
Path algorithms on regular graphs

Didier Caucal and Dinh Trong Hieu

IGM–CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France

caucal@univ-mlv.fr dinh@univ-mlv.fr

Abstract. We consider standard algorithms of finite graph theory, like
for instance shortest path algorithms. We present two general methods
to polynomially extend these algorithms to infinite graphs generated by
deterministic graph grammars.

1 Introduction

The regularity of infinite graphs was first considered by Muller and Schupp
[6]. They studied the transition graphs of pushdown automata, called pushdown
graphs, and showed that their connected components are the connected graphs
of finite degree whose decomposition by distance from a(ny) vertex yields finitely
many non-isomorphic connected components. More generally, a graph is regular
if it admits a finite decomposition (not necessarily by distance) or, equivalently,
if it can be generated by a deterministic graph grammar. Regular graphs have
been defined by Courcelle and called hyperedge replacement equational graphs
[3]. Any connected regular graph is finitely decomposable by distance, hence the
connected components of pushdown graphs coincide with the connected regular
graphs of finite degree. This identity was also generalized to non connected
graphs: the regular restrictions of pushdown graphs are the regular graphs of
finite degree [1]. A regular graph may be seen as an infinite automaton [9] : it
recognizes the set of path labels between two given finite vertex sets. Even though
a regular graph can have vertices of infinite degree, regular graphs recognize
exactly the family of context-free languages. Many publications focus on finite
graphs and their applications, but few deal with regular graphs. This paper is a
first step towards developing an algorithmic theory of regular graphs.

We consider a set of edge labels forming an idempotent and continuous semir-
ing. For any graph, we define the value of a path to be the product of its suc-
cessive labels, that we extend by summation to any set of paths between vertex
sets. The value (or the computation) of a grammar is then a vector whose com-
ponents are the values of the graphs generated from each of the left hand sides
of the grammar. In the case of deterministic graph grammars in a restricted
form, we show the equivalence between the algebraic and operational semantics:
the value of the grammar is the least upper bound of the sequence obtained by
iteratively applying the interpretation of the grammar from the least element
(Theorem 2.5). We then present two methods to compute the value of a gram-
mar over a commutative (idempotent and continuous) semiring. The first method

applies to linear semirings having a greatest element reached by any increasing
Kleene sequence. In this case, the grammar value is determined by applying the
grammar interpretation a number of times (Theorem 3.1). The second algorithm
works with any commutative semiring and is a simple graph generalization of
the Hopkins-Kozen method [5] developped for context-free grammars (cf. Corol-
lary 3.5). Finally we give a polynomial transformation of any grammar into
an equivalent grammar in restricted form (Proposition 4.3). We end up with a
polynomial complexity algorithm to solve the shortest path problem on regular
graphs using graph grammars (Corollary 4.4).

2 Computations with graph grammars

We consider a graph as a denumerable set of labelled arcs. The arc labels
are elements of an idempotent and continuous semiring. The value of a path is
the product of its successive labels. The value of a graph from initial vertices to
final vertices is the sum of the values of its paths from an initial vertex to a final
vertex.
We want to compute values of graphs generated by a deterministic graph gram-
mar. In this section, we restrict ourselves to grammars in which each left hand
side is a labelled arc from vertex 1 to vertex 2, and no right hand side has an arc
from 2 or an arc to 1. The value of any left hand side is the value from 1 to 2 of
its generated graph. The value of a grammar is the vector of its left hand side
values. By considering a grammar as a function from and into the semiring (to
the power of the rule number), its iterative application from the least element
gives by least upper bound the value of the grammar (Theorem 2.5).

Recall that an algebra (K, +, ·, 0, 1) is a semiring if (K, +, 0) is a commuta-
tive monoid, (K, ·, 1) is a monoid, multiplication · distributes over addition + ,
and 0 annihilates K : 0·a = a·0 = 0 for any a ∈ K.
We say that a semiring K is complete if for the following relation:

a ≤ b if a + c = b for some c ∈ K,
any increasing sequence a0 ≤ a1 ≤ . . . ≤ an ≤ . . . has a least upper bound∨

n an . This implies that ≤ is a partial order, 0 is the least element, and the
operations + and · are monotonous:

a ≤ b ∧ a′ ≤ b′ =⇒ a + a′ ≤ b + b′ ∧ a·a′ ≤ b·b′.
This also permits to define the sum of any sequence (an)n ≥ 0 in K by

∑
n≥0 an :=

∨
n≥0

(∑n

i=0 ai

)
.

We say that a semiring K is idempotent if + is idempotent:
a + a = a for any a ∈ K or equivalently 1 + 1 = 1 .

For K complete and idempotent, we have
∑

n≥0 an =
∑

n≥0 aπ(n) for any
permutation π, and this sum is also denoted

∑
n≥0{ an | n ≥ 0 } .

We say that a complete semiring K is continuous if + and · are continuous i.e.

commute with
∨

: for any increasing sequences (an)n ≥ 0 and (bn)n ≥ 0 ,(∨
n≥0 an

)
∗

(∨
n≥0 bn

)
=

∨
n≥0(an ∗ bn) where ∗ stands for + or ·

So
(∑

n≥0 an

)
+

(∑
n≥0 bn

)
=

∑
n≥0 (an + bn) for any an , bn ∈ K .

For K continuous and idempotent and for any sequences (an)n ≥ 0 and (bn)n ≥ 0(∑
n≥0 an

)
·
(∑

n≥0 bn

)
=

∑
{ ai·bj | i, j ≥ 0 } .

From now on K will denote a complete and idempotent semiring.
Recall that (K∗, ., ε) is the free monoid generated by the set K, i.e. K∗ =⋃

n≥0 Kn is the set of tuples of elements of K where . is the tuple concatenation
and the neutral element ε is the 0-tuple (). Any tuple (a1, . . ., ap) is written
a1. . .ap . The identity relation on K is extended to the morphism [[]] from
(K∗, ., ε) into the monoid (K, ·, 1) :

[[ε]] = 1 ; ∀ a ∈ K, [[a]] = a ; ∀ u, v ∈ K∗, [[u.v]] = [[u]]·[[v]] .

We extend by summation the value mapping [[]] to any language:

[[U]] :=
∑

{ [[u]] | u ∈ U } for any U ⊆ K∗.

Let L be an arbitrary set. Here a L-graph is just a set of arcs labelled in L.
Precisely, a L-graph G is a subset of V ×L×V where V is an arbitrary set such
that the vertex set of G defined by

VG := { s | ∃ a, t, (s, a, t) ∈ G ∨ (t, a, s) ∈ G }

is finite or countable, and its label set

LG := { a ∈ L | ∃ s, t, (s, a, t) ∈ G } is finite.

Any (s, a, t) of G is a labelled arc of source s, of goal (or target) t, with label
a, and is identified with the labelled transition s

a
−→

G

t , or directly s
a

−→ t if G

is understood. The transformation of a graph G by a function h from VG into
a set V is the graph

h(G) := { h(s)
a

−→ h(t) | s
a

−→
G

t ∧ s, t ∈ Dom(h) } .

An isomorphism h from a graph G to a graph H is a bijection from VG to
VH such that h(G) = H . The language recognized by G from a vertex set I to
a vertex set F is the set of labels of the paths from I to F :

L(G, I, F) := { a1. . .an | n ≥ 0 ∧ ∃ s0, . . ., sn, s0 ∈ I ∧ sn ∈ F ∧

s0
a1
−→ s1 . . . sn−1

an
−→ sn }.

In particular ε ∈ L(G, I, F) for I ∩ F 6= ∅.
We also write s −→

G

∗ t for L(G, s, t) 6= ∅ , and s
u

=⇒
G

t for u ∈ L(G, s, t).

The graph value on a K-graph G from I ⊆ VG to F ⊆ VG is defined as the
value of its recognized language:

[[G, I, F]] := [[L(G, I, F)]] .

For any graph G and by identifying any label a ∈ LG with {a}, we can take the
semiring (2L∗

G,∪, ., ∅, {ε}) of languages in which [[u]] = {u} for any u ∈ L∗
G .

For this semiring, the values of G are the recognized languages:
[[G, I, F]] = L(G, I, F) for any I, F ⊆ L∗

G .

Example 2.1 We consider the following graph G :

a

b

a

b

b
a

b

a

b12

a) By identifying a with {a} and b with {b}, the value [[G, 1, 2]] of G from
vertex 1 to vertex 2 for the semiring (2{a,b}∗

,∪, ., ∅, {ε}) is the Lukasiewicz
language.

b) Now taking the semiring (2IN×IN,∪, +, ∅, (0, 0)) with a = {(1, 0)} and b =
{(0, 1)}, the value [[G, 1, 2]] is the Parikh image { (n, n + 1) | n ≥ 0 } of the
Lukasiewicz language.

c) Taking a, b ∈ IR and the semiring (IR ∪ {−ω, ω}, Min, +, ω, 0), the value

[[G, 1, 2]] =

{
b if a + b ≥ 0,
−ω otherwise,

is the smallest value labelling the paths from 1 to 2.

d) Finally having a, b ∈ IR+ the set of non negative real numbers and for the
semiring (IR+ ∪ {ω}, Max,×, 0, 1), the value from 1 to 2 is

[[G, 1, 2]] =

{
b if a× b ≤ 1,
ω otherwise.

For continuous and idempotent semirings, we want to extend algorithms
computing the values of finite graphs to the graphs generated by graph gram-
mars.
In this section, we restrict ourselves to grammars in which each left hand side is
a labelled arc from vertex 1 to vertex 2, and no right hand side has an arc of
goal 1 or of source 2.
Precisely a 2-grammar R is a finite set of rules of the form:

(1, A, 2) −→ H

where (1, A, 2) is an arc labelled by A from vertex 1 to vertex 2, and H is a
finite graph.
The labels of the left hand sides form the set NR of non-terminals of R :

NR := { A | (1, A, 2) ∈ Dom(R) }
and the remaining labels in R form the set TR of terminals :

TR := { A 6∈ NR | ∃ H ∈ Im(R), ∃ s, t, (s, A, t) ∈ H }.
Furthermore we require that each right hand side has no arc of goal 1 or of
source 2 :

∀ H ∈ Im(R), ∀ (s, a, t) ∈ H, s 6= 2 ∧ t 6= 1.
We say that R is an acyclic grammar if its right hand sides are acyclic graphs.
Starting from any graph, we want a graph grammar to generate a unique graph
up to isomorphism. We thus restrict ourselves to deterministic 2-grammars in
which two rules have distinct left hand sides:

((1, A, 2) , H) , ((1, A, 2) , K) ∈ R =⇒ H = K.
An example is given below.

;

a

c

b

d

a

a

c

A

A

A

1

2

1

2

1

2

1

2

B B

Figure 2.2 A deterministic graph grammar.

Starting from a graph, this grammar generates a unique infinite graph obtained
by applying indefinitely parallel rewritings. Precisely and for any 2-grammar R,
the rewriting −→

R

is the binary relation between graphs defined by M −→
R

N if

we can choose a non-terminal arc X = (s, A, t) in M and a right hand side H

of A in R to replace X by H in M :
N = (M − {X}) ∪ h(H)

for some function h mapping vertex 1 to s, vertex 2 to t, and the other ver-
tices of H injectively to vertices outside of M ; this rewriting is denoted by
M −→

R, X

N . The rewriting −→
R, X

of a non-terminal arc X is extended in an obvi-

ous way to the rewriting −→
R, E

of any subset E of non-terminal arcs. A complete

parallel rewriting =⇒
R

is the rewriting according to the set of all non-terminal

arcs: M =⇒
R

N if M −→
R, E

N where E is the set of all non-terminal arcs of M .

A

a

c

A

a

c

b

a

c

a

d

A

A

=⇒=⇒ =⇒

a

c

b

a

c

a

d

c

a

B

B

c

a

Figure 2.3 Parallel rewritings according to the grammar of Figure 2.2 .

Due to the two non-terminal arcs in the right hand side of B for the grammar

of Figure 2.2, we get after n parallel rewritings from H0 = { 1
A
−→ 2 }, a graph

Hn having an exponential number |Hn| of arcs.
The derivation =⇒

R

∗ is the reflexive and transitive closure for the composition

of the parallel rewriting =⇒
R

i.e. G =⇒
R

∗ H if H is obtained from G by a

consecutive sequence of parallel rewritings. We denote by [M] the set of terminal
arcs of M :

[M] := M ∩ VM×TR×VM .
We now assume that any 2-grammar is deterministic.
A 2-grammar over K is a 2-grammar R such that TR ⊆ K.
A graph G is generated by a 2-grammar R from a graph H if G is isomorphic
to a graph in the following set Rω(H) of isomorphic graphs:

Rω(H) := {
⋃

n≥0[Hn] | H0 = H ∧ ∀ n ≥ 0, Hn =⇒
R

Hn+1 } .

For instance by iterating indefinitely the derivation of Figure 2.3, we get the
infinite graph depicted below.

a

c

b

a

c

a

d

c

a

c

a

Figure 2.4 Graph generated by the grammar of Figure 2.2 .

For any 2-grammar R and any non-terminal A ∈ NR ,
its right hand side in R is R({(1, A, 2)}), also denoted R(A),
the generated graph by R from A is Rω({(1, A, 2)}), also denoted Rω(A),
if TR ⊆ K, the value of A by R is [[Rω(A), 1, 2]] also denoted [[Rω(A)]] .

Given a 2-grammar R over K, we want to compute [[Rω(A)]] for any non-
terminal A. First we put R in the following reduced form S :

NS = { A ∈ NR | L(Rω(A), 1, 2) 6= ∅ } and 0 6∈ TS

and for every A ∈ NS , we have

[[Sω(A)]] = [[Rω(A)]] and ∀ s ∈ VS(A), 1 −→
S(A)

∗ s −→
S(A)

∗ 2 .

We begin by removing the arcs labelled by 0 in the right hand sides of R.
Then we compute the set

E = { A ∈ NR | L(Rω(A), 1, 2) 6= ∅ }
of non-terminals whose generated graph has a path from 1 to 2. This set E is
the least fixed point of the following equation:

E = { A ∈ NR | ∃ u ∈ (TR ∪ E)∗, 1
u

=⇒
R(A)

2 } .

This allows us to restrict to the rules of non-terminals in E and to remove the
arcs labelled by a non-terminal not in E in the right hand sides of the grammar.
Finally we get S by restricting each right hand side to the vertices accessible
from 1 and co-accessible from 2. The overall time complexity is quadratic ac-
cording to the description length of R (due to the computation of E).
Henceforth we assume that any 2-grammar R is in reduced form. In that case,

R is acyclic ⇐⇒ Rω(A) is acyclic for all A ∈ NR .

Given a 2-grammar R over K, we order the set NR = {A1, . . ., Ap} of its
p non-terminals. We want to determine the grammar value [[Rω]] of R as being
the following tuple in Kp :

[[Rω]] := ([[Rω(A1)]], . . ., [[Rω(Ap)]]) .
A standard semantic way is to define the interpretation [[R]] of R as being the
mapping:

[[R]] : Kp −→ Kp

(a1, . . ., ap) 7−→ ([[R(A1)[a1, . . ., ap]]], . . ., [[R(Ap)[a1, . . ., ap]]])

where G[a1, . . ., ap] is the graph obtained from graph G by replacing each label
Ai by ai for every 1 ≤ i ≤ p. This interpretation [[R]] is a continuous map-
ping.
As Kp is a complete set for the product order whose least element is 0 =
(0, . . ., 0), we can apply the Knaster-Tarsky theorem: the least upper bound of
the iterative application of [[R]] from 0, is the least fixed point of [[R]] denoted
µ [[R]] . A first result is that this least upper bound is also the value [[Rω]] of R.

Theorem 2.5 For any continuous and idempotent semiring K and for any 2-
grammar R over K,

[[Rω]] =
∨

n≥0 [[R]]n(0) = µ [[R]] .

The first equality holds for K complete and idempotent when R is acyclic.

Note that the first equality of Theorem 2.5 can be false if we allow in a right
hand side of the grammar an arc of goal 1 or of source 2. For instance, taking
the semiring (2{a,b,c}∗

,∪, ., ∅, {ε}) and the grammar R reduced to the rule:

1

2

1

2

A A

a

b

c

we have
∨

n≥0 [[R]]
n
(∅) = ∅ 6= [[Rω]] .

3 Computation algorithms

We present two general algorithms to compute the value of any 2-grammar
R for idempotent and continuous semirings which are commutative. The first
algorithm compares the differences between the |R|-th (|R| is the number of

rules) approximant [[R]]
|R|

(0) with the next one in order to detect increments
strictly greater than 1 in the value of the generated graphs (cf. Theorem 3.1).
The second algorithm is a simple graph generalization of the Hopkins-Kozen
method [5] developped for context-free grammars (cf. Corollary 3.5). Although
the first algorithm is more efficient than the second one, it works with semirings
whose order is linear and admits a greatest element.

Given a semiring and an algorithm to compute [[G, I, F]] for any finite graph
G (and vertex sets I, F) of time complexity CG,I,F , we want to use this algo-
rithm to compute [[Rω]] for any 2-grammar R. The complexity will be expressed
with the following parameters:

|R| = |NR| the number p of rules of R (its cardinality),

ℓR :=
∑

{ |R(A)| | A ∈ NR } the length of the description of R,

CR :=
∑

{ CR(A)[0],1,2 | A ∈ NR } the time complexity to compute [[R]](0).

Theorem 2.5 requires continuous and idempotent semirings. Our algorithms re-
quire that these semirings are commutative: the multiplication · is commutative.
A cci-semiring means a commutative continuous idempotent semiring.
The first algorithm also needs that the semirings be linear, meaning that the
relation ≤ is a linear (total) order. Let us describe this first algorithm.
For any 2-grammar R, Theorem 2.5 gives a standard way to compute [[Rω]] : if

there exists n such that [[R]]n(0) = [[R]]n+1(0) then [[Rω]] = [[R]]n(0). This
is true for any bounded semiring i.e. with no infinite increasing sequence. But
the sequence

(
[[R]]

n
(0)

)
n

is strict in general. We compare the vectors [[R]]
p
(0)

and [[R]]p+1(0) (with p = |R|) and determine the ranks for which they differ:

E = { Ai | ([[R]]
p
(0))i 6= ([[R]]

p+1
(0))i } .

By a classical pumping argument and for each A ∈ E, we can find an increment

> 1 in the value of its generated graph. Assuming that we have a greatest element
⊤ reached by any strict increasing sequence (an)n≥0 , we get [[Rω(A)]] = ⊤.
This is also true for any non-terminal having A in its right hand side. We com-
plete E into the set E which is the least fixed point of the following equation:

E = E ∪ { A ∈ NR | LR(A) ∩ E 6= ∅ } .

We deduce that for any rank 1 ≤ i ≤ p,
(
[[Rω]]

)
i

=

{
⊤ if Ai ∈ E,(
[[R]]

p
(0)

)
i
otherwise.

The time complexity is the complexity to compute [[R]]p(0) .

Theorem 3.1 For any linear cci-semiring K having a greatest element ⊤
such that

∨
n an = ⊤ for every a > 1 and a·⊤ = ⊤ for every a 6= 0 ,

we can compute [[Rω]] in time O(|R|CR) for any 2-grammar R over K.

We can apply Theorem 3.1 to the semiring (IR ∪ {−ω, ω}, Min, +, ω, 0) of Ex-
ample 2.1 (c). This allows us to solve the shortest path problem on any graph
generated by a 2-grammar. We take Floyd’s algorithm (with negative cycle test)
on finite graphs. For any 2-grammar R, we have CR in O(ℓ 3

R) thus the com-
plexity to compute [[Rω]] is O(|R| ℓ 3

R).

When R is acyclic, we can take Bellman’s algorithm on finite graphs; so CR is
O(ℓR) and the complexity for [[Rω]] is O(|R| ℓR), hence quadratic time. For
instance taking the following 2-grammar R :

; ;A

1

2

1

2

−2

1

3 B

1

2

B

1

2

−2
1

2

1

2

A C C1

−1

22

we have the following approximants:

n 0 1 2 3 4(
[[R]]

n
(0)

)
A

ω 3 3 2 2(
[[R]]

n
(0)

)
B

ω ω 3 3 2(
[[R]]

n
(0)

)
C

ω 1 1 1 1

giving by Theorem 3.1 the value [[Rω]] = (−ω,−ω, 1) i.e.

[[Rω(A)]] = [[Rω(B)]] = −ω and [[Rω(C)]] = 1 .
Note that we can apply Theorem 3.1 to the semiring (IR+ ∪ {ω}, Max,×, 0, 1)
of Example 2.1 (d).

For the second algorithm, we need to show that (graph) 2-grammars are
language-equivalent to cf-grammars (on words), ‘cf’ is short for context-free.
Recall that a context-free grammar P is a finite binary relation on words in
which each left hand side is a letter called a non-terminal, and the remaining
letters of P are terminals. By denoting NP and TP the respectives sets of non-
terminals and terminals of P , the rewriting −→

P

according to P is the binary

relation on (NP ∪ TP)∗ defined by
UAV −→

P

UWV if (A, W) ∈ P and U, V ∈ (NP ∪ TP)∗.

The derivation −→
P

∗ is the reflexive and transitive closure of −→
P

with respect to

composition. The language L(P, U) generated by P from any U ∈ (NP ∪ TP)∗

is the set of terminal words deriving from U :
L(P, U) := { u ∈ T ∗

P | U −→
P

∗ u } .

2-grammars and cf-grammars are language-equivalent with linear time transla-
tions.

Proposition 3.2 a) We can transform in linear time any 2-grammar R into

a cf-grammar P such that L(Rω(A), 1, 2) = L(P, A) for any A ∈ NR .

b) We can transform in linear time any cf-grammar P into an acyclic 2-
grammar R such that L(P, A) = L(Rω(A), 1, 2) for any A ∈ NP .

The first transformation is analogous to the translation of any finite automaton
into an equivalent right linear grammar. For each non-terminal A ∈ NR , let hA

be a vertex renaming of R(A) such that hA(1) = A and hA(2) = ε , and the
image Im(hA) − {ε} is a set of symbols with Im(hA) ∩ Im(hB) = {ε} for
any B ∈ NR − {A} . We define:

P := { (hA(s), ahA(t)) | ∃ A ∈ NR, s
a

−→
R(A)

t }.

Note that each right hand side of P is a word of length at most 2, and the
number of non-terminals of P depends on the description length ℓR of R :

|NP | =
(∑

A∈NR
|VR(A)|

)
− |NR| .

For the second transformation, we have NR = NP and for each A ∈ NP , its
right hand side in R is the set of distinct paths from 1 to 2 labelled by the
right hand sides of A in P . Note that by using the two transformations of
Proposition 3.2, we can transform in linear time any 2-grammar into a language
equivalent acyclic 2-grammar. Then we can apply Theorem 3.1 with the Bell-
man’s algorithm for the shortest path problem.

Corollary 3.3 For the semiring (IR ∪ {−ω, ω}, Min, +, ω, 0), any 2-grammar

R and any A ∈ NR, the shortest path problem [[Rω(A12), 1, 2]] can be solved in

O(ℓ 2
R), and in O(|R| ℓR) when Rω(A12) is acyclic.

In particular for any context-free grammar P , the shortest path problem can be
solved in O(|P | ℓP).
Starting from any pushdown automaton R, it is easy to transform R into a
pushdown automaton R′ recognizing the same language (by final states and/or
empty stack) such that each right hand side is a state followed by at most two
stack letters ; the number of rules |R′| hence its length of description ℓR′ are in
O(|R|.ℓ2

R). Then we apply to R′ the usual transformation to get an equivalent
cf-grammar P : |P | and ℓP are in O(|R′|3). Thus for any pushdown automaton
R, the shortest path problem can be solved in O((|R|.ℓ2

R)6) = O(|R|6.ℓ12
R).

In next section, Corollary 3.3 will be extended to Corollary 4.4 starting from
any generalized graph grammar.
Note also that by the two transformations of Proposition 3.2 and by the first
equality of Theorem 2.5, we can compute the value of any 2-grammar for non
continuous (but complete and idempotent) semirings.

A cf-grammar over K is a context-free grammar P such that TP ⊆ K .
By ordering the non-terminal set: NP = {A1, . . ., Ap}, the cf-grammar value is

[[L(P)]] := ([[L(P, A1)]], . . ., [[L(P, Ap)]]) .

For the semiring (2INq

,∪, +, ∅, (0, . . ., 0)) in Example 2.1 (b) of commutative
languages over q terminals of the form {(0, . . ., 0, 1, 0, . . ., 0)}, a first solution to
determine [[L(P)]] was given by Parikh [7]. This method was refined in [8] and
generalized in [5], and works for any cci-semiring. This last method is presented
briefly below.
The derivative of any language E ⊆ (NP ∪ TP)∗ by A ∈ NP is the following
language:

∂E
∂A

:= { UV | UAV ∈ E }
and as + is idempotent, we can restrict to remove only the first occurrence of A

i.e. |U |A = 0. The Jacobian matrix of P is

P ′ :=
(

∂P (Ai)
∂Aj

)

1≤i,j≤p

where P (A) = { U | (A, U) ∈ P } is the image of A ∈ NP by P .
The interpretation [[P ′]] of P ′ is the mapping:

[[P ′]] : Kp −→ Kp×p

(a1, . . ., ap) 7−→
(
[[∂P (Ai)

∂Aj
[a1, . . ., ap]]]

)
1≤i,j≤p

where E[a1, . . ., ap] is the language over K obtained from E ⊆ (NP ∪ TP)∗ by
replacing in the words of E each label Ai by ai for every 1 ≤ i ≤ p.
The Hopkins-Kozen transformation is the mapping:

HK : Kp −→ Kp

(a1, . . ., ap) 7−→
(
[[P ′]](a1, . . ., ap)

)∗
×(a1, . . ., ap)

where M×
→
v :=

(
M ·(

→
v)t

)t
with t for vector transposition, · for matrix multi-

plication and ∗ for its Kleene closure.
By applying iteratively this transformation from ([[P (A1)[0]]], . . ., [[P (Ap)[0]]]),
we get an increasing sequence which reaches its least upper bound [[L(P)]] after
a finite number of iterations [5], and even after p iterations [4].

Theorem 3.4 [5] [4] For any cci-semiring K and any cf-grammar P over K,

[[L(P)]] = HK|P |
(
[[P (A1) ∩ T ∗]], . . ., [[P (Ap) ∩ T ∗]]

)
.

Theorem 3.4 remains true even if the languages P (A1), . . ., P (Ap) are infinite
[4].
By applying the transformation of Proposition 3.2 (a) to any 2-grammar R over

K, we get in linear time a cf-grammar R̂ over K such that [[Rω]] = [[L(R̂)]]
that we can compute by Theorem 3.4 for any cci-semiring K. However the non-

terminal set N bR
depends on ℓR and not on |R|. So it is more efficient to extend

Theorem 3.4 directly to 2-grammars.
Let R be any graph grammar over K with non-terminal set NR = {A1, . . ., Ap}.
Let us extend the derivative to any (K ∪ NR)-graph G with 1, 2,∈ VG .
Let A ∈ NR . We take a new symbol A0 and we define the synchronization
product

H :=
(
G ∪ { s

A0
−→ t | s

A
−→

G

t }
)

× SA

with SA := { 1
a

−→ 1 | a ∈ K ∪ NP − {A} } ∪ {1
A0
−→ 2}

∪ { 2
a

−→ 2 | a ∈ K ∪ NP } .
Taking the vertex renaming h of H defined by h(1, 1) = 1, h(2, 2) = 2, and
h(x) = x for any x ∈ VH − {(1, 1) , (2, 2)}, and by restricting h(H) to the
graph H with vertices accessible from 1 and co-accessible from 2, the derivative

of graph G by A is the graph:

∂G
∂A

:=
(
H − VH×A0×VH) ∪ { s

1
−→ t | s

A0
−→

H

t } .

The Jacobian matrix of R is R′ :=
(

∂R(Ai)
∂Aj

)

1≤i,j≤p
and its interpretation is

[[R′]](a1, . . ., ap) :=
(
[[∂R(Ai)

∂Aj
[a1, . . ., ap]]]

)
1≤i,j≤p

for any a1, . . ., ap ∈ K.

So [[R′]] = [[P ′]] for the infinite cf-grammar P : P (A) = L(R(A), 1, 2) for any
A ∈ NR .

Corollary 3.5 For any cci-semiring K and any graph grammar R over K,

[[Rω]] = HK|R|
(
[[R]](0)

)
.

For +, ·, ∗ in K in O(1), the complexity is in O(|R|4 + |R|2CR).

Contrary to Theorem 3.1, this corollary can be used for any cci-semiring. The
computation of the Jacobian matrix R′ is O

(∑
A∈NR

|R||R(A)|
)

= O(|R|ℓR).

We compute [[R′]](a1, . . ., ap) in O
(∑

A∈NR
|R|CR(A)[a1,...,ap],1,2

)
= O(|R|CR).

Having a square matrix M ∈ Kp×p and a vector
→
a ∈ Kp, the value of

→

b =

M∗.
→
a corresponds to solving the linear system

→

b =
→
a + M.

→

b of p equations
with p variables {b1, . . ., bp}. By the Gauss elimination method, we use O(p3)
operations + and · operations, and O(p) ∗ operations.
For the semiring (IR ∪ {−ω, ω}, Min, +, ω, 0) of Example 2.1 (c) and using
Floyd’s algorithm over finite graphs, we get a complexity in O(|R|2 ℓ 3

R) hence
in O(ℓ 5

R) for computing [[Rω]] for any 2-grammar R over K. This is a greater
complexity than for Theorem 3.1.

4 Computations on regular graphs

The family of regular graphs contains the pushdown graphs. Precisely the
regular graphs of finite degree are the regular restrictions of pushdown graphs.
They are the graphs generated by deterministic graph grammars allowing non-
terminal hyperarcs of arity greater than 2. By splitting these hyperacs into arcs,

we provide a polynomial transformation of any graph grammar to a language-
equivalent 2-grammar (Proposition 4.3). Then we can apply the previous results
to obtain polynomial algorithms for solving the shortest path problem on regular
graphs (Corollary 4.4).

We denote by a word as1. . .s̺(a) a hyperarc of label a with an arity ̺(a) ≥
1, linking in order the vertices s1, . . ., s̺(a) . A hyperarc ast of arity ̺(a) =
2 is an arc (s, a, t). A hypergraph G is a set of hyperarcs, and its length is
ℓG :=

∑
{ |u| | u ∈ G } for G finite.

A graph grammar R is a finite set of rules of the form:
A 1. . .̺(A) −→ H

where A 1. . .̺(A) is a hyperarc labelled by A linking the vertices 1, . . ., ̺(A) ,
and H is a finite hypergraph. Again the labels of the left hand sides form the
set NR of non-terminals, and the remaining labels in the right hand sides form
the set TR of terminals. As we only want to generate graphs, we assume that
any terminal is of arity 2.
We extend in a natural way to any graph grammar R the notions of rewriting
−→

R

and of parallel rewriting =⇒
R

.

Henceforth a graph grammar R is deterministic : two rules have distinct left
hand sides, and like for 2-grammars, we define the graph Rω(H) generated
from any hypergraph H . We give below a graph grammar reduced to a unique
rule, and its generated graph.

A

3 3

A

1 1

2 2

c

d d

c

d

a

c
b

c

b

d

=⇒ω

a

b a

Figure 4.1 Graph grammar and generated graph.

A graph grammar R over K means that TR ⊆ K .
For any graph grammar R and for any non-terminal A ∈ NR ,

its right hand side in R is R(A 1. . .̺(A)), also denoted R(A),
the graph generated by R from A is Rω(A 1. . .̺(A)), also denoted Rω(A),
|R| = |NR| is the number of rules of R (its cardinality),
ℓR :=

∑
{ |R(A)| + ̺(A) | A ∈ NR } is the length of R,

̺R :=
∑

{ ̺(A) | A ∈ NR } is the arity of R.
A regular graph is a graph generated by a graph grammar from a non-terminal.

We transform any graph grammar R into a language-equivalent 2-grammar
by splitting any non-terminal hyperarc into all the possible arcs.
We assume that 0 is not a vertex of R and we take a new set of symbols

{ Ai,j | A ∈ NR ∧ 1 ≤ i, j ≤ ̺(A) } .
We define the splitting ≺G≻ of any (TR ∪ NR)-hypergraph G by the graph:

≺G≻ := { s
a

−→ t | ast ∈ G ∧ a ∈ TR }

∪ { s
Ai,j
−→ t | A ∈ NR ∧ 1 ≤ i, j ≤ ̺(A) ∧

∃ s1, . . ., s̺(A), As1. . .s̺(A) ∈ H ∧ s = si ∧ t = sj } .

This allows us to define the splitting of R by the 2-grammar:

≺R≻ := { (1, Ai,j , 2) −→ hi,j(R(A)i,j) | A ∈ NR ∧ 1 ≤ i, j ≤ ̺(A) }

where for i 6= j ,

R(A)i,j := { s
a

−→
≺R(A)≻

t | s 6= j ∧ t 6= i ∧ s, t 6∈ {1, . . ., ̺(A)} − {i, j} }

with hi,j the vertex renaming of R(A)i,j defined by

hi,j(i) = 1 , hi,j(j) = 2 , hi,j(x) = x otherwise,

and R(A)i,i := { s
a

−→
≺R(A)≻

t | t 6= i ∧ s, t 6∈ {1, . . ., ̺(A)} − {i} }

∪ { s
a

−→ 0 | s
a

−→
≺R(A)≻

i }

with hi,i the vertex renaming of R(A)i,i defined by

hi,i(i) = 1 , hi,i(0) = 2 , hi,i(2) = 0 , hi,i(x) = x otherwise.

We then put ≺R≻ into the reduced form of Section 2.

; ; ;

a
1

2

1

2

A2,1

1

2

1

2

a
1

2

1

2

1

2

1

2

A1,3 A1,2A1,2 A2,1

A1,3b

A2,1A1,2 c
A2,3

dA2,3

Figure 4.2 Splitting in reduced form of the graph grammar of Figure 4.1 .

Note that |≺R≻| =
∑

A∈NR
̺(A)2 ≤ ̺ 2

R

and ℓ≺R≻ ≤
∑

A∈NR
̺(A)2 |R(A)|2 ≤ ̺ 2

R ℓ 2
R .

So the splitting transformation is polynomial and is also language equivalent.

Proposition 4.3 For any graph grammar R, any (TR ∪ NR)-hypergraph H and

any s, t ∈ VH , we have L(Rω(H), s, t) = L(≺R≻ω(≺H≻), s, t) .

Proposition 4.3 and Proposition 3.2 imply the well-known fact that the languages
recognized (from and to a vertex) by regular graphs are exactly the context-
free languages. But the judiciousness of Proposition 4.3 is that we can apply
Theorem 3.1 and Corollary 3.5 to compute values of regular graphs. Let us
extend Corollary 3.3.

Corollary 4.4 For the semiring (IR ∪ {−ω, ω}, Min, +, ω, 0), any graph gram-

mar R, any left hand side X and any vertices i, j ∈ VX , the shortest path prob-

lem [[Rω(X), i, j]] can be solved in O(̺ 4
R ℓ 4

R), and in O(̺ 4
R ℓ 2

R) when Rω(X)
is acyclic.

Corollary 4.4 is just a particular path problem which can be solved with poly-
nomial complexity by using Proposition 4.3 with Theorem 3.1 or Corollary 3.5.
To summarize the shortest path problem from devices generating context-free
languages, we got the complexity

O(n2) for any context-free grammar,
O(n2) for any 2-grammar generating an acyclic graph,
O(n4) for any 2-grammar,
O(n6) for any graph grammar generating an acyclic graph,
O(n8) for any graph grammar,
O(n18) for any pushdown automaton.

These algorithms result from a pumping argument: Theorem 3.1.
Of course, the complexity of the shortest path problem for pushdown automata
would be improved. In this paper, we focus on path algorithms starting from
graph grammars over semirings. We thank an ‘anonymous’ referee for this con-
clusion.
Note that the semiring approach cannot be used for computing the throughput
value of cf-languages; a polynomial solution to this particular problem has been
given in [2].

Many thanks to Antoine Meyer for his help in the writing of this paper.

References

[1] D. Caucal On the regular structure of prefix rewriting, Theoretical Computer
Science 106, 61–86 (1992).

[2] D. Caucal, J. Czyzowicz, W. Fraczak and W. Rytter Efficient computation

of throughput values of context-free languages, 12th CIAA, to appear in LNCS (2007).

[3] B. Courcelle Infinite graphs of bounded width, Mathematical Systems Theory 21-
4, 187–221 (1989).

[4] J. Esparza, S. Kiefer and M. Luttenberger On fixed point equations over

commutative semirings, 24th STACS, LNCS 4393, W. Thomas, P. Weil (Eds.), 296–
307 (2007).

[5] M. Hopkins and D. Kozen Parikh’s theorem in commutative Kleene algebra,
14th LICS, IEEE, G. Longo (Ed.), 394–401 (1999).

[6] D. Muller and P. Schupp The theory of ends, pushdown automata, and second-

order logic, Theoretical Computer Science 37, 51–75 (1985).

[7] R. Parikh On context-free languages, JACM 13-4, 570–581 (1966).

[8] D. Pilling Commutative regular equations and Parikh’s theorem, J. London Math
Soc 6-4, 663–666 (1973).

[9] W. Thomas A short introduction to infinite automata, 5th DLT 01, LNCS 2295,
W. Kuich, G. Rozenberg, A. Salomaa (Eds.), 130–144 (2001).

