
VPSPACE and a transfer theorem over the complex field

Pascal Koiran and Sylvain Perifel

LIP?, École Normale Supérieure de Lyon.
[Pascal.Koiran,Sylvain.Perifel]@ens-lyon.fr

November 16, 2006

Abstract. We extend the transfer theorem of [13] to the complex field. That is, we investigate the
links between the class VPSPACE of families of polynomials and the Blum-Shub-Smale model of
computation over C. Roughly speaking, a family of polynomials is in VPSPACE if its coefficients
can be computed in polynomial space. Our main result is that if (uniform, constant-free) VPSPACE
families can be evaluated efficiently then the class PARC of decision problems that can be solved
in parallel polynomial time over the complex field collapses to PC. As a result, one must first be
able to show that there are VPSPACE families which are hard to evaluate in order to separate PC
from NPC, or even from PARC.
Keywords: computational complexity, algebraic complexity, Blum-Shub-Smale model, Valiant’s
model.

? UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.

VPSPACE and a transfer theorem over the complex field 1

1 Introduction

Two main categories of problems are studied in algebraic complexity theory: evaluation problems
and decision problems. A typical example of an evaluation problem is the evaluation of the perma-
nent of a matrix, and it is well known that the permanent family is complete for the class VNP of
“easily definable” polynomial families [17]. Deciding whether a system of polynomial equations has
a solution over C is a typical example of a decision problem. This problem is NP-complete in the
Blum-Shub-Smale model of computation over the complex field [1,2].

The main purpose of this paper is to provide a transfer theorem connecting the complexity of
evaluation and decision problems. This paper is therefore in the same spirit as [12] and [13]. In the
present paper we work with the class of polynomial families VPSPACE introduced in [13]. Roughly
speaking, a family of polynomials (of possibly exponential degree) is in VPSPACE if its coefficients
can be evaluated in polynomial space. For instance, it can be shown that resultants of systems of
multivariate polynomial equations form a VPSPACE family, see [13]. The main result in [13] was
that if (uniform, constant-free) VPSPACE families can be evaluated efficiently then the class PARR
of decision problems that can be solved in parallel polynomial time over the real numbers collapses
to PR.

Here we extend this result to the complex field C. At first glance the result seems easier because
the order ≤ over the reals does not have to be taken into account. The result of [13] indeed makes
use of a clever combinatorial lemma of [9] on the existence of a vector orthogonal to roughly half a
collection of vectors. More precisely, it relies on the constructive version of this lemma [5]. On the
complex field, we do not need this construction.

But the lack of an order over C makes another part of the proof more difficult. Indeed, over R
testing whether a point belongs to a real variety is done by testing whether the sum of the squares
of the polynomials is zero, a trick that cannot be used over the complex field. Hence one of the
main technical developments of this paper is to explain how to decide with a small number of tests
whether a point is in the complex variety defined by an exponential number of polynomials. This
enables us to follow the nonconstructive proof of [11] for our transfer theorem.

Therefore, the main result of the present paper is that if (uniform, constant-free) VPSPACE
families can be evaluated efficiently then the class PARC of decision problems that can be solved
in parallel polynomial time over the complex field collapses to PC (this is precisely stated in Theo-
rem 2). The class PARC plays roughly the same role in the theory of computation over the complex
field as PSPACE in discrete complexity theory. In particular, it contains NPC [1] (but the proof of
this inclusion is much more involved than in the discrete case). It follows from our main result that
in order to separate PC from NPC, or even from PARC, one must first be able to show that there
are VPSPACE families which are hard to evaluate. This seems to be a very challenging lower bound
problem, but it is still presumably easier than showing that the permanent is hard to evaluate.
Organization of the paper. We first recall in Section 2 some usual notions and notations concern-
ing algebraic complexity (Valiant’s model, the Blum-Shub-Smale model) and quantifier elimination.
The class VPSPACE is defined in Section 3 and some properties proved in [13] are given. Section 4
explains how to decide with a polynomial number of VPSPACE tests whether a point belongs to
a variety. The main difficulty here is that the variety is given as a union of an exponential number
of varieties, each defined by an exponential number of polynomials. Finally, Section 5 is devoted to
the proof of the transfer theorem. Sign conditions are the main tool in this section. We show that
PARC problems are decided in polynomial time if we allow uniform VPSPACE0 tests. The transfer
theorem follows as a corollary.

2 Pascal Koiran and Sylvain Perifel

2 Notations and Preliminaries

2.1 The Blum-Shub-Smale Model

In contrast with boolean complexity, algebraic complexity deals with other structures than {0, 1}.
In this paper we will focus on the complex field (C,+,−,×,=). Although the original definitions of
Blum, Shub and Smale [2,1] are in terms of uniform machines, we will follow [16] by using families
of algebraic circuits to recognize languages over C, that is, subsets of C∞ =

⋃
n≥0 Cn.

An algebraic circuit is a directed acyclic graph whose vertices, called gates, have indegree 0, 1
or 2. An input gate is a vertex of indegree 0. An output gate is a gate of outdegree 0. We assume
that there is only one such gate in the circuit. Gates of indegree 2 are labelled by a symbol from
the set {+,−,×}. Gates of indegree 1, called test gates, are labelled “= 0?”. The size of a circuit
C, in symbols |C|, is the number of vertices of the graph.

A circuit with n input gates computes a function from Cn to C. On input ū ∈ Cn the value
returned by the circuit is by definition equal to the value of its output gate. The value of a gate is
defined in the usual way. Namely, the value of input gate number i is equal to the i-th input ui.
The value of other gates is then defined recursively: it is the sum of the values of its entries for a
+-gate, their difference for a −-gate, their product for a ×-gate. The value taken by a test gate is
0 if the value of its entry is 6= 0 and 1 otherwise. Since we are interested in decision problems, we
assume that the output is a test gate: the value returned by the circuit is therefore 0 or 1.

The class PC is the set of languages L ⊆ C∞ such that there exists a tuple ā ∈ Cp and a
P-uniform family of polynomial-size circuits (Cn) satisfying the following condition: Cn has exactly
n + p inputs, and for any x̄ ∈ Cn, x̄ ∈ L ⇔ Cn(x̄, ā) = 1. The P-uniformity condition means that
Cn can be built in time polynomial in n by an ordinary (discrete) Turing machine. Note that ā
plays the role of the machine constants of [1,2].

As in [4], we define the class PARC as the set of languages over C recognized by a PSPACE-
uniform family of algebraic circuits of polynomial depth (and possibly exponential size), with con-
stants ā as for PC. Note at last that we could also define similar classes without constants ā. We
will use the superscript 0 to denote these constant-free classes, for instance P0

C and PAR0
C.

We end this section with a theorem on the first-order theory of the complex numbers: quantifiers
can be eliminated without much increase of the coefficients and degree of the polynomials. We give a
weak version of the result of [8]: in particular, we do not need efficient elimination algorithms. Note
that the only allowed constants in our formulae are 0 and 1 (in particular, only integer coefficients
can appear). For notational consistency with the remainding of the paper, we denote by 2s, 2d and
22M

the number of polynomials, their degree and the size of their coefficients respectively. This will
simplify the calculations and emphasize that s, d and M will be polynomial. Note furthermore that
the polynomial p(n, s, d) in the theorem is independent of the formula φ.

Theorem 1. Let φ be a first-order formula over the structure (C, 0, 1,+,−,×,=) of the form
∀x̄ψ(x̄), where x̄ is a tuple of n variables and ψ a quantifier-free formula where 2s polynomials
occur. Suppose that their degrees are bounded by 2d and their coefficients by 22M

in absolute value.
There exists a polynomial p(n, s, d), independent of φ, such that the formula φ is equivalent to

a quantifier-free formula ψ in which all polynomials have degree less than D(n, s, d) = 2p(n,s,d), and
their coefficients are integers strictly bounded in absolute value by 22MD(n,s,d).

2.2 Valiant’s Model

In Valiant’s model, one computes polynomials instead of recognizing languages. We thus use arith-
metic circuits instead of algebraic circuits. A book-length treatment of this topic can be found
in [3].

VPSPACE and a transfer theorem over the complex field 3

An arithmetic circuit is the same as an algebraic circuit but test gates are not allowed. That is
to say we have indeterminates x1, . . . , xu(n) as input together with arbitrary constants of C; there
are +, − and ×-gates, and we therefore compute multivariate polynomials.

The polynomial computed by an arithmetic circuit is defined in the usual way by the polynomial
computed by its output gate. Thus a family (Cn) of arithmetic circuits computes a family (fn) of
polynomials, fn ∈ C[x1, . . . , xu(n)]. The class VPnb defined in [14] is the set of families (fn) of
polynomials computed by a family (Cn) of polynomial-size arithmetic circuits, i.e., Cn computes
fn and there exists a polynomial p(n) such that |Cn| ≤ p(n) for all n. We will assume without
loss of generality that the number u(n) of variables is bounded by a polynomial function of n.
The subscript “nb” indicates that there is no bound on the degree of the polynomial, in contrast
with the original class VP of Valiant where a polynomial bound on the degree of the polynomial
computed by the circuit is required.

The class VNP is the set of families of polynomials defined by an exponential sum of VP
families. More precisely, (fn(x̄)) ∈ VNP if there exists (gn(x̄, ȳ)) ∈ VP and a polynomial p such
that |ȳ| = p(n) and fn(x̄) =

∑
ε̄∈{0,1}p(n) gn(x̄, ε̄). Note that these definitions are nonuniform. The

class uniform VPnb is obtained by adding a condition of polynomial-time uniformity on the circuit
family, as in Section 2.1.

We can also forbid constants from our arithmetic circuits in unbounded-degree classes, and
define constant-free classes. The only constant allowed is 1 (in order to allow the computation of
constant polynomials). As for classes of decision problems, we will use the superscript 0 to indicate
the absence of constant: for instance, we will write VP0

nb (for bounded-degree classes, we are to be
more careful: the “formal degree” of the circuits comes into play, see [14,15]).

3 The Class VPSPACE

The class VPSPACE was introduced in [13]. Some of its properties are given there and a natural
example of a VPSPACE family coming from algebraic geometry, namely the resultant of a system
of polynomial equations, is provided. In this section, after the definition we give some properties
without proof and refer to [13] for further details.

3.1 Definition

We fix an arbitrary field K. The definition of VPSPACE will be stated in terms of coefficient
function. A monomial xα1

1 · · ·xαn
n is encoded in binary by α = (α1, . . . , αn) and will be written x̄α.

Definition 1. Let (fn) be a family of multivariate polynomials with integer coefficients. The coef-
ficient function of (fn) is the function a whose value on input (n, α, i) is the i-th bit a(n, α, i) of
the coefficient of the monomial x̄α in fn. Furthermore, a(n, α, 0) is the sign of the coefficient of the
monomial x̄α. Thus fn can be written as

fn(x̄) =
∑
α

(
(−1)a(n,α,0)

∑
i≥1

a(n, α, i)2i−1x̄α
)
.

The coefficient function is a function a : {0, 1}∗ → {0, 1} and can therefore be viewed as a
language. This allows us to speak of the complexity of the coefficient function.

Definition 2. The class uniform VPSPACE0 is the set of all families (fn) of multivariate polyno-
mials fn ∈ K[x1, . . . , xu(n)] satisfying the following requirements:

1. the number u(n) of variables is polynomially bounded;

4 Pascal Koiran and Sylvain Perifel

2. the polynomials fn have integer coefficients;
3. the size of the coefficients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the coefficient function of (fn) is in PSPACE.

We have chosen to present only uniform VPSPACE0, a uniform class without constants, be-
cause this is the main object of study in this paper. In keeping with the tradition set by Valiant,
however, the class VPSPACE is nonuniform and allows for arbitrary constants. See [13] for a precise
definition.

3.2 An Alternative Characterization and Some Properties

Let uniform VPAR0 be the class of families of polynomials computed by a PSPACE-uniform family
of constant-free arithmetic circuits of polynomial depth (and possibly exponential size). This in
fact characterizes uniform VPSPACE0. The proof is given in [13].

Proposition 1. The two classes uniform VPSPACE0 and uniform VPAR0 are equal.

We see here the similarity with PARC, which by definition are those languages recognized by
uniform algebraic circuits of polynomial depth. But of course there is no test gate in the arithmetic
circuits of uniform VPAR0.

We now turn to some properties of VPSPACE. The following two propositions come from [13].
They stress the unlikeliness of the hypothesis that VPSPACE has polynomial-size circuits.

Proposition 2. Assuming the generalized Riemann hypothesis (GRH), VPnb = VPSPACE if and
only if [P/poly = PSPACE/poly and VP = VNP]. Moreover, the “if” direction holds even without
GRH.

Proposition 3. Uniform VPSPACE0 = uniform VP0
nb =⇒ PSPACE = P-uniform NC.

Remark 1. To the authors’ knowledge, the separation “PSPACE 6= P-uniform NC” is not known
to hold (by contrast, PSPACE can be separated from logspace-uniform NC thanks to the space
hierarchy theorem).

Let us now state the main result of this paper.

Theorem 2 (main theorem). If uniform VPSPACE0 = uniform VP0
nb then PAR0

C = P0
C.

Note that the collapse of the constant-free class PAR0
C to P0

C implies PARC = PC: just replace
constants by new variables so as to transform a PARC problem into a PAR0

C problem, and then
replace these variables by their original values so as to transform a P0

C problem into a PC problem.
The next section is devoted to the problem of testing whether a point belongs to a variety. This

problem is useful for the proof of the theorem: indeed, following [11], several tests of membership
to a variety will be made; the point here is to make them constructive and efficient. The main
difficulty is that the variety can be defined by an exponential number of polynomials.

4 Testing Membership to a Union of Varieties

In this section we explain how to perform in uniform VPSPACE0 membership tests of the form
“x̄ ∈ V ”, where V ⊆ Cn is a variety. We begin in Section 4.1 by the case where V is given by s
polynomials. In that case, we determine after some precomputation whether x̄ ∈ V in n+ 1 tests.

VPSPACE and a transfer theorem over the complex field 5

We first need two lemmas given below in order to reduce the number of polynomials and to replace
transcendental elements by integers.

Then, in Section 4.2, we deal with the case where V is given as a union of an exponential number
of such varieties, as in the actual tests of the algorithm of Section 5. Determining whether x̄ ∈ V
still requires n+ 1 tests, but the precomputation is slightly heavier.

Let us first state two useful lemmas. Suppose a variety V is defined by f1, . . . , fs, where fi ∈
Z[x1, . . . , xn]. We are to determine whether x̄ ∈ V with only n+1 tests, however big s might be. In
a nonconstructive manner, this is possible and relies on the following classical lemma already used
(and proved) in [11]: any n + 1 “generic” linear combinations of the fi also define V (the result
holds over any infinite field but here we need it only over C). We state this lemma explicitly since
we will also need it in our constructive proof.

Lemma 1. Let f1, . . . , fs ∈ Z[x1, . . . , xn] be polynomials and V be the variety of Cn they define.
Then for all coefficients (αi,j)i=1..s,j=1..n+1 ∈ Cs(n+1) algebraically independent over Q, the n + 1
linear combinations gj =

∑s
i=1 αi,jfi (for j from 1 to n+ 1) also define V .

Unfortunately, in our case we cannot use transcendental numbers and must replace them by
integers. The following lemma from [10] asserts that integers growing sufficiently fast will do. Once
again, this is a weaker version adapted to our purpose.

Lemma 2. Let φ(α1, . . . , αr) be a quantifier-free first-order formula over (C, 0, 1,+,−,×,=), con-
taining only polynomials of degree less than D and whose coefficients are integers of absolute value
strictly bounded by C. Assume furthermore that φ(ᾱ) holds for all coefficients ᾱ = (α1, . . . , αr) ∈ Cr

algebraically independent over Q.
Then φ(β̄) holds for any sequence (β1, . . . , βr) of integers satisfying β1 ≥ C and βj+1 ≥ CDjβD

j

(for 1 ≤ j ≤ r − 1).

The proof can be found in [10, Lemma 5.4] and relies on the lack of big integer roots of multi-
variate polynomials.

Let us sketch a first attempt to prove a constructive version of Lemma 1, namely that n + 1
polynomials with integer coefficients are enough for defining V (this first try will not work but gives
the idea of the proof of the next section). The idea is to use Lemma 2 with the formula φ(ᾱ) that
tells us that the n+ 1 linear combinations of the fi with αi,j as coefficients define the same variety
as f1, . . . , fs. At first this formula is not quantifier-free, but over C we can eliminate quantifiers
while keeping degree and coefficients reasonably small thanks to Theorem 1.

Lemma 1 asserts that φ(ᾱ) holds as soon as the αi,j are algebraically independent. Then
Lemma 2 tells us that φ(β̄) holds for integers βi,j growing fast enough. Thus V is now defined
by n+ 1 linear combinations of the fi with integer coefficients.

In fact, this strategy fails to work for our purpose because the coefficients involved are growing
too fast to be computed in polynomial space. That is why we will proceed by stages in the proofs
below.

4.1 Tests of Membership

Lemma 3. There exists a polynomial q(n, d) such that, if V ⊆ Cn is a variety defined by 2(n+ 1)
polynomials f1, . . . , f2(n+1) ∈ Z[x1, . . . , xn] of degree ≤ 2d and of coefficients bounded by 22M

in
absolute value, then:

1. the variety V is defined by n+ 1 polynomials g1, . . . , gn+1 ∈ Z[x1, . . . , xn] of degree ≤ 2d and of
coefficients bounded by 22M+q(n,d)

in absolute value;

6 Pascal Koiran and Sylvain Perifel

2. furthermore, the coefficients of the gi are bitwise computable from those of the fj in working
space Mq(n, d).

Proof. The first-order formula φ(ᾱ) (where ᾱ ∈ C2(n+1)2), expressing that the n+ 1 linear combi-
nations of the fj ’s with coefficients ᾱ also define V , can be written as follows:

φ(ᾱ) ≡ ∀x ∈ Cn

n+1∧
i=1

2(n+1)∑
j=1

αi,jfj(x) = 0 ↔
2(n+1)∧

j=1

fj(x) = 0

 ,

where αi,j is a shorthand for α2(i−1)(n+1)+j . The polynomials in this formula are of degree ≤ 1+2d

and their coefficients are bounded in absolute value by 22M
.

Over C, the quantifier of this formula can be eliminated by Theorem 1: φ(ᾱ) is equivalent
to a quantifier-free formula ψ(ᾱ), the polynomials occuring in which have their degree less than
D = D(n, log(3(n+1)), d+1) and their coefficients strictly bounded in absolute value by C = 22MD,
where D(n, log(3(n+ 1)), d+ 1) = 2p(n,log(3(n+1)),d+1) is defined in Theorem 1.

By Lemma 1, ψ(ᾱ) holds for all coefficients ᾱ algebraically independent, so that we wish to apply
Lemma 2 with integers βi growing sufficiently fast. Let r = (1+2(n+1)2)p(n, log(3(n+1)), d+1),
so that

D ≤ 2r and CD2(n+1)2 ≤ 22M+r

and define
βi = 22M+2ir

for 1 ≤ i ≤ 2(n+ 1)2.

Note that for all i, βi ≤ 22M+4(n+1)2r
, and it is furthermore easy to check that β1 ≥ C and βi+1 ≥

CDiβD
i . Thus by Lemma 2, ψ(β̄) is true. Define the polynomial q(n, d) = 1 + 4(n + 1)2r (up to a

multiplicative constant for the space complexity below). Now, letting

gi =
2(n+1)∑

j=1

βi,jfj ,

where βi,j is a shorthand for β2(i−1)(n+1)+j , proves the first point of the theorem.
For the second point, remark that the coefficients βi are bitwise computable in space O(M+rn2)

and that the coefficients of the gi are merely a sum of 2(n + 1) products of βj and coefficients of
the fk. This multiplication uses only space O(M + rn2) since the integers involved have encoding
size 2O(M+rn2) (in our case this is particularly easy because the βj are powers of 2). The 2n + 1
additions are also performed in space O(M+rn2). This proves the second point of the theorem. ut

Proposition 4. There exists a polynomial p(n, s, d) such that, if V is a variety defined by 2s

polynomials f1, . . . , f2s ∈ Z[x1, . . . , xn] of degree ≤ 2d and of coefficients bounded by 22M
in absolute

value, then:

1. the variety V is defined by n+ 1 polynomials g1, . . . , gn+1 ∈ Z[x1, . . . , xn] of degree ≤ 2d and of
coefficients bounded by 22M+p(n,s,d)

in absolute value;
2. moreover, the coefficients of the gi are bitwise computable from those of the fj in working space

Mp(n, s, d).

Proof. This is done by induction on s. Take p(n, s, d) = sq(n, d) where q(n, d) is the polynomial
defined in Lemma 3. The base case 2s ≤ 2(n+1) follows from Lemma 3. Suppose therefore that 2s >
2(n+ 1). Call V1 and V2 the varieties defined respectively by f1, . . . , f2s−1 and by f2s−1+1, . . . , f2s .

VPSPACE and a transfer theorem over the complex field 7

Then V = V1 ∩ V2 and by induction hypothesis, V1 and V2 are both defined by n+ 1 polynomials
of degree ≤ 2d whose coefficients are bounded by 22M+(s−1)q(n,d)

in absolute value and computable
in space M(s− 1)q(n, d).

Therefore by Lemma 3, V is defined by n + 1 polynomials of degree ≤ 2d whose coefficients
are bounded by 22M+sq(n,d)

in absolute value and computable in space Msq(n, d) as claimed in the
lemma. ut

4.2 Union of Varieties

In our case, however, the tests made by the algorithm of Section 5 are not exactly of the form
studied in the previous section: instead of a single variety given by s polynomials, we have to
decide “x ∈ W?” when W ⊆ Cn is the union of k varieties. Of course, since the union is finite W
is also a variety, but the encoding is not the same as above: now, k sets of s polynomials are given.

A first naive approach is to define W = ∪iVi by the different products of the polynomials
defining the Vi, but it turns out that there are too many products to be dealt with. Instead, we
will adopt a divide-and-conquer scheme as previously.

Lemma 4. There exists a polynomial q(n, d) such that, if V1 and V2 are two varieties of Cn, each
defined by n + 1 polynomials in Z[x1, . . . , xn], respectively f1, . . . , fn+1 and g1, . . . , gn+1, of degree
≤ 2d and of coefficients bounded by 22M

in absolute value, then:

1. the variety V = V1 ∪ V2 is defined by n+ 1 polynomials h1, . . . , hn+1 in Z[x1, . . . , xn] of degree
≤ 2d+1 and of coefficients bounded by 22M+q(n,d)

in absolute value;
2. the coefficients of the hi are bitwise computable from those of the fj and gk in space Mq(n, d).

Proof. The variety V is defined by the (n + 1)2 polynomials figj for 1 ≤ i, j ≤ n + 1: these
polynomials have degree ≤ 2d+1. Note moreover that there are at most 2n(d+1) monomials of
fixed degree δ ≤ 2d+1, therefore the coefficients of the figj are a sum of at most 2n(d+1) products
of integers of encoding size 2M . Thus they are computable in space O(Mnd) from those of the
fi and gj . This also shows that the coefficients of the products figj are bounded in absolute
value by 2n(d+1)22M+1 ≤ 22M+1+n(d+1)

. Applying Proposition 4 now enables to conclude if we take
q(n, d) = 1+n(d+1)+p(n, log((n+1)2), d+1), where p is the polynomial defined in Proposition 4.

ut

Proposition 5. There exists a polynomial r(n, s, k, d) such that, if V1, . . . , V2k ⊆ Cn are 2k vari-
eties, Vi being defined by 2s polynomials f (i)

1 , . . . , f
(i)
2s ∈ Z[x1, . . . , xn] of degree ≤ 2d and of coeffi-

cients bounded by 22M
in absolute value, then:

1. the variety V = ∪2k

i=1Vi is defined by n + 1 polynomials g1, . . . , gn+1 in Z[x1, . . . , xn] of degree
≤ 2d+k and whose coefficients are bounded in absolute value by 22M+r(n,s,k,d)

;
2. moreover, the coefficients of the gi are bitwise computable from those of the f

(j)
j′ in space

Mr(n, s, k, d).

Proof. We proceed by induction on k. Define r(n, s, k, d) = (k+1)(p(n, s, d+k)+q(n, d+k)), where
p and q are defined in Proposition 4 and Lemma 4 respectively. The base case k = 0 is merely an
application of Proposition 4. For k > 0, we first apply Proposition 4 to the Vi, so that each variety
Vi is now defined by n+1 polynomials of degree ≤ 2d and whose coefficients are bounded in absolute
value by 22M+p(n,s,d)

and computable in space Mp(n, s, d). Let us group the varieties Vi by pairs:
call Wi = V2i−1 ∪ V2i for 1 ≤ i ≤ 2k−1. There are 2k−1 varieties Wi and we have V = ∪iWi. By

8 Pascal Koiran and Sylvain Perifel

Lemma 4, each variety Wi is defined by n+1 polynomials of degree ≤ 2d+1, of coefficients of bitsize
2M+p(n,s,d)+q(n,d) and bitwise computable in space M(p(n, s, d) + q(n, d)). By induction hypothesis
at rank k − 1, V is defined by n + 1 polynomials of degree ≤ 2d+1+(k−1), of coefficients of bitsize
2M+p(n,s,d)+q(n,d)+k(p(n,dlog(n+1)e,d+k−1)+q(n,d+k−1)) ≤ 2M+r(n,s,k,d) and bitwise computable in space
Mr(n, s, k, d). This proves the lemma. ut

Corollary 1. Let p(n) and q(n) be two polynomials. Suppose (fn(x̄, ȳ, z̄)) is a uniform VPSPACE0

family with |x̄| = n, |ȳ| = p(n) and |z̄| = q(n). For an integer 0 ≤ i < 2p(n), call V (n)
i ⊆ Cn the

variety defined by the polynomials fn(x̄, i, j) for 0 ≤ j < 2q(n) (in this notation, i and j are encoded
in binary).

Then there exists a uniform VPSPACE0 family gn(x̄, ȳ, z̄), where |x̄| = n, |ȳ| = p(n) and
|z̄| = dlog(n+ 1)e, such that

∀x̄ ∈ Cn, ∀k < 2p(n),

x̄ ∈ k⋃
i=0

V
(n)
i ⇐⇒

n∧
j=0

gn(x̄, k, j) = 0

 .

Proof. If (fn) is a uniform VPSPACE0 family, by definition there exists a polynomial p(n) such that
the degree of fn is bounded by 2p(n) and the absolute value of the coefficients by 22p(n)

. Therefore
d, M , s and k are polynomially bounded in Proposition 5 and the space needed to compute the
coefficients of gn is polynomial. ut

5 Proof of the Main Theorem

Sign conditions are the main ingredient of the proof. Over C, we define the “sign” of a ∈ C by 0 if
a = 0 and 1 otherwise. Let us fix a family of polynomials f1, . . . , fs ∈ Z[x1, . . . , xn]. A sign condition
is an element S ∈ {0, 1}s. Hence there are 2s sign conditions. Intuitively, the i-th component of a
sign condition determines the sign of the polynomial fi.

5.1 Satisfiable Sign Conditions

The sign condition of a point x̄ ∈ Cn is the tuple Sx̄ ∈ {0, 1}s defined by Sx̄
i = 0 ⇐⇒ fi(x̄) = 0. We

say that a sign condition is satisfiable if it is the sign condition of some x̄ ∈ Cn. As 0-1 tuples, sign
conditions can be viewed as subsets of {1, . . . , s}. Using a fast parallel sorting algorithm (e.g. Cole’s,
[6]), we can sort satisfiable sign conditions in polylogarithmic parallel time in a way compatible
with set inclusion (e.g. the lexicographic order). We now fix such a compatible linear order on sign
conditions and consider our satisfiable sign conditions S(1) < S(2) < . . . < S(N) sorted accordingly.

The key point resides in the following theorem, coming from the algorithm of [8]: there is a
“small” number of satisfiable sign conditions and enumerating them is “easy”.

Theorem 3. Let f1, . . . , fs ∈ Z[x1, . . . , xn] and d be their maximal degree. Then the number of
satisfiable sign conditions is N = (sd)O(n), and there is a uniform algorithm working in space
(n log(sd))O(1) which, on boolean input f1, . . . , fs (in dense representation) and (i, j) in binary,
returns the j-th component of the i-th satisfiable sign condition.

When log(sd) is polynomial in n, as will be the case, this yields a PSPACE algorithm. If
furthermore the coefficients of fi are computable in polynomial space, we will then be able to use
the satisfiable sign conditions in the coefficients of VPSPACE families, as in Lemma 5 below.

Let us explain why we are interested in sign conditions. An arithmetic circuit performs tests
of the form f(x̄) = 0 on input x̄ ∈ Cn, where f is a polynomial. Suppose f1, . . . , fs is the list of

VPSPACE and a transfer theorem over the complex field 9

all polynomials that can be tested in any possible computation. Then two elements of Cn with the
same sign condition are simultaneously accepted or rejected by the circuit: the results of the tests
are indeed always the same for both elements.

Thus, instead of finding out whether x̄ ∈ Cn is accepted by the circuit, it is enough to find out
whether the sign condition of x̄ is accepted. The advantage resides in handling only boolean tuples
(the sign conditions) instead of complex numbers (the input x̄). But we have to be able to find the
sign condition of the input x̄. This requires first the enumeration of all the polynomials possibly
tested in any computation of the circuit.

5.2 Enumerating all Possibly Tested Polynomials

In the execution of an algebraic circuit, the values of some polynomials at the input x̄ are tested
to zero. In order to find the sign condition of the input x̄, we have to be able to enumerate in
polynomial space all the polynomials that can ever be tested to zero in the computations of an
algebraic circuit. This is done as in [7, Th. 3] and [13].

Proposition 6. Let C be a constant-free algebraic circuit with n variables and of depth d.

1. The number of different polynomials possibly tested to zero in the computations of C is 2d2O(n).
2. There exists an algorithm using work space (nd)O(1) which, on input C and integers (i, j) in

binary, outputs the j-th bit of the representation of the i-th polynomial.

Proof. C is sliced in levels corresponding to the depth of the gates: input gates are on the level 0
and the output gate is the only one on level d.

Suppose that the results of the tests of the levels 0 to i− 1 are fixed: we can then compute all
the polynomials tested at level i. Since our algebraic circuits have fan-in at most 2, there are at
most 2d−i gates on level i of C: in particular, at most 2d−i polynomials can be tested on level i.
But the degree of a polynomial computed at level i is at most 2i. Therefore, by Theorem 3 there
are at most (2d)O(n) possible outcomes for the tests of level i, and they are moreover enumerable
in space (nd)O(1). Thus we can compute all the (2d)O(n) possible outcomes of all the tests of level
i and proceed inductively. This gives an algorithm using work space (nd)O(1) for enumerating all
the polynomials that can possibly be tested in the executions of the circuit. Since there are 2dO(n)

possible outcomes at each level, the total number of polynomials for the whole circuit (that is, for
d levels) is (2dO(n))d = 2d2O(n), as claimed in the statement of the theorem. ut

Together with Theorem 3, this enables us to prove the following result which will be useful in
the proof of Proposition 7: in uniform VPSPACE0 we can enumerate the polynomials as well as
the satisfiable sign conditions.

Lemma 5. Let (Cn) be a uniform family of polynomial-depth algebraic circuits with polynomially
many inputs. Call d(n) the depth of Cn and i(n) the number of inputs. Let f (n)

1 , . . . , f
(n)
s be all

the polynomials possibly tested to zero by Cn as in Proposition 6, where s = 2O(nd(n)2). There are
therefore N = 2O(n2d(n)2) satisfiable sign conditions S(1), . . . , S(N) by Theorem 3.

Then there exists a uniform VPSPACE0 family (fn(x̄, ȳ, z̄)), where |x̄| = i(n), |ȳ| = O(n2d(n)2)
and |z̄| = O(nd(n)2), such that for all 1 ≤ i ≤ N and 1 ≤ j ≤ s, we have:

fn(x̄, i, j) =

{
0 if S(i)

j = 1
f

(n)
j (x̄) otherwise.

Proof. Computing the coefficients of the polynomials f (n)
1 , . . . , f

(n)
s is done in polynomial space

thanks to Proposition 6. Now, deciding whether S(i)
j = 1 is also done in polynomial space thanks

to Theorem 3. The lemma follows. ut

10 Pascal Koiran and Sylvain Perifel

5.3 Finding the Sign Condition of the Input

In order to find the sign condition Sx̄ of the input x̄ ∈ Cn, we will give a polynomial-time algorithm
which tests some VPSPACE family for zero. Here is the formalized notion of a polynomial-time
algorithm with VPSPACE tests.

Definition 3. A polynomial-time algorithm with uniform VPSPACE0 tests is a uniform VPSPACE0

family (fn(x1, . . . , xu(n))) together with a uniform family (Cn) of constant-free polynomial-size
algebraic circuits endowed with special test gates of indegree u(n), whose value is 1 on input
(a1, . . . , au(n)) if fn(a1, . . . , au(n)) = 0 and 0 otherwise.

Observe that a constant number of uniform VPSPACE0 families can be used in the preceding
definition instead of only one: it is enough to combine them all in one by using “selection variables”.

The precise result we show now is the following.

Proposition 7. Let (Cn) be a uniform family of algebraic circuits of polynomial depth and with a
polynomial number i(n) of inputs. There exists a polynomial-time algorithm with uniform VPSPACE0

tests which, on input x̄ ∈ Ci(n), returns the rank i of the sign condition S(i) of x̄ with respect to the
polynomials g1, . . . , gs tested to zero by Cn given by Proposition 6.

Proof. Take the uniform VPSPACE0 family (fn(x̄, ȳ, z̄)) as in Lemma 5: in essence, fn enumerates
all the polynomials g1, . . . , gs possibly tested to zero in Cn and enumerates the N satisfiable sign
conditions S(1) < . . . < S(N). The idea now is to perform a binary search in order to find the rank
i of the sign condition of the input x̄.

Let S(j) ∈ {0, 1}s be a satisfiable sign condition. We say that S(j) is a candidate whenever
∀m ≤ s, S(j)

m = 0 ⇒ fm(x̄) = 0. Remark that the sign condition of x̄ is the smallest candidate. Call
Vj the variety defined by the polynomials {gm|S(j)

m = 0}: by definition of fn, Vj is also defined by
the polynomials fn(x̄, j, k) for k = 1 to s. Note that S(j) is a candidate if and only if x̄ ∈ Vj .

Lemma 5 combined with Corollary 1 assert that tests of the form x̄ ∈ ∪k≤jVk are in uniform
VPSPACE0. They are used to perform a binary search by making j vary. In a number of steps
logarithmic in N (i.e. polynomial in n), we find the rank i of the sign condition of x̄. ut

5.4 A Polynomial-time Algorithm for PARC Problems

Lemma 6. Let (Cn) be a uniform family of constant-free polynomial-depth algebraic circuits. There
is a (boolean) algorithm using work space polynomial in n which, on input i, decides whether the
elements of the i-th satisfiable sign condition S(i) are accepted by the circuit Cn.

Proof. We follow the circuit Cn level by level. For test gates, we compute the polynomial f to be
tested. Then we enumerate the polynomials f1, . . . , fs as in Proposition 6 for the circuit Cn and we
find the index j of f in this list. By consulting the j-th bit of the i-th satisfiable sign condition with
respect to f1, . . . , fs (which is done by the polynomial-space algorithm of Theorem 3), we therefore
know the result of the test and can go on like this until the output gate. ut

Theorem 4. Let A ∈ PAR0
C. There exists a polynomial-time algorithm with uniform VPSPACE0

tests that decides A.

Proof. A is decided by a uniform family (Cn) of constant-free polynomial-depth algebraic circuits.
On input x̄, thanks to Proposition 7 we first find the rank i of the sign condition of x̄ with respect
to the polynomials f1, . . . , fs of Proposition 6. Then we conclude by a last uniform VPSPACE0 test
simulating the polynomial-space algorithm of Lemma 6 on input i. ut

Theorem 2 follows immediately from this result. One could obtain other versions of these two results
by changing the uniformity conditions or the role of constants.

VPSPACE and a transfer theorem over the complex field 11

References

1. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1998.
2. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-

completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society,
21(1):1–46, 1989.

3. P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7 of Algorithms and Compu-
tation in Mathematics. Springer, 2000.

4. O. Chapuis and P. Koiran. Saturation and stability in the theory of computation over the reals. Annals of Pure
and Applied Logic, 99:1–49, 1999.

5. P. Charbit, E. Jeandel, P. Koiran, S. Perifel, and S. Thomassé. Finding a vector orthogonal to roughly half
a collection of vectors. Available from http://perso.ens-lyon.fr/pascal.koiran/publications.html. Accepted for
publication in Journal of Complexity, 2006.

6. R. Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988.
7. F. Cucker and D. Grigoriev. On the power of real Turing machines over binary inputs. SIAM Journal on

Computing, 26(1):243–254, 1997.
8. N. Fitchas, A. Galligo, and J. Morgenstern. Precise sequential and parallel complexity bounds for quantifier

elimination over algebraically closed fields. Journal of Pure and Applied Algebra, 67:1–14, 1990.
9. D. Grigoriev. Topological complexity of the range searching. Journal of Complexity, 16:50–53, 2000.

10. P. Koiran. Randomized and deterministic algorithms for the dimension of algebraic varieties. In Proc. 38th IEEE
Symposium on Foundations of Computer Science, pages 36–45, 1997.

11. P. Koiran. Circuits versus trees in algebraic complexity. In Proc. STACS 2000, volume 1770 of Lecture Notes in
Computer Science, pages 35–52. Springer-Verlag, 2000.

12. P. Koiran and S. Perifel. Valiant’s model: from exponential sums to exponential products. In Mathematical
Foundations of Computer Science, volume 4162 of Lecture Notes in Computer Science, pages 596–607. Springer-
Verlag, 2006.

13. P. Koiran and S. Perifel. VPSPACE and a transfer theorem over the reals. Available from http://perso.ens-
lyon.fr/pascal.koiran/publications.html, 2006.

14. G. Malod. Polynômes et coefficients. PhD thesis, Université Claude Bernard Lyon 1, July 2003. Available from
http://tel.archives-ouvertes.fr/tel-00087399.

15. G. Malod and N. Portier. Characterizing Valiant’s algebraic complexity classes. In Mathematical Foundations of
Computer Science, volume 4162 of Lecture Notes in Computer Science, pages 704–716. Springer-Verlag, 2006.

16. B. Poizat. Les petits cailloux. Aléas, 1995.
17. L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM Symposium on Theory of Computing, pages

249–261, 1979.

