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1 Université de Lausanne, Switzerland
jduparc@unil.ch

2 Warsaw University, Poland
fmurlak@mimuw.edu.pl

Abstract. We show that the family of tree languages recognized by
weak alternating automata is closed by three set theoretic operations
that correspond to sum, multiplication by ordinals < ωω, and pseudo-
exponentiation with the base ω1 of the Wadge degrees. In consequence,
the Wadge hierarchy of weakly recognizable tree languages has the height
of at least ε0, that is the least fixed point of the exponentiation with the
base ω.

1 Introduction

Topological hierarchies stormed into the theory of formal languages with Klaus
Wagner’s fundamental works on regular ω-languages [16, 17]. The incredible co-
incidence of the Wagde hierarchy and the index hierarchy for these languages
encouraged further investigation of the Wadge hierarchies of wider classes of
ω-languages, corresponding to more powerful recognizing devices: push-down
automata and Turing machines [3, 4, 13]. It was only a matter of time before
the same questions were asked for tree languages. Deterministic languages, an
acclaimed “easy” subclass, were considered first. Albeit more complex, they ad-
mitted a number of techniques developed for ω-languages. Soon, the Borel hierar-
chy, the Wadge hierarchy, and the index hierarchy of deterministic tree languages
were described and proved decidable [7–10].

The real challenge seems to be nondeterminism. The power it gives to tree
automata makes them extremely difficult to tackle. Therefore, the investigation
has basically concentrated on a very special sub-case – weakly recognizable lan-
guages. This class is the intersection of Büchi and co-Büchi languages [6, 12], so
it is a rather small subclass of all regular tree languages. In fact, it does not
even contain all deterministic languages. On the other hand, it captures some
real nondeterminism, as it contains a lot of languages that cannot be recognized
by deterministic automata: Skurczyński showed that weakly recognizable lan-
guages can have any finite Borel rank [14], while deterministic languages are
either Π1

1 -complete or are in Π0
3 [9].
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More precisely, Skurczyński gave examples of Π0
n and Σ0

n-complete languages
recognized by weak alternating automata using ranks [0, n] and [1, n+1] accord-
ingly. In this paper we extend this result by showing that weak automata using
ranks [0, n] can only recognize Π0

n languages, and dually [1, n + 1]-automata
can only recognize Σ0

n languages. (One may conjecture that the converse also
holds, i. e., every weakly recognizable Π0

n language can be recognized by a [0, n]-
automaton, and dually for the additive classes.) We actually prove a bit stronger
result. We consider so called weak game languages W[ι,κ], to which all languages
recognized by weak [ι, κ]-automata can be reduced. We show that W[0,n] ∈ Π0

n

and W[1,n+1] ∈ Σ0
n (by Skurczyński’s results, they are hard for these classes).

The languages W[ι,κ] are natural weak counterparts of strong game languages
considered lately by Arnold and Niwiński. The strong game languages also form
a strict hierarchy, but they are all non-Borel [1].

The main result of this paper is a lower bound for the Wadge hierarchy of
weakly recognizable languages. We show that weakly recognizable languages are
closed by three set-theoretic operations corresponding to the sum, multiplication
by ordinals < ωω and pseudo-exponentiation with the base ω1 of the Wadge
degrees. As a consequence, the hierarchy has the height of at least ε0, which
is the least fixpoint of the exponentiation with the base ω. Again, this should
be contrasted with the height of the hierarchy of deterministic tree languages,
which is as low as (ωω)3 + 3.

2 Weak Alternating Automata

A tree over Σ is a partial function t : X∗(→ Σ with a prefix closed domain. For
the purpose of this paper we call such trees conciliatory. We do that to remind
the reader that we are working with the trees that may have infinite and finite
branches. A tree t is full if dom t = X∗. A tree is called binary if X = {0, 1}.
Let TΣ denote the set of full binary trees over Σ, and let T̃Σ be the set of all
conciliatory binary trees over Σ. By t.v we denote the subtree of t rooted in
v ∈ dom t.

A weak alternating automaton A = 〈Σ,Q∃, Q∀, q0, δ, rank〉 consists of a finite
input alphabet Σ, a finite set of states Q partitioned into existential states Q∃
and universal states Q∀, an initial state q0, a transition relation δ ⊆ Q × Σ ×
{0, 1, ε} × Q, and a priority function rank : Q → [ι, κ], where [ι, κ] stands for

{ι, ι+1, . . . , κ}. The transitions of the automaton are usually written as p
σ,d−→ q,

instead of (p, σ, d, q) ∈ δ.
The run of the automaton A on a conciliatory input tree t ∈ T̃Σ is a finitely

branching conciliatory tree ρt labeled with Q× {0, 1, ε}. The root of the tree is
labeled with (q0, ε). Suppose we have already labeled a node X of ρt. Let (p1, d1),
(p2, d2), . . . , (pm, dm) be the sequence of labels on the unique path leading form
the root to X. Let v = d1d2 . . . dm, where the ε’s occurring in the sequence
d1d2 . . . dm are interpreted as empty words. If v /∈ dom t, then X is a leaf in ρt.

Otherwise, for each transition pm
t(v),d−→ q, add a child Y to the node X and label
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it with (q, d). Note that the number of children of each node can by bounded by
3|Q|.

The reader should not be puzzled by the fact that leaves of ρt do not cor-
respond to any nodes of t. This is a notorious inconvenience in automata on
finite objects: the number of states visited always exceeds by one the number of
letters read. Let us imagine that cutting off a subtree produces a stub, and this
is where the leaves of ρt dwell.

The accepting runs are defined by means of a modified weak parity game.
Let ρ be a run of A. The game Gρ is played by Adam and Eve on the tree ρ.
They move a token along the edges of the tree, starting from the root. The move
is always made by the owner of the node: if the current node is labeled with
a state from Q∃, it is Eve who moves the token to the next node, otherwise it is
Adam. The play is infinite, unless it reaches a leaf. A play is won by Eve if the
maximum of the ranks of states seen on the labels of visited nodes is even. Note
that classically, when a play is finite, the owner of the last position looses. Here,
we give no special rules for finite plays: the highest rank decides.

A run ρ is accepting if Eve has a winning strategy in the game Gρ. A tree t
is accepted by the automaton if ρt is accepting. The language recognized by the
automaton, L(A), is the set of accepted trees. A language is weakly recognizable
if it is recognized by a weak alternating automaton.

While our automata work on conciliatory trees, the classical automata work
on full binary trees. Instead of L(A) one considers Lω(A) = L(A)∩TΣ . In order
to relate the two versions we have to disguise conciliatory trees to make them
look full.

Consider TΣ∪{s}, where s stands for “skip”. For a tree t ∈ TΣ∪{s} we will
define a conciliatory tree u(t), called the undressing of t. Informally, we want
to omit the skips in a top-down manner. Suppose we are in a node v such that
t(v) = s. We would like to ignore this node and replace it with the next one,
but in case of trees we have two nodes to choose from: v0 and v1. Let us always
choose v0. Another problem is that we may encounter an infinite sequence of s’s.
This would keep us replacing the current node with its left child, and never get
to a symbol different from s. In that case, the tree u(t) simply does not contain
this node. Now, let us see a formal definition. Let v be the first node not labeled
with s on the leftmost path of t (if there is no such node, u(t) is empty). For
each w ∈ {0, 1}∗ consider two possibly infinite sequences:

– v0 = v, w0 = w,
– vi+1 = vib, wi+1 = w′i if wi = bw′i and t(vib) 6= s,
– vi+1 = vi0, wi+1 = wi if wi = bw′i and t(vib) = s.

If wn = ε for some n, then w ∈ domu(t) and u(t)(w) = t(vn). Otherwise,
w /∈ domu(t). For a conciliatory language L, define Ls as the set of trees that
belong to L after undressing, i. e., Ls = {t ∈ TΣ∪{s} : u(t) ∈ L}.

An automaton A can be transformed easily into A′ such that Lω(A′) =
(L(A))s. Simply, whenever you see a node labeled with s, move deterministically
to the left without changing the state. In other words, it is enough to add {q s,0−→
q : q ∈ Q} to the transition relation of A.
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3 Games, Hierarchies, and Topology

Let us start this section with the definition of a conciliatory version of the
Wadge game (see [2]). For any pair of conciliatory tree languages L,M the game
GC(L,M) is played by Spoiler and Duplicator. Each player builds a tree, tS and
tD respectively. In every round, first Spoiler adds a finite number of nodes to
tS and then Duplicator adds a finite number of nodes to tD. Nodes added by
Duplicator and Spoiler must be children of nodes previously added. Both players
are allowed to skip, i. e., add no nodes to their trees. Duplicator wins the game
if tS ∈ L ⇐⇒ tD ∈M . Note that the resulting trees are conciliatory: they may
contain finite branches, or even be finite.

For conciliatory languages L,M we use the notation L ≤C M iff Duplicator
has a winning strategy in the game GC(L,M). If L ≤C M and M ≤C L, we will
write L ≡C M . The conciliatory hierarchy is the order induced by ≤C on the
≡C classes of conciliatory languages.

The classical Wadge game GW (L,M) is defined for languages of full infinite
trees, therefore a restriction on the moves is needed. The players must add both
child nodes under each node they had put in the previous round. Only Duplicator
is allowed to skip, and he must not skip forever. He must make infinitely many
real moves, so that the tree he constructs is full.

The classical Wadge games provide a well-known criterion for continuous
reducibility. TΣ and the space of ω-words over Σ are equipped with the standard
Cantor-like topology. For trees it is induced by the metric

d(s, t) =
{

2−min{|x| : x∈{0,1}∗, s(x) 6=t(x)} if s 6= t ,
0 if s = t .

L is continuously reducible (or Wadge reducible) to M , if there exists a continuous
function ϕ such that L = ϕ−1(M). We will write L ≤W M , if L is Wadge
reducible to M . Similarly we define ≡W and <W . The Wadge hierarchy is the
order induced on ≡W classes of languages.

Lemma 1 (Wadge). For L,M ⊆ TΣ, L ≤W M iff Duplicator has a winning
strategy in GW (L,M).

The conciliatory hierarchy embeds naturally into the Wadge hierarchy by the
mapping L 7→ Ls. A strategy in one game can be translated easily to a strategy
in the other: arbitrary skipping in GC(L,M) gives the same power as the s labels
in GW (Ls,Ms).

Lemma 2. For all conciliatory languages L and M , L ≤C M ⇐⇒ Ls ≤W Ms.

Recall that a language L is called self dual if it is equivalent to its complement
L{. The conciliatory hierarchy does not contain self dual languages: a strategy
for Spoiler in GC(L,L{) is to skip in the first round, and then copy Duplicator’s
moves. By the lemma above, Ls is non self dual in terms of ordinary Wadge
reducibility. Altogether, this shows that the conciliatory languages correspond
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to certain non self dual languages. Which ones? For sets of infinite words of the
finite Borel ranks – all of them.

A conciliatory word language is simply L ⊆ Σ≤ω = Σ∗ ∪ Σω, i. e. a set of
finite or infinite words. As for trees, we define Ls as the set of words over Σ∪{s},
such that when we ignore all the s we obtain a word (finite or infinite) from L.
Obviously, Lemma 2 holds also for words, but – as we have already disclosed –
we get much more than that.

Theorem 1. (Duparc [2]) For every L ⊆ Σω of finite Borel rank, L is non self
dual iff there exists F ⊆ Σ∗ such that L ≡W (F ∪ L)s.

In particular, an ω-language of finite Borel rank is non self dual iff it is Wadge
equivalent to a disguised conciliatory set. From the theorem above it follows that
this also holds for tree languages.

Corollary 1. For every L ⊆ TΣ of finite Borel rank, L is non self dual iff
L ≡W Cs for some conciliatory language C.

Proof. First, observe that L is Wadge equivalent to Lw, which is the set of
sequences obtained by writing down the trees from L level by level from left to
right. The “writing down” and its inverse are suitable continuous reductions. By
Theorem 1, Lw is equivalent to (Lw ∪ F )S for some set of finite words F . Now,
we need a conciliatory tree language C, equivalent to Lw ∪F . For a conciliatory
tree t let fixed(t) denote the sequence obtained by writing down the tree level
by level from left to right until the first missing node is found. Note that fixed(t)
is infinite iff t is a full tree. Let C = {t ∈ T̃Σ : fixed(t) ∈ Lw ∪ F}. The identity
function reduces L to Cs, so Cs ≥W L ≡W Lw ∪ F . Let us prove the converse
inequality.

We will consider a mixed game G(Cs, (Lw∪F )s). (Formally, instead of (Lw∪
F )s one can take a Wadge equivalent language T (Lw ∪ F ), consisting of trees
which have the leftmost path in (Lw∪F )s.) A winning strategy for Duplicator is
to undress on-line the tree tS constructed by Spoiler and write it down level by
level, from left to right. When Duplicator finds a missing node, he plays s until
Spoiler plays the missing node. At the end of the play, fixed(u(tS)) = u(wD).
Hence, tS ∈ Cs ⇐⇒ wD ∈ (Lw ∪ F )s. ut

Let us end this section by recalling the notion of the Wadge degree. Since the
Wadge ordering is well-founded [5], one may proceed by induction:

– dW (∅) = dW (∅{) = 1,
– dW (L) = sup{dW (M) + 1 : M is non self dual, M <W L} for L >W ∅.

The conciliatory degree of a language is defined analogously:

– dC(∅) = dC(∅{) = 1,
– dC(L) = sup{dC(M) + 1 : M <C L} for L >C ∅.

By Corollary 1, for conciliatory L such that Ls has finite Borel rank, dC(L) =
dW (Ls). This observation lets us work with the conciliatory hierarchy instead
of the Wadge hierarchy, as long as we restrict ourselves to non self dual sets of
finite Borel ranks.
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4 Up and Down the Hierarchy

In this section we present a handful of set-theoretical operations. Four of them
will be the main tools in the remaining of the paper.

First, note that the choice of the alphabet Σ is of no importance. Let Σ and
Σ′ be finite alphabets containing at least two letters. For any language L over Σ
(conciliatory or not), one can find an equivalent language L′ over Σ′. Further-
more, if L is recognized by an automaton, so can be L′, and the construction
of the new automaton is effective. Therefore, without loss of generality we may
assume Σ = {a, b}.

For L,M ⊆ T̃Σ define M + L as the set of trees t ∈ T̃Σ satisfying any of the
following conditions:

– t.0 ∈ L and t(10n) = a for all n,
– 10n is the first node on the path 10∗ labeled with b and either t(10n0) = a

and t.10n00 ∈M or t(10n0) = b and t.10n00 ∈M{.

When playing a conciliatory Wadge game, being in charge of the language M+L
is like being in charge of L with one extra move that erases everything played so
far and replaces L with M or M{. This move can be played only once during the
play, and is executed by playing b on the path 10∗ for the first time. By choosing
the next letter on this path we make choice between M and M{.

The next operation is a generalization of the previous one. It lets a player
choose from a countable collection of languages. Let Ln ⊆ T̃Σ for n < ω. Define
supn<ω Ln as the set of trees t ∈ T̃Σ satisfying one of the following conditions:

– t(1n) = a for all n,
– 1n is the first node on 1∗ labeled with b and t.1n0 ∈ Ln.

Note that supn<ω Ln is conciliatory, even if the languages Ln contain only full
trees.

The multiplication by countable ordinals is defined as an iterated sum:

– L · 1 = L,
– L · (α+ 1) = L · α+ L,
– L · λ = supγ<λ L · γ for limit ordinals λ.

Finally let us define the pseudo-exponentiation. Let L ⊆ T̃Σ . For t ∈ T̃Σ let

i(t)(a1a2 . . . an) =
{
t(a10a2 . . . 0an0) if ∀k t(a10a2 . . . 0an1k) = a
s if ∃k t(a10a2 . . . 0an1k) = b

.

Intuitively, the rightmost path starting in a10a2 . . . 0an tells us whether to skip
the node a10a2 . . . 0an0 or not. Let

expL = {t ∈ T̃Σ : u(i(t)) ∈ L} .
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A player in charge of expL is like a player in charge of L with an extra possibility
to decide that a chosen node labeled in the past (and the subtree rooted in its
right child) is to be ignored.

The names of the operations and the notation used make the following the-
orem rather expected.

Theorem 2 (Duparc [2]). For L,M ⊆ T̃Σ, Ls,Ms Borel of finite rank, and
a countable ordinal α it holds that dC(L + M) = dC(L) + dC(M), dC(L · α) =
dC(L) · α and dC(expL) = ω

dC(L)+ε
1 , where

ε =

−1 if dC(L) < ω
0 if dC(L) = β + n and cofβ = ω1

+1 if dC(L) = β + n and cofβ = ω
.

A kind of inverse operation for expL was introduced in [2]. The operation
relies on auxiliary moves and involves games where players must, along with
playing letters as usual, answer questions about the future of the play. One may
easily imagine that when the opponent asks questions like this, it may be much
more difficult to win. For convenience, we describe this operation on infinite
words, but it can easily be modified to apply to infinite trees (via the usual
correspondence between infinite sequences and trees with finite branching).

Let us define the space in which the player evolves when answering questions
about the future of the play. We call such a space a question tree. We will be
working with non-labeled trees, which are simply prefix closed subsets of X∗ for
a fixed set X. A tree is pruned if it has no finite branches. For a finite or infinite
word x = x0x1x2 . . . we write x

2 for the word x0x2x4 . . . = 〈x2i : i < |x|/2〉.

Definition 1. A question tree related to an alphabet Σ is a non-labeled non-
empty pruned tree T ⊆ (Σ′)ω, with Σ′ = Σ ∪ {〈!w〉 : w ∈ Σ} ∪ {〈?〉}, satisfying
for every node u ∈ T :

if |u| is even, then u = vσ for some σ ∈ Σ (these nodes correspond to the
main play),

if |u| is odd, then it is an auxiliary move with two different kinds of options:
〈!〉 u = v 〈!w〉 for some w ∈ Σ∗ extending u

2 . In this case we demand that
any node u′ ∈ T extending u satisfies u′

2 v w or w v u′

2 . Moreover, we
require that for any v 〈!w′〉 ∈ T either w′ = w or w′ 6v w ∧ w 6v w′.

〈?〉 u = v 〈?〉. This is an option to avoid all positions of the form v 〈!w〉.
Formally, for each u′ ∈ T extending v 〈?〉 and each w such that v 〈!w〉 ∈
T , w 6v u′

2 .

Recall that [T ] denotes the set of branches of T . Notice that for every infinite
word x ∈ Σω there exists a unique infinite branch y ∈ [T ] such that y

2 = x.
In even moves a player moving along a question tree simply plays letters

from Σ, just like in an ordinary play. In odd moves, everything looks like his
opponent were asking him questions of the form: “Do you intend to stay forever
in this closed subset of Σω? If you are willing to exit, let me know which of the
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positions I submitted to you, you intend to reach.” So, the player can choose
〈!v′〉 and say: “OK, I’m going to reach this position v”, or taking the option 〈?〉
he may answer: “No, I won’t reach any of these, I will rather stay out of the open
set formed by the union of the basic open sets vΣω for all positions v you are
asking me about.” Taking the latter option means remaining in the complement
of this open set, hence in a closed subset of Σω.

Definition 2. Let L ⊆ Σω and T be a question tree on Σ′ related to Σ. LT
consists of x ∈ (Σ′)ω such that x ∈ [T ] ∧ x

2 ∈ L or x /∈ [T ] ∧ ∃x′ (wx′ ∈
[T ] ∧ wx′

2 ∈ L) where w is the longest prefix of x that belongs to T .

The definition of LT may seem a bit awkward. We defined it this way so that
Duplicator still has a winning strategy in the restricted version of the Wadge
game GW (LT , LT ), where Duplicator is not allowed to exit the question tree
T , while Spoiler can play anything he wants. Hence, a player in charge of LT in
a Wadge game has a winning strategy if and only if he has a winning strategy
that always remains inside T . Therefore in the sequel we always assume that
a strategy involving a set of the form LT remains in the underlying question
tree; in other words it restricts its moves to the legal ones.

For any L ⊆ Σω and any question tree T related to Σ, LT ≤W L. In
particular, whenever L is Borel, LT is Borel too.

Definition 3. Let L ⊆ Σω be Borel, logL stands for a <W -minimal element of
the form LT where T ranges over all question trees related to Σ.

In [2] it is proved that for a fixed L all <W -minimal sets of the form LT are
Wadge equivalent. However, L 7→ logL is an operation only if we make it func-
tional, which requires the full Axiom of Choice. Since this functional character
is not needed in the proofs, we insist on the fact that logL is just a notational
convenience and none of the foregoing proofs involving it requires the Axiom of
Choice.

The operation log preserves the Wadge ordering.

Proposition 1. For L,M ⊆ Σω Borel, L ≤W M =⇒ logL ≤W logM .

For the present application the key property of the operation log is the following.

Proposition 2. Let L ⊆ Σω,

L is Π0
n+1-complete ⇐⇒ logL is Π0

n-complete,
L is Σ0

n+1-complete ⇐⇒ logL is Σ0
n-complete.

Actually, the operation is even finer: it is a precise counterpart of the pseudo-
-exponentiation. We state the following result for tree languages despite the
fact it was proved for word languages in [2]. The extension to tree languages is
straightforward.
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Proposition 3. Given L a (full) tree language, and M a conciliatory tree lan-
guage, with L,Ms both Borel,

logL ≤W Ms ⇐⇒ L ≤W (expM)s ,
Ms ≤W logL ⇐⇒ (expM)s ≤W L .

5 Weak Index vs. Borel Rank

Fix a natural number N . Let us call a game-tree, a N -ary tree T whose nodes
are boxes or diamonds equipped with ranks. For ι = 0, 1 and κ > ι let W[ι,κ]

be the set of all game-trees T with ranks inside [ι, κ] and such that Eve has
a winning strategy in the underlying weak parity game.

Theorem 3. For each n, W[0,n] ∈ Π0
n and W[1,n+1] ∈ Σ0

n.

Proof. By the determinacy of parity games, (W[0,n]){ ≡W W[1,n+1]. Hence, it is
enough to prove the claim for ranks inside [0, n]. The proof goes by induction
with respect to n.

Let us first see that W[0,1] is closed. Let tk denote the restriction of a tree t
to its k first levels. By Weak König Lemma, Adam has a winning strategy in t
iff for some k, Adam has a winning strategy in tk. This means that if a tree t
does not belong to W[0,1], then one already knows it after looking at some finite
initial part of it. This is precisely the condition that defines closed sets.

Let T be a question tree defined as follows. Given any game tree t with ranks
inside [0, n+ 1], for each node u in t which is the first node on this branch with
priority n, T asks the question whether Adam or Eve would have a winning
strategy if the game were to start from this particular node. By what we have
already proved, if n is even, “Eve has a winning strategy” is a closed condition
and if n is odd, “Adam has a winning strategy” is a closed condition. Hence, the
question above is legal.

Fix a tree T over Σ ∪ {〈!w〉 : w ∈ Σ} ∪ {〈?〉}, where Σ = {♦,�} × [0, n+ 1],
which answers questions asked by T (strictly speaking this means the one and
only play inside T which corresponds to T ). Let us construct a tree t′ over
{♦,�} × [0, n] which is exactly the same as T except that for each node u as
above: if the answer is “Adam has a winning strategy”, every node in the subtree
rooted in u receives the rank n for odd n’s and n−1 for even n’s, and if the answer
is “Eve has a winning strategy” – the other way round. This gives a continuous
reduction of W T[0,n+1] to W[0,n].

Hence, logW[0,n+1] ≤W W T[0,n+1] ≤W W[0,n]. By induction hypothesis we
have W[0,n] ∈ Π0

n, and in consequence W[0,n+1] ∈ Π0
n+1. ut

As a corollary we get the promised improvement of Skurczyński’s result [14].

Corollary 2. For every weak alternating automaton with ranks inside [0, n]
(resp. [1, n+ 1]) it holds that Lω(A) ∈ Π0

n (resp. Lω(A) ∈ Σ0
n).
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Proof. Let A be an automaton with priorities inside [ι, κ]. For sufficiently large
N we may assume without loss of generality that the runs of the automaton are
N -ary trees. By assigning to an input tree the run of A, one obtains a continuous
function reducing Lω(A) to W(ι,κ). Hence, the claim follows from the theorem
above. ut

The results described in this section give yet another argument to one of
the opposing parties in the everlasting dispute between the big-endians and the
little-endians of game theory. Had we defined a play to be winning for Eve if the
lowest rank was even, the correspondence between the indices and Borel classes
would be rather ugly.

6 Three Simple Constructions

Let A, B be weak alternating tree automata. As it was explained in the beginning
of Sect. 4, we may assume without loss of generality that the automata have
the same input alphabet Σ = {a, b}. We will construct automata recognizing
languages equivalent (in the conciliatory sense) to L(B) + L(A), L(A) · ω, and
expL(A).

Sum. Consider the automaton B + A defined on Fig. 1. The diamond states
are existential and the box states are universal. The circle states can be treated
as existential, but in fact they give no choice to either player. The transitions
leading to A, B and B{ should be understood as transitions to the initial states of
the according automata. The priority functions of B and B{ might need shifting
up, so that they were not using the value 0. It is easy to check that L(B+A) =
L(B) + L(A).

Multiplication by ω. The automaton A · ω is shown on Fig. 1. The language
recognized by A · ω consists of trees having no b’s on the path 1∗ or satisfying
the following conditions for some 0 < i ≤ k and n:

– 1k is the first node labeled with b on the path 1∗,
– i is minimal such that for all i < j ≤ k the path 1j0+ contains no b’s,
– 1i0n is the first node labeled with b lying on the path 1i0+,
– either t(1i0n0) = a and t.1i0n00 ∈ L(A) or t(1i0n0) = b and t.1i0n00 ∈
L(A){.

Let Lk denote the set of trees satisfying the four conditions above for a fixed
k. Observe that Lk ≡W ∅ + L(A) · k. Intuitively, we cannot use the subtrees
rooted in 10, 110, . . . , 1k0 together, because making the first nontrivial move in
the subtree rooted in 1i0 (putting the first b on the path 1i0+) makes the subtrees
rooted in 10, 110, . . . , 1i−10 irrelevant. The best we can do is to use them one by
one, and this gives exactly the power of ∅+ L(A) · k.

Now, consider GC(L(A) · ω,L(A · ω)). By definition, L(A) · ω consists of
trees having no b on the rightmost path, or such that 1k is the first node on
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Fig. 1. The automata B +A and A · ω.

this path labeled with b, and t.1k0 ∈ L(A) · k. Consider the following strategy
for Duplicator. First, only observe the rightmost path of Spoiler’s tree tS . While
Spoiler plays a’s, keep playing a’s in tD (Duplicator’s tree). If Spoiler never plays
a b, Duplicator wins. Suppose Spoiler plays his first b in the node 1k. Duplicator
should also play b in the node 1k. Now, the result of the play depends only on
whether tS .1k0 ∈ L(A) · k ⇐⇒ tD ∈ Lk, and Duplicator should simply use the
strategy from GC(L(A) · k, Lk).

In the game GC(L(A · ω), L(A) · ω)) the only difference is that Duplicator
should play one more a: if Spoiler plays the first b on the rightmost path in the
node 1k, then Duplicator should put his first b in 1k+1, so that he can later use
the strategy from GC(Lk, L(A) · (k + 1)).

Pseudo-exponentiation. Both previous constructions were performed by combin-
ing two or three automata with a particularly chosen gadget. The automaton
expA is a bit more tricky. This time, we have to change the whole structure
of the automaton. Instead of adding one gadget, we replace each state of A by
a different gadget.

The gadget for a state p is shown on Fig. 2. By replacing p with the gad-
get we mean that all the transitions ending in p should now end in p′ and all
the transitions starting in p should start in p′′. Note that the state p′′ is the
place where the original transition is chosen, so p′′ should be existential iff p is
existential. It is not difficult to see that expA recognizes exactly expL(A).
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Fig. 2. The gadget to replace p in the construction of expA. The state p′′ is existential
iff p is existential, i = rank p, and j is the least even number greater or equal to i.

7 A Lower Bound

In the previous section we have shown that weakly recognizable languages are
closed by sum, multiplication by ω, and pseudo-exponentiation with the base ω1.
By iterating finitely many times sum and multiplication by ω we obtain closure
by multiplication by ordinals of the form ωnkn + . . .+ωk1 + k0, i.e., all ordinals
less then ωω. In other words, we can find a weakly recognizable language of any
conciliatory degree from the closure of {1} by ordinal sum, multiplication by
ordinals < ωω and pseudo-exponentiation with the base ω1. It is easy to see that
the order type of this set is not changed if we replace pseudo-exponentiation with
ordinary exponentiation α 7→ ωα1 . This in turn is isomorphic with the closure of
{1} by ordinal sum, multiplication by ordinals < ωω, and exponentiation with
the base ωω. This last set is obviously ε0, the least fixpoint of the exponentiation
with the base ω.

By Lemma 2 and the final remark of Sect. 2 it follows that the mapping
L 7→ Ls embeds the conciliatory hierarchy of weakly recognizable languages into
the Wadge hierarchy of weakly recognizable languages of full trees. Hence, we
obtain the main result of this paper.

Theorem 4. The Wadge hierarchy of weakly recognizable tree languages has the
height of at least ε0.

Our intuition tells us the bound is tight, but we have no evidence for that.
The question of the exact height of the hierarchy for weak automata remains
open.



13

Acknowledgments

The first author would like to express his gratitude to David Janin who inci-
dentally made him initiate this study of the hierarchy of weak alternating tree
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