A Statistical Approach to the Timing-Yield
Optimization of Pipeline Circuits

Chin-Hsiung Hsu', Szu-Jui Chou', Jie-Hong R. Jiang®!, and Yao-Wen Chang?f

Department of Electrical Engineering® /Graduate Institute of Electronics Engineering’
National Taiwan University, Taipei 10617, Taiwan
{arious, rerechou}@eda.ee.ntu.edu.tw; {jhjiang, ywchang}@cc.ee.ntu.edu.tw

Abstract. The continuous miniaturization of semiconductor devices im-
poses serious threats to design robustness against process variations
and environmental fluctuations. Modern circuit designs may suffer from
design uncertainties, unpredictable in the design phase or even after
manufacturing. This paper presents an optimization technique to make
pipeline circuits robust against delay variations and thus maximize tim-
ing yield. By trading larger flip-flops for smaller latches, the proposed
approach can be used as a post-synthesis or post-layout optimization
tool, allowing accurate timing information to be available. Experimental
results show an average of 31% timing yield improvement for pipeline cir-
cuits. They suggest that our method is promising for high-speed designs
and is capable of tolerating clock variations.

1 Introduction

As the semiconductor fabrication technology advances to the sub-100nm feature
size regime, sensitivities of IC designs to process variations and environmental
fluctuations are ever-increasing. To maintain design robustness against these un-
certainties, it becomes more and more apparent that traditional design method-
ologies need to be modified and consider variations at the early stage of a design
flow since not all process variations can be diminished with technology advances
after all.

In recent years, statistical approaches to circuit analysis and optimization
have been revolutionizing the EDA community. They are mostly centered around
delay and power issues, the two main concerns affected by design uncertainties.
In this paper, we focus on the timing issue. Traditional approaches to timing op-
timization were based on worst-case analysis. For instance, any gate delay under
a certain operation condition may be set as a deterministic value fixed at the
30 point in statistics to ensure enough margin tolerating variations. However,
worst-case analysis is too conservative especially for more and more stringent de-
sign constraints in timing. Furthermore, when designs become more sensitive to
process variations, it is harder to make design safe under worst-case variations.
Due to the inadequacy of traditional worst-case analysis, the need of statistical
analysis emerges, and has attracted intensive research efforts. Statistical opti-
mization is the next step as statistical analysis is getting mature.

I

>
J}F

¢ rq
b et

Fig. 1. A motivating example for timing yield improvement by replacing DFFs with
latches.

Based on statistical timing analysis, most existing statistical optimization
approaches focused on gate sizing, e.g., [4-6,11], and clock skew scheduling,
e.g., [1,7,10,14]. Rather, we propose a new statistical optimization methodol-
ogy, which is orthogonal and complementary to gate sizing and can possibly
be combined with clock scheduling for further improvement. We take advan-
tage of the transparency property of level-sensitive latches for tolerating delay
uncertainties. In fact, there were prior efforts focusing on the tradeoff between
flip-flops and latches in other optimization context. For instance, flip-flops may
be replaced with latches to optimize storage [16] or power [8]. However, to the
best of our knowledge, there was no work done in the context of optimizing
timing yield in the statistical domain. Consider Figure 1 for a motivating ex-
ample. In the circuit, assume the delays (in nanoseconds) of an AND gate and a
NOT gate, and a wire are in normal distributions N(5,1), N(3,1), and N(0,0),
respectively. (That is, we neglect the wire delay and assume that the AND- and
NOT-gate delays are of mean values 5 and 3, respectively, and are of the same
variance 1.) Suppose the clock period is 8ns. By Monte Carlo simulation, the
timing yield of the circuit with all positive-edge triggered D-type flip-flop (D-
FF) registers is 33.19%; after replacing ro with an active-high latch, the yield
increases to 93.02%. A nearly 60% improvement is achieved by replacing a D-FF
with a latch. Note that in this replacement the number of pipeline stages remains
unchanged.

Given a design with edge-triggered D-FF implementation of state-holding
elements (i.e. registers), we substitute level-sensitive latches for D-FFs such that
timing yield is maximally improved. In addition, this substitution also enhances
the tolerance to clock skew uncertainty as was known in the timing community.
Based on dynamic programming, we devise an optimal algorithm for pipelined
circuits, and generalize it for arbitrary sequential circuits. The proposed method
can be used for pre-layout optimization under a statistical model of design un-
certainties. Moreover, because latches are of smaller sizes compared with D-FF's,
the substitution is possible without affecting nearby circuit structures and thus
can be performed even after physical design. Thereby, accurate timing informa-
tion may be used. In contrast, yield improvement by gate sizing may invalidate

prior physical design when devices are sized up, and thus may suffer from the
design closure problem.

Why is latch substitution challenging? Firstly, statistical timing analysis for
latch-based design is itself tricky compared with those for combinational designs
and D-FF based sequential designs [3]. Secondly, aside from the timing analysis
issue, for optimization there are an exponential number of register configurations
to be explored. Essentially, each register can be of type D (standing for a D-
FF), H (an active-high latch), or £ (an active-low latch). Thus, for a design
with n registers, there are 3™ possible configurations, each of them requiring
the above analysis to determine its timing yield. Despite these challenges, there
exist effective approaches to the latch substitution problem. We organize our
explanation as follows. Section 2 gives some preliminaries of our models and the
underlying timing analysis. Section 3 analyzes the effect of substituting latches
for D-FFs, and formalizes our optimization objectives. Section 4 presents our
algorithms, which are evaluated with experimental results in Section 5. Finally,
concluding remarks are given in Section 6.

2 Preliminaries

2.1 Statistical Timing Models and Analysis

To simplify our exposition, in our discussion we shall assume that gates are
the main delay sources. However, wire delays as well can be taken into account
straightforwardly. Using the model of [15], global and local variations as well
as correlations can be handled. By statistical static timing analysis (SSTA),
the input-to-output delay distributions of a combinational block in a sequential
circuit can be obtained. Thus we may compute the longest combinational-path
delay distribution A(r;,r;) (vesp. shortest combinational-path delay distribution
0(r;,7;)) from register r; to register r; by Gaussian-approximating max [2] (resp.
min) and sum operations over Gaussian random variables.! While §(r;, ;) is im-
material in combinational timing analysis, it is crucial in analyzing sequential
circuits involving latches. Note that A(r;,r;) (similarly 6(r;,r;)) is not a distri-
bution for some single fixed path, rather it may probabilistically correspond to
different paths.

2.2 Timing Yield of Sequential Circuits

Let T = Ty + T, be the clock period with high interval Ty and low interval
Tr. Given a design with some target operation speed, its timing yield is the
probability that no violation occurs with respect to timing constraints, see e.g.

! For circuits with pure D-FF registers, analyzing register-to-register delays may seem
far from necessary. In fact, computing the longest delay of every combinational block
is enough. However, for circuits containing latches, computing register-to-register
delays is necessary due to the transparency of latches making combinational blocks
not well separable for timing analysis.

% S R R,

¢ ()]
(@)
3
“

© | JL)T
)
> (3")

*

L 4

[BN)
-

. @)
Combinational . Active interval
Registi
block I cemster of r|
®—> Delay(ry,r,) +—> Delay(r,r,)

Fig. 2. A single-path pipelined circuit and timing diagrams. (a) type(ro) = type(ri) =
type(r2) = D; (b) type(r1) = H and type(ro) = type(r2) = D; (¢) type(ri) = L and
type(ro) = type(r2) = D

[3]. In the simplest case, when a circuit is implemented with D-FFs for all of its
registers, its timing yield is the probability

Pr[A\ (A(ri,ry) <T)), (1)
(ri,rs)

for any register pair (r;,r;) with a combinational path from r; to r;. For example
in Figure 2 (a), where registers ro, 1, r2 are of type D, then the yield is

Pr{(A(ro,m1) <T) A (A(ry,) <T). (2)

3 Timing Yield and Register Configuration

3.1 Timing Yield Changed by Latch Replacement

We study the effects of substituting latches for D-FFs. To begin with, consider
the single-path pipelined circuit of Figure 2. Intuitively, an active-high latch can
tolerate longer delay of its fan-in combinational block than a D-FF. If the type of
r1 is changed to H as shown in Figure 2 (b), the longest delay of combinational
block C; can exceed T. For a circuit to operate without any timing violation,
essentially four cases need to be analyzed depending on A(rg,r):

case 1 0 < A(rg,rm1) < Th: The signal of Cy arrives r1 within the active interval
and can directly pass to Ca; s0 T < A(rg, 1) + A(r1,72) < 27 must hold. In
addition, Cy must satisfy T < 6(rg,r1) + 8(r1,72) < 2T for 7o to latch the
right value.

case 2 Ty < A(rg,r1) < T: The signal of C; arrives r; before r; is turned on; so
it must wait until v is active again at T'. Co must satisfy A(ry,72) <7T. In
addition, C; must satisfy §(rg,71) > Th; otherwise the earliest and latest
signals of C; arrive Cs in different clock cycles.

case 3 T < A(rg,r1) < T + Ty: The delay of C; is in the active interval of 1 and
can directly pass to Cy; s0 T' < A(rg,r1) + A(r1,72) < 27 must hold. Also,
d(ro,r1) > Tr must hold for the same reason as case 2.

case 4 T+ Ty < A(rg,m1) < 2T The signal of C cannot pass through ry in 2T
so this case is forbidden.

Although case 1 incurs no timing violation in this example, it is problematic
if r1 has a designated initial value (which will be erased) or 71 fans out to a
primary output since then the number of pipeline stages seen from the output
is different. We exclude it from our yield calculation and consider only legal
cases 2 and 3. For these two cases, the delay between ry and ry is restricted to
Ty < A(rg,m1) < T + Ty and 6(rg,r1) > Ty, while the delay between r; and
ro is restricted to max{A(rg,r1), T} + A(r1,r2) < 2T, where max{A(rg,r1),T}
equals T in case 2 and A(rg,71) in case 3, respectively. Thus, the yield equals

Pr[case 2] + Pr|case 3]

= PI‘[(TH < A(TQ,Tl) < T) A\ ((S(T(),’I"l) > TH) A\ (A(’I"l,’l“g) < T)] +
Pr[(T < A(ro,m1) < T+ Try) A (0(ro,m1) > TH) A

(T < A(ro,r1) + Ary,re) < 2T (3)
= PI‘[(TH < A(To,’lj) <T+ TH) N ((5(7‘0, T‘1) > TH) A\
(max{A(ro,r1), T} + A(r1,7m2) < 2T))]. (4)

In contrast, if the type of r1 is changed to £ as shown in Figure 2 (c), four
cases similar to the above ones need to be analyzed depending on A(rg,r1),
which we omit due to limited space. The analysis forms the basis of our yield
calculation. It can be extended to the analysis of pipeline circuits since every
pair of adjacent registers can be transform into a circuit as in Figure 2.

In computing the timing yield of a pipeline circuit, the timing constraints
of a combinational block depend on the types of its preceding registers, which
leads to complex computation especially for latches. Due to the transparency of
latches, delay distributions need to be propagated across latches. For example,
A(rg,r1) is needed in Equation (4) in calculating the yield between registers
r1 and 7. (For D-FF based designs, there is no need to propagate distribution
across register boundaries since the output of a D-FF has zero arrival time.)
To resolve this complication, we shift the delay distribution of a combinational
block to make the equations for the three types of registers identical. That is,
we modify the delay distribution of a register input and pass it as a slack to

the fan-out blocks. Thereby we may propagate probability distributions across
latches. Precisely speaking, for active-high latches, by defining

Agnie(r0,71) = A(ro,71) — T, Osies (10, 71) = 0(ro, 1) — T,
Ashiee (11, 72) = max{A(rg, 1) — T,0} + A(r1,72), anddshige(r1,72) = 6(r1,72),

Equation (4) can be rewritten as

Pr[case 2] + Pr|case 3]
= Pr[(Asniec(ro,m1) < T) A (Osnite(r0,71) > 0) A
(Asnies (11, 72) < T') A (Osnies (11, 72) > 0)]. (5)

For active-low latches, similar rewriting is also available, which we omit due to
limited space. For D-FF's, on the other hand, no shifting is needed.

With the above distribution shifted, we make all longest delay constraints
compared with T and shortest delay constraints compared with 0 as in Equa-
tions (5). Finally, for any register pair r; and r; connected by a combinational
block under analysis, we perform the max operation over { Agpig (7,7;)} and min
operation over {dsnif(75,7;)}, and obtain the probability of the combinational
block without timing violation by

Pr[(maX{Ashift (’I“i, ’I“j)} < T) A (min{éshift (’/‘i, ’/‘j)} > O)]

3.2 Problem Formulation

Definition 1. Let R be a nonempty set of registers of a sequential circuit. A
register configuration of R is a total function p: R — {D, H,L}.

D-FFs are the most common implementation of state-holding elements of
sequential circuits due to their simple edge-triggered timing constraints. We
assume that a given design is in D-FF implementation initially. By changing the
initial register configuration, a circuit can be made more insensitive to timing
variations while maintaining its behavior. Essentially, pipeline stages should not
be changed before and after modifying register configurations. Therefore, no two
latches of the same type can be connected by a combinational path. Furthermore,
even two latches of different types cannot be connected by a combinational
path because the number of pipeline stages will decrease if the total number of
registers cannot increase. Hence we require that the fan-in and fan-out registers
of a latch have to be of type D. (Note that a positive-edge triggered D-FF can
be decomposed into an active-low latch followed by an active-high latch. So it is
possible to maintain pipeline stages by increasing the register count, which we
disallow in this paper.)

The optimization problem can be stated as follows.

Yield optimization problem: Given a sequential circuit with p(r) = D, for
any register r, and the distributions of its gate and wire delays, find the register
configuration such that timing yield is maximally improved subject to the above
replacement criterion.

PO Statistical dynamic
Start Circuit .
- programming

g g 4
~—— . Register Estimated
= | Graph conversion M yield

improvemen

g 4

Monte Carlo justification

Cycle | No

breaking

Acyclic
graph?

Yes

End

Fig. 3. The flowchart of statistical latch replacement.

4 Statistical Latch Replacement

4.1 Optimization Flow Overview

The flow of our algorithm is shown in Figure 3. Firstly, the input circuit is
abstracted and converted to a register dependency graph with statistical timing
models and analysis to abstract essential timing information. Secondly, all cycles
of the register dependency graph are made acyclic with respect to a chosen
minimal feedback vertex set. Thirdly, the resultant acyclic graph is levelized
in topological order from inputs to outputs. Fourthly, our statistical dynamic
programming algorithm is conducted forwardly over the levelized acyclic graph.
The optimal configuration can then be derived by tracing backward from outputs
to inputs. Finally, Monte Carlo simulation can optionally be applied to justify
the yield improvement.

4.2 Statistical Dynamic Programming

We abstract a given input circuit C' with a register dependency graph G =
(V,E), where a vertex v; € V represents a register r; in C and there is an
directed edge (v;,v;) € E if and only if there is a combinational path from
r; to r; in C. Also, register-to-register distributions A(r;,r;) and 6(r;,7;) are
computed according to the delay distributions of C, and is associated to its
corresponding edge (v;,v;) € E. If a circuit has feedback, there will be cycles in
the converted graph. In order to levelize the register dependency graph, we break
all cycles by finding a minimal feedback vertex set (FVS) [9]. After making a
register dependency graph acyclic, we levelize it in a topological order such that
each vertex is labelled with the longest distance from an input vertex. Given an
levelized acyclic register dependency graph, we derive a register configuration
with maximal timing yield by the statistical dynamic programming algorithm
outlined in Figure 4.

Algorithm: StatisticalDynamicProgramming
Input: levelized register dependency graph

G = (V,FE) and delay distributions on F
Output: optimal register configuration for yield
begin
01 set level-1 registers to D-FFs with local yield 1
02 £ := LevelCount(G)
03 fori=2,...,¢

04 let R; be the set of registers at level-¢
05 for every register configuration a of R;
06 compute the highest local yield Y, of «

subject to the configurations of Ri_1

and their local yields
o7 record the config. of R, 1 responsible for Y,
08 set Ry to the config. (¢ of all D-FFs
09 fori:=0—-1,0-2,...,2

10 set R; to the config. (3; responsible for (i1
11 return (§’s
end

Fig. 4. The Statistical Dynamic Programming Algorithm.

We add artificial D-FFs at the primary inputs and outputs when convert-
ing a circuit to a register dependency graph. Hence we set level-1 and level-¢
registers to be of type D, where ¢ is the number of levels in the levelized regis-
ter dependency graph. In addition, we define the local yield of a register to be
the accumulated yield computed forward from level-1 registers, each having local
yield 1. The statistical dynamic programming algorithm computes and stores the
optimal configurations and the corresponding local yields in a forward direction
based on the timing analysis introduced in Section 3.

Take a single-path pipelined circuit as an example. The statistical dynamic
programming algorithm proceeds in two phases as shown in Figure 5 (a) and (b).
In the first phase, three configurations {D, H, L} are considered for each register
in a forward direction. Since we require that the fan-in and fan-out registers of a
latch need to have type D, only a subset of two consecutive configurations need
to be considered as indicated by the arrows of Figure 5 (a). At each level, the
maximal local yield is kept for each configuration of {D,H, L}. Once the final
level is reached, the algorithm enters the second phase. It extracts the optimal
configuration for each register backward.

For a register dependency graph with large pipeline widths, the above algo-
rithm becomes inefficient (in fact, exponential complexity in the pipeline width)
since it considers all possible configurations for registers at each level. We allevi-
ate this problem by greedily optimizing one register at a time without considering

D D D D
D HH e®ee® | H HH ee®ee® | H D
0 L L L L oy
T, L (a) i Ty
.~ 7 D
D¢K—H
r, *»‘ L
53 L Tiyy o1

(b)

Fig. 5. Statistical dynamic programming for a single-path pipelined circuit optimiza-
tion. (a) Forward yield calculation. Only feasible edges are shown. (b) Backward tracing
the optimal configuration.

the configurations of other registers at the same level. Thus, we may need to han-
dle the consistency problem for conflicting register type assignments. Note that
because we only consider one register at a time, the result may differ from the
global optimum. It is a tradeoff between optimality and efficiency.

5 Experimental Results

The proposed algorithm is implemented in C++ codes. The experiments were
conducted on a Linux machine with Pentium IV 3.2GHz CPU and 3GB memory.
Two sets of circuits are used: pipeline circuits and general sequential circuits
all from ISCAS benchmark suites. The pipeline circuits were generated from
combinational circuits by adding 4-stage pipelines. For a given circuit, under
the SIS [13] environment, technology mapping was conducted to obtain delay
information and then minimum-period retiming was performed (thus registers
were relocated evenly over the circuit). In addition, the circuits were synthe-
sized to balance long and short combinational paths. (Note that, in high-speed
and/or low-power designs, long and short paths tend to be balanced. For in-
stance, performance-driven logic optimization and power optimization with dual
threshold voltage assignments tend to balance long and short delays. Thus, de-
sign trends meet our timing requirements.) All delay variations are in normal
distribution with 10-20% deviation.

Table 1 shows the results for 10% and 20% delay deviations. Columns 1, 2,
and 3 show the circuits, numbers of pipeline stages, and numbers of registers,
respectively. The clock periods are shown in the 4th column, where the clock
period of a circuit is determined by imposing the timing yield of the circuit with
all D-FF registers to fall between 60-65%. The numbers of D-FF's replaced by

Table 1. ISCAS benchmark circuits with 10% and 20% delay deviations.

Circuit [[# of [Total| Clock period [Replaced reg.[Original yield (%) [Final yield (%)] Impv. (%) [CPU time (s)]]
stages| reg. [T0% | 20% [10% [20% | 10% [20% | 10% | 20% | 10% [20% [10% [20% ||
[[TSCAS85]] Pipeline circuits with clock minimization ||
c432 5 214 8.13 8.58 18 28 64.4 63.2 100.0 97.2 35.6 [34.0 [0.21 0.20
c499 5 186 8.65 9.37 13 8 65.0 62.2 100.0 100.0 35.0 | 37.8 | 0.11 0.11
<880 5 242 7.36 7.74 14 16 61.5 62.7 67.0 98.7 5.5 36.0 | 0.14 0.13
1355 5 218 9.42 |10.18 9 10 60.3 62.3 100.0 99.8 39.7 | 37.5 | 0.16 0.16
c1908 5 240 | 13.44 | 14.26 19 19 62.5 64.0 100.0 98.1 37.5 | 34.1 | 0.19 0.19
3540 5 278 | 11.14 | 11.96 78 62 64.0 62.3 94.1 93.9 30.1 | 31.6 | 0.42 0.40
c5315 5 867 | 11.88 | 12.60 0 0 60.1 61.7 60.1 61.7 0.0 0.0 0.61 0.63
c7552 5 879 | 11.26 | 12.12 56 69 63.7 63.5 99.6 99.9 35.9 | 36.4 | 0.71 0.68
[[Average]| [[[[[[[[[[27.41]30.93]0.284] 0.313]
[[TSCAS89[Sequential circuits 1]
s1196 - 18 50.24 | 53.54 3 4 62.9 59.7 67.2 62.4 4.3 2.7 0.04 0.05
s5378 - 179 | 47.79 | 52.98 10 10 65.2 61.1 71.9 65.2 6.7 4.1 0.44 0.45
59234 - 211 [108.57[118.86 8 8 54.7 57.8 56.0 59.3 1.3 1.5 | 0.90 0.89
[[Average [| | | | | | | | | [4.10 [2.77[0.460] 0.463]

level-sensitive latches are shown in the fifth column. Columns 6, 7, and 8 list
the original, final, and improved timing yields, respectively. The yields are are
justified with Monte Carlo simulation. The reported CPU times in the ninth
column are without counting the Monte Carlo simulation. Each of Columns 4-9
is divided further into two sub-columns for 10% and 20% delay deviations.

As can be see, the improvements are consistent above 30% for all of the
pipeline circuits, except for circuits ¢880 and c¢5315. For c¢880 in the 10%-
deviation case, some inaccuracy in timing analysis causes inadequate latch re-
placements and degrades the yield improvement. For c5315, a similar reason
causes inadequate latch replacements, which are later cancelled by the justifica-
tion of Monte Carlo simulation. This problem can be overcome by using more
accurate SSTA tools. Nevertheless, the average improvements of pipeline cir-
cuits are 27% and 31% for deviations 10% and 20%, respectively. It suggests
that our approach to yield improvement is robust against the changes of delay
deviation. It is interesting to note that the numbers of replaced registers for
20%-deviation cases are in general larger than those for 10%-deviation ones as
shown in Column 5. It suggests the importance of latch replacements for in-
creased delay deviations. On the other hand, for cyclic sequential circuits, such
as s1196, s5378, and s9234, our approach only yields mild improvements. It
is understandable because the register dependency graphs of these circuits are
close to complete graphs, which makes latch replacement almost impossible.

To see the relation between the clock period and yield improvement, we
conduct another experiment over circuit c1355. The result is plotted in Figure 6.
As can be seen, by reducing the clock period, the yield of the original design
with all D-FFs tends to vanish very quickly from 100% to 0% whereas that
of the optimized version remains high and stable for another 1 unit of delay.
(The glitch in the figure is due to different optimal register configurations for
different clock periods.) The result tends to suggest that our latch replacement
algorithm is robust against clock variation, and suitable for high-speed designs.
Hence our approaches are promising for yield improvement in the current trend
of high-speed designs.

120.00%

100.00% [
Yield: 80.00% |-
Original ~ -----
Final ~ -oee- 60.00% |
Improvement

40.00% -

20.00%

0.00%

8 85 9 95 10 105 11 115 12
Clock

Fig. 6. Experimental results. Yield vs. clock period for circuit ¢1355.

6 Conclusions and Future Work

Based on statistical timing analysis, we have proposed an algorithm to opti-
mize the timing yield of a sequential circuit. Experimental results show that,
by substituting latches for D-FFs, timing yield can be improved about 31% on
average for pipelined circuits. In addition, the results suggest that latch replace-
ment tends to tolerate clock variations. Complementary to other design-for-yield
methodologies like gate sizing and clock skew scheduling, our technique may be
combined with these techniques for further improvement. Since most circuits
use D-FF's for register implementation, our approach may be widely applicable
to standard designs. Since replacing D-FFs with latches incurs no area penalty,
the proposed algorithm can be used for not only pre-layout but also post-layout
optimization, where accurate timing information is available.

For future work, since our approach only yields mild timing yield improve-
ments to cyclic sequential circuits, some work needs to be done to overcome
this limitation. On the other hand, we may consider multiple-phased clocking
scheme, which may lead to further yield improvements. Also, setup-time and
hold-time constraints may be added in our framework.

Acknowledgments

This work was supported in part by NSC grants 94-2218-E-002-083, 95-2221-E-
002-432, and 95-2218-E-002-064-MY 3.

References

1. C. Albrecht, B. Korte, J. Schietke, and J. Vygen. Cycle time and slack optimization
for VLSI-chips. In Proc. ICCAD, pp. 232-238, 1999.

2. C. E. Clark. The greatest of a finite set of random variables. Operations Research,
vol. 9, no. 2, pp. 145-162, 1961.

3. C.-T. Chao, L.-C. Wang, K.-T. Cheng, and S. Kundu. Static statistical timing anal-
ysis for latch-based pipeline designs. In Proc. ICCAD, 2004.

4. S.-H. Choi, B. Paul, and K. Roy. Novel sizing algorithm for yield improvement under
process variation in nanometer technology. In Proc. DAC, 2004.

5. K. Chopra, S. Shah, A. Srivastava, D. Blaauw, and D. Sylvester. Parametric yield
maximization using gate sizing based on efficient statistical power and delay gradient
computation. In Proc. ICCAD, 2005.

6. M. Guthaus, N. Venkateswaran, C. Visweswariah, and V. Zolotov. Gate sizing using
incremental parameterized statistical timing analysis. In Proc. ICCAD, 2005

7. A. Hurst and R. Brayton. Computing clock skew schedules under normal process
variation. In Proc. IWLS, 2005.

8. K. Lalgudi and M. Papaefthymiou. Fixed-phase retiming for low power design. In
Proc. ISLPED, 1996.

9. H.-M. Lin and J.-Y. Jou. On computing the minimum feedback vertex set of a
directed graph by contraction operations. IEEE Trans. on CAD, vol. 19, no. 3,
2000.

10. J. Neves and E. Friedman. Optimal clock skew scheduling tolerant to process vari-
abtions. In Proc. DAC, pp. 623-628, 1996.

11. S. Raj, S. Vrudhula, and J. Wang. A methodology to improve timing yield in the
presence of process variations. In Proc. DAC, pp. 448-453, 2004.

12. K. Sakallah, T. Mudge, and O. Olukotun. checkT, and min7,: Timing verification
and optimal clocking of synchronous digital circuits. In Proc. ICCAD, pp. 552-555,
1990.

13. E.M. Sentovish et al. SIS: a system for sequential circuit synthesis. Technical Report
UCB/ERL M92//1, UC Berkeley, 1992.

14. J.-L. Tsai, D. Baik, C.-P. Chen. and K. Saluja. A yield improvement methodology
using pre- and post-silicon statistical clock scheduling. In Proc. ICCAD, pp.611-618,
2004.

15. C. Vishweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan. First-
order incremental block-based statistical timing analysis. In Proc. DAC, pp. 331-226,
2004.

16. T.-Y. Wu and Y.-L. Lin. Storage optimization by replacing some flip-flops with
latches. In Proc. DAC, 1996.

