ratio (ρ∗)
H∗

4/3
(β). The latter statement can be shown by induction, using

Fact 4.17 as an invariant. Since this essentially appears in[PV, Ar1] (see e.g. Lemma13 in [Ar1]), we do
not repeat it here. To motivate the next step, we need the following combinatorial lemma from [Ar1]:

Lemma 4.19(Theorem 17 in [Ar1], rephrased). LetC ⊆ P andA = P \ Γ+(C, (ρ∗)2). SupposeA has
no ρ∗-CCV’s and that there existk′ centers (points inP ) that ρ∗-coverA. Then there exists a set of2k′/3
centers inP \ Γ+(C, ρ∗) that (ρ∗)3-coversA′ = P \ Γ+(C, (ρ∗)4).

As a final step of the algorithm, we apply the greedy set cover algorithm – that may be viewed as one
iteration of the recursive procedure – with parameter(ρ∗)3 to coverŜ1 = S1 \ Γ+(C, (ρ∗)4) using points
from P (so that the optimum has cardinality at most2k′/3, according to Lemma 4.19). (Note that the
points inS1 \ Ŝ1 are (ρ∗)4-covered byC.) We thus get a setS2 ⊆ P of cardinality at most(2k′/3) ·
H ((4k′/3)/(2k′/3)) = (2k′/3) · H(2) = k′ with the property thatS2 coversŜ1 within (ρ∗)3. We output
the setQ := C ∪ S2; this set has cardinality at mostk and it remains to argue that it coversP with ratio
(ρ∗)

4+α+H∗
4/3

(β). Indeed, every pointp ∈ P falls in one of the following categories:

• The pointp is (ρ∗)2-covered by a point inC, i.e. p ∈ Γ+(C, (ρ∗)2). (Note that if this isnot the case,
i.e. if p ∈ A, then it is(ρ∗)α-covered byS0.)
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• The pointp is (ρ∗)α-covered by a pointp0 ∈ S0 that isnot (ρ∗)H
∗
4/3

(β) - covered byS1. In this case,

p0 ∈ Γ+(C, (ρ∗)
1+H∗

4/3
(β)

), soC coversp within ratio (ρ∗)
1+H∗

4/3
(β)+α.

• The pointp is (ρ∗)α-covered by a pointp0 ∈ S0 that is(ρ∗)H
∗
4/3

(β) - covered by a pointp1 ∈ S1 that is

not (ρ∗)3-covered byS2. In this case,p1 ∈ Γ+(C, (ρ∗)4), soC coversp within ratio(ρ∗)4+H∗
4/3

(β)+α.

• The pointp is (ρ∗)α-covered by a pointp0 ∈ S0 that is(ρ∗)H
∗
4/3

(β) - covered by a pointp1 ∈ S1 that

is in turn(ρ∗)3-covered byp2 ∈ S2. In this case, the pointp2 coversp within ratio (ρ∗)
3+H∗

4/3
(β)+α.

Hence the overall covering ratio is(ρ∗)4+H∗
4/3

(β)+α, which completes the proof. �

Remark4.20. We note here that the recursive set cover procedure (used in the above lemma) was useful
merely to improve the constants in the reduction. One can alternatively prove a (quantitatively inferior)
version of the lemma by the following two-phase algorithm: In the first phase, preprocess the input setP by
iteratively findingρ-CCVs for appropriately chosen values of the parameterρ. In the second phase, call the
algorithmB to “cover” the subset ofP that is not covered in the first phase. The analysis of this alternative
algorithm is based on repeated applications of Lemma 4.19.

Remark4.21. We should remark that the algorithms of this section are lesssatisfactory that the bi-objective
algorithm of the previous section (and the 2-d and 3-d algorithms of [VY]) in several respects. One weakness
is that the constantsc obtained (ford = 3) are quite large: in the case of Theorem 4.1, the best constant c
we can get follows from the net construction of [PR] (and is about25). In the case of Theorem 4.12 there is
still a large gap between the upper bound (of9) and the lower bound (of3/2) in the exponent.

A second weakness of the algorithms is that they start by applying the general method of [PY1] calling
the GAP routine on a grid, and thus incur always the worst-case time complexity even if there is a very small
ǫ-Pareto set. Thus, we view our algorithms in this section mainly as theoretical proofs of principle, i.e. that
certain (constant) approximations can be computed in polynomial time, but it would be very desirable and
important to improve both the constants and the time.

5 Conclusion

We investigated the problem of computing a minimum set of solutions for a multiobjective optimization
problem that represents approximately the whole Pareto curve within a desired accuracyǫ. We developed
tight approximation algorithms for the bi-objective shortest path problem, spanning tree, and a host of other
bi-objective problems. Our algorithms compute efficientlyan approximate Pareto set that contains at most
twice as many solutions as the minimum one; furthermore improving on the factor 2 for these specific
problems is NP-Hard. The algorithm works in general for all bi-objective problems for which we have a
routine for the Restricted problem of approximating one objective subject to a (hard) bound on the other.
The algorithm calls this Restricted routine and a dual one asblack boxes and makes quite effective use of
them: for every instance, the number of calls is linear (at most 4 times) in the number of points in the optimal
solution for that instance.

We presented also results for three and more objectives, both for the problem of computing an optimal
ǫ-Pareto set and for the dual problem of selecting a specified numberk of points that provide the best
approximation of the full Pareto curve. As we indicated at the end of the last section, there is still a lot of
room for improvement both in the time complexity and the constants of the approximations achieved. We
would like especially to resolve Conjecture 4.11, hopefully positively. It would be great to have a general

27



efficient method for any (small) fixed numberd of objectives that computes for every instance a succinct
approximate Pareto set with small constant loss in accuracyand in the number of points, and do it in time
proportional to the number of computed points, i.e., the optimal approximate Pareto set for the instance in
hand.

Acknowledgements.We would like to thank Aaron Archer for useful discussions related to the asymmetric
k-center problem.
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