Skip to main content

Integration of Multiple Temporal and Spatial Scales for Robust Optic Flow Estimation in a Biologically Inspired Algorithm

  • Conference paper
  • 1837 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Abstract

We present a biologically inspired iterative algorithm for motion estimation that combines the integration of multiple temporal and spatial scales. This work extends a previously developed algorithm that is based on mechanisms of motion processing in the human brain [1]. The temporal integration approach realizes motion detection using one reference frame and multiple past and/or future frames leading to correct motion estimates at positions that are temporarily occluded. In addition, this mechanism enables the detection of subpixel movements and therefore achieves smoother and more precise flow fields. We combine the temporal integration with a recently proposed spatial multi scale approach [2]. The combination further improves the optic flow estimates when the image contains regions of different spatial frequencies and represents a very robust and efficient algorithm for optic flow estimation, both on artificial and real-world sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayerl, P., Neumann, H.: A fast biologically inspired algorithm for recurrent motion estimation. IEEE Transactions On PAMI 29(2), 246–260 (2007)

    Google Scholar 

  2. Beck, C., Bayerl, P., Neumann, H.: Optic Flow Integration at Multiple Spatial Frequencies - Neural Mechanism and Algorithm. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 741–750. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Beauchemin, S.S., Barron, J.L.: The Computation of Optical Flow. ACM Computing Surveys 27, 433–467 (1995)

    Article  Google Scholar 

  4. Ungerleider, L.G., Haxby, J.V.: What and where in the human brain. Current Opinion in Neurobiology 4, 157–165 (1994)

    Article  Google Scholar 

  5. Albright, T.D.: Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophys. 52, 1106–1130 (1984)

    Google Scholar 

  6. Bayerl, P., Neumann, H.: Disambiguating Visual Motion through Contextual Feedback Modulation. Neural Computation 16, 2041–2066 (2004)

    Article  MATH  Google Scholar 

  7. Horn, B.K.P., Schunk, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  8. Weiss, Y., Fleet, D.J.: Velocity likelihoods in biological and machine vision. In: Probabilistic models of the brain: Perception and neural function, pp. 81–100. MIT Press, Cambridge, MA (2001)

    Google Scholar 

  9. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. Optical Society of America A 2(2), 284–299 (1985)

    Article  Google Scholar 

  10. Hupé, J.M., James, A.C., Girard, P., Lomber, S.G., Payne, B.R., Bullier, J.: Feedback Connections Act on the Early Part of the Responses in Monkey Visual Cortex. J. Neurophys. 85, 134–145 (2001)

    Google Scholar 

  11. Stein, F.: Efficient Computation of Optical Flow Using the Census Transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recognition. LNCS, vol. 3175, pp. 79–86. Springer, Heidelberg (2004)

    Google Scholar 

  12. Ogale, A.S., Fermueller, C., Aloimonos, Y.: Motion Segmentation Using Occlusions. IEEE Transactions On PAMI 27(6), 988–992 (2005)

    Google Scholar 

  13. Simoncelli, E.: Course-to-fine Estimation of Visual Motion. In: IEEE Eighth Workshop on Image and Multidimensional Signal Processing, Cannes France (September 1993)

    Google Scholar 

  14. Burt, P.J., Adelson, E.H.: The Laplacian Pyramid as a Compact Image Code. IEEE Transactions On Communications 31(4), 532–540 (1983)

    Article  Google Scholar 

  15. Ogale, A.S., Aloimonos, Y.: A roadmap to the integration of early visual modules. IJCV 72(1), 9–25 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beck, C., Gottbehuet, T., Neumann, H. (2007). Integration of Multiple Temporal and Spatial Scales for Robust Optic Flow Estimation in a Biologically Inspired Algorithm. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics