Abstract
This paper presents an adaptive mesh generation method from a series of transversal MR images. The adaptation process is based on the construction of a metric from the gray levels of an image. The metric is constrained by four parameters which are the minimum and maximum Euclidian length of an edge, the maximum stretching of the metric and the target edge length in the metric. The initial mesh is a regular triangulation of an MR image. This initial mesh is adapted according to the metric by choosing appropriate values for the previous set of parameters. The proposed approach provides an anisotropic mesh for which the elements are clustered near the boundaries. The experimental results show that the element’s edges of the obtained mesh are aligned with the boundaries of anatomical structures identified on the MR images. Furthermore, this mesh has approximately 80% less vertices than the mesh before adaptation with vertices mainly located in the regions of interest.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Papademetris, X., Sinusas, A.J., Dione, D.P., Constable, R.T., Duncan, J.S.: Estimation of 3-D left ventricular deformation from medical images using biomechanical models. IEEE Transactions on Medical Imaging 21, 786–800 (2002)
Lu, Y., Jiang, T., Zang, Y.: Region growing method for the analysis of functional MRI data. NeuroImage 20, 455–465 (2003)
Xu, M., Thompson, P.M., Toga, A.W.: An Adaptive Level Set Segmentation on a Triangulated Mesh. IEEE Transactions on Medical Imaging 23, 191–201 (2004)
Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, vol. 1, pp. 105–112. IEEE Comput. Soc, Vancouver, BC, Canada (2001)
Wiley, D.F., Hamann, B., Bertram, M.: On a construction of a hierarchy of best linear spline approximations using a finite element approach. IEEE Transactions on Visualization and Computer Graphics 10, 548–563 (2004)
Kreylos, O., Hamann, B.: On simulated annealing and the construction of linear spline approximations for scattered data. IEEE Transactions on Visualization and Computer Graphics 7, 17–31 (2001)
Brankov, J.G., Yongyi, Y., Wernick, M.N.: Tomographic image reconstruction based on a content-adaptive mesh model. IEEE Transactions on Medical Imaging 23, 202–212 (2004)
Yongyi, Y., Wernick, M.N., Brankov, J.G.: A fast approach for accurate content-adaptive mesh generation. IEEE Transactions on Image Processing 12, 866–881 (2003)
Dompierre, J., Labbé, P.: OORT: Objet-Oriented Remeshing Toolkit. MAGNU: Laboratoire de Maillage de Géométrie Numérique, Montréal (2006)
Manole, C.-M., Vallet, M.-G., Dompierre, J., Guibault, F.: Benchmarking second order derivatives recovery of a piecewise linear scalar field. In: Proceedings of the 17th IMACS World Congress Scientific Computation, Applied Mathematics and Simulation (2005)
Desolneux, A., Moisan, L., Morel, J.-M.: Edge Detection by Helmholtz Principle. Journal of Mathematical Imaging and Vision 14, 271–284 (2001)
Courchesne, O.: Génération adaptative de maillage tridimensionnel à partir d’images IRM du tronc humain. Institut de génie biomédical, Vol. Maitrise. École Polytechnique de Montréal, Université de Montréal, Montréal, p. 130 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Courchesne, O., Guibault, F., Dompierre, J., Cheriet, F. (2007). Adaptive Mesh Generation of MRI Images for 3D Reconstruction of Human Trunk. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_92
Download citation
DOI: https://doi.org/10.1007/978-3-540-74260-9_92
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74258-6
Online ISBN: 978-3-540-74260-9
eBook Packages: Computer ScienceComputer Science (R0)