Skip to main content

Learning Basic Patterns from Repetitive Texture Surfaces Under Non-rigid Deformations

  • Conference paper
Image Analysis and Recognition (ICIAR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4633))

Included in the following conference series:

Abstract

In this paper, we approach the problem of determining the basic components from repetitive textured surfaces undergoing free-form deformations. Traditional methods for texture modeling are usually based on measurements performed on fronto-parallel planar surfaces. Recently, affine invariant descriptors have been proposed as an effective way to extract local information from non-planar texture surfaces. However, affine transformations are unable to model local image distortions caused by changes in surface curvature. Here, we propose a method for selecting the most representative candidates for the basic texture elements of a texture field while preserving the descriptors’ affine invariance requirement. Our contribution in this paper is twofold. First, we investigate the distribution of extracted affine invariant descriptors on a nonlinear manifold embedding. Secondly, we describe a learning procedure that allows us to group repetitive texture elements while removing candidates presenting high levels of curvature-induced distortion. We demonstrate the effectiveness of our method on a set of images obtained from man-made texture surfaces undergoing a range of non-rigid deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Neural Information and Processing Systems (NIPS), pp. 585–591 (2001)

    Google Scholar 

  2. Bhalerao, A., Wilson, R.: Affine invariant image segmentation. In: British Machine Vision Conference (BMVC) (2004)

    Google Scholar 

  3. Carcassoni, M., Ribeiro, E., Hancock, E.R.: Texture recognition through modal analysis of spectral peak patterns. In: IEEE International Conference on Pattern Recognition (ICPR), vol. 1, p. 10243 (2002)

    Google Scholar 

  4. Chetverikov, D., Foldvari, Z.: Affine-invariant texture classification. In: IEEE International Conference on Pattern Recognition (ICPR), Washington, DC, p. 3901. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  5. Cula, O., Dana, K.J.: 3D texture recognition using bidirectional feature histograms. International Journal of Computer Vision 59, 33–60 (2004)

    Article  Google Scholar 

  6. Dempster, A., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal Royal Stat. Soc., Series B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  7. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  8. Guskov, I., Klibanov, S., Bryant, B.: Trackable surfaces. In: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 251–257. ACM Press, New York (2003)

    Google Scholar 

  9. Hays, J., Leordeanu, M., Efros, A.A., Liu, Y.: Discovering texture regularity as a higher-order correspondence problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 522–535. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Jenkins, O.C., Matari, M.J.: A spatio-temporal extension to isomap nonlinear dimension reduction. In: Int’l Conference on Machine Learning, vol. 56 (2004)

    Google Scholar 

  11. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)

    Google Scholar 

  12. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1265–1278 (2005)

    Article  Google Scholar 

  13. Leung, T., Malik, J.: Recognising surfaces using three-dimensional textons. In: IEEE International Conference on Computer Vision, pp. 1010–1017. IEEE Computer Society Press, Los Alamitos (1999)

    Chapter  Google Scholar 

  14. Lin, W.-C., Liu, Y.: Tracking dynamic near-regular textures under occlusion and rapid movements. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, Springer, Heidelberg (2006)

    Google Scholar 

  15. Liu, C.B., Lin, R.S., Ahuja, N., Yang, M.H.: Dynamic textures synthesis as nonlinear manifold learning and traversing. In: British Machine Vision Conference (BMVC), pp. 859–868 (2006)

    Google Scholar 

  16. Liu, Y., Lin, W.-C., Hays, J.H.: Near regular texture analysis and manipulation. ACM Transactions on Graphics (SIGGRAPH 2004) 23(3), 368–376 (2004)

    Article  Google Scholar 

  17. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  18. Rahimi, A., Recht, B., Darrell, T.: Learning appearance manifolds from video. In: CVPR. IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 868–875 (2005)

    Google Scholar 

  19. Ribeiro, E., Hancock, E.: Shape from periodic texture using the eigenvectors of local affine distortion. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(12), 1459–1465 (2001)

    Article  Google Scholar 

  20. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  21. Schaffalitzky, F., Zisserman, A.: Geometric grouping of repeated elements within images. In: Shape, Contour and Grouping in Computer Vision, pp. 165–181 (1999)

    Google Scholar 

  22. Souvenir, R., Pless, R.: Isomap and nonparametric models of image deformation. In: IEEE Workshop on Motion and Video Computing, vol. 2, pp. 195–200 (2005)

    Google Scholar 

  23. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  24. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62, 61–81 (2004)

    Google Scholar 

  25. White, R., Forsyth, D.A.: Retexturing single views using texture and shading. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 70–81. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Zhu, S.C., en Guo, C., Wang, Y., Xu, Z.: What are textons? International Journal of Computer Vision 62(1-2), 121–143 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mohamed Kamel Aurélio Campilho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filipovych, R., Ribeiro, E. (2007). Learning Basic Patterns from Repetitive Texture Surfaces Under Non-rigid Deformations. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74260-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74258-6

  • Online ISBN: 978-3-540-74260-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics