Skip to main content

Training and Application of a Visual Forward Model for a Robot Camera Head

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4520))

Abstract

Visual forward models predict future visual data from the previous visual sensory state and a motor command. The adaptive acquisition of visual forward models in robotic applications is plagued by the high dimensionality of visual data which is not handled well by most machine learning and neural network algorithms. Moreover, the forward model has to learn which parts of the visual output are really predictable and which are not because they lack any corresponding part in the visual input. In the present study, a learning algorithm is proposed which solves both problems. It relies on predicting the mapping between pixel positions in the visual input and output instead of directly forecasting visual data. The mapping is learned by matching corresponding regions in the visual input and output while exploring different visual surroundings. Unpredictable regions are detected by the lack of any clear correspondence. The proposed algorithm is applied successfully to a robot camera head under additional distortion of the camera images by a retinal mapping. Two future applications of the final visual forward model are proposed, saccade learning and a task from the domain of eye-hand coordination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blakemore, S.J., Wolpert, D., Frith, C.: Why can’t you tickle yourself? NeuroReport 11(11), R11–R16 (2000)

    Article  Google Scholar 

  2. Bridgeman, B.: Failure to detect displacement of the visual world during saccadic eye movements. Vision Research 15(1), 719–722 (1975)

    Article  Google Scholar 

  3. Deubel, H., Schneider, W.X.: Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research 36(12), 1827–1837 (1996)

    Article  Google Scholar 

  4. Deubel, H., Schneider, W.X., Bridgeman, B.: Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research 36(7), 985–996 (1996)

    Article  Google Scholar 

  5. Deubel, H.: Localization of targets across saccades: Role of landmark objects. Visual Cognition 11(2-3), 173–202 (2004)

    Article  Google Scholar 

  6. Eimer, M., Van Velzen, J., Gherri, E., Press, C.: Manual response preparation and saccade programming are linked to attention shifts: ERPevidence for covert attentional orienting and spatially specific modulations of visual processing. Brain Research 1105(1), 7–19 (2006)

    Article  Google Scholar 

  7. Gross, H.M., Heinze, A., Seiler, T., Stephan, V.: Generative character of perception: A neural architecture for sensorimotor anticipation. Neural Networks 12(7-8), 1101–1129 (1999)

    Article  Google Scholar 

  8. Große, S.: Visuelle Vorwärtsmodelle für einen Roboter-Kamera-Kopf, Diploma Thesis. Computer Engineering Group, Faculty of Technology, Bielefeld University (2005)

    Google Scholar 

  9. Hoffmann, H., Möller, R.: Action selection and mental transformation based on a chain of forward models. In: Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., Hallam, J., Meyer, J.A. (eds.) From Animals to Animats 8. Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior, Los Angeles, CA, pp. 213–222. MIT Press, Cambridge (2004)

    Google Scholar 

  10. Hoffmann, H., Schenck, W., Möller, R.: Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics 93(2), 119–130 (2005)

    Article  MATH  Google Scholar 

  11. Hoffmann, H.: Perception through visuomotor anticipation in a mobile robot. Neural Networks 20(1), 22–33 (2007)

    Article  MATH  Google Scholar 

  12. von Holst, E., Mittelstaedt, H.: Das Reafferenzprinzip. Die Naturwissenschaften 37(20), 464–476 (1950)

    Article  Google Scholar 

  13. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16(3), 307–354 (1992)

    Article  Google Scholar 

  14. Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9(6), 718–727 (1999)

    Article  Google Scholar 

  15. Miall, R.C., Weir, D.J., Wolpert, D.M., Stein, J.F.: Is the cerebellum a smith predictor? Journal of Motor Behavior 25(3), 203–216 (1993)

    Article  Google Scholar 

  16. Möller, R.: Perception through anticipation—a behavior-based approach to visual perception. In: Riegler, A., Peschl, M., von Stein, A. (eds.) Understanding Representation in the Cognitive Sciences, pp. 169–176 Plenum Academic / Kluwer Publishers, New York (1999)

    Google Scholar 

  17. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  18. Rizzolatti, G., Riggio, L., Sheliga, B.M.: Space and selective attention. In: Umiltà, C., Moscovitch, M. (eds.) Attention and Performance VI: Conscious and Nonconscious Information Processing, pp. 231–265. MIT Press, Cambridge, MA (1994)

    Google Scholar 

  19. Schenck, W., Möller, R.: Learning strategies for saccade control. Künstliche Intelligenz Iss. 3/06, 19–22 (2006)

    Google Scholar 

  20. Snyder, L.H., Batista, A.P., Andersen, R.A.: Saccade-related activity in the parietal reach region. Journal of Neurophysiology 83(2), 1099–1102 (2000)

    Google Scholar 

  21. Tani, J.: Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Transactions on Systems, Man, and Cybernetics—Part.B 26(3), 421–436 (1996)

    Article  Google Scholar 

  22. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)

    Article  Google Scholar 

  23. Ziemke, T., Jirenhed, D.A., Hesslow, G.: Internal simulation of perception: A minimal neuro-robotic model. Neurocomputing 68, 85–104 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin V. Butz Olivier Sigaud Giovanni Pezzulo Gianluca Baldassarre

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schenck, W., Möller, R. (2007). Training and Application of a Visual Forward Model for a Robot Camera Head. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds) Anticipatory Behavior in Adaptive Learning Systems. ABiALS 2006. Lecture Notes in Computer Science(), vol 4520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74262-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74262-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74261-6

  • Online ISBN: 978-3-540-74262-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics