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Abstract. It is well-known, due to the work of Girard and Coquand,
that adding polymorphic domains to higher order logic, HOL, or its type
theoretic variant λHOL, renders the logic inconsistent. This is known
as Girard’s paradox, see [7]. But there is also a another presentation of
higher order logic, in its type theoretic variant called λPREDω, to which
polymorphic domains can be added safely, Both λHOL and λPREDω
are well-known type systems and in this paper we study why λHOL
with polymorphic domains is inconsistent and why nd λPREDω with
polymorphic domains remains consistent. We do this by describing a
simple model for the latter and we show why this can not be a model of
the first.

1 Introduction

We study extensions of higher order logic HOLin the context of typed lambda
calculi. It is known that extensions of higher order logic with polymorphic
domains are inconsistent. This was established by Girard [16] and later this
result was refined by Coquand [10] who showed that quantification over the
collection of all domains wasn’t needed to obtain the inconsistency. On the other
hand, there are systems like the Calculus of Constructions (CC, [9]), which are
consistent extensions of higher order logic in which we have polymorphic types.
It is not so easy to relate CC directly to HOL, because in CC there is no
syntactic distinction between domains and propositions (and therefore between
set objects and proof objects). In this paper we therefore study the addition
of polymorphic types in the context of a system of higher order order logic,
presented as a (isomorphic) type theory following the Curry Howard formulas-
as-types isomorphism. See [19] for an overview of formulas-as-types.

We present two isomorphic type systems for higher order logic, λHOL and
λPREDω, and we show why in the first case, the addition of polymorphic
sets leads to inconsistency, and in the second case it does not. This is done
by describing a model for λHOL (and therefore for λPREDω), and to see
how that can be extended to a model for λPREDω+: higher order logic with
polymorphism.

The model construction that we use is a variation of models described in [14,
21]. It uses sets of untyped terms as the interpretation of types and is closely
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related to a saturated sets model. However, we will not make this connection
precise.

The main contribution of the paper is a clarification of the fact that λPREDω
with polymorphic sets is consistent. The clue is that the “standard” model for
higher order logic, where arrow types are interpreted as set theoretic function
spaces does not work anymore if one adds polymorphic types (Reynolds [20]
result), but that one can shift the interpretation of types one level lower, interpreting
the arrow type σ→τ as the collection of terms (from a combinatory algebra)
that map terms of σ to terms of τ . This is basically the Tait [22] construction
for saturated sets.

2 Higher Order Logic as a Pure Type System

2.1 Higher order predicate logic

Definition 1. The language of HOL is defined as follows.

1. The set of domains, D is defined by

D ::= Base |Ω |D→D,

where Base represents a basic domain (we assume that there are countably
many basic domains) and Ω represents the domain of propositions.

2. For every σ ∈ D, the set of terms of domain σ, Termσ is inductively defined
as follows. (As usual we write t : σ to denote that t is a term of domain σ.)
(a) the constants cσ1 , c

σ
2 , . . . are in Termσ,

(b) the variables xσ
1 , x

σ
2 , . . . are in Termσ,

(c) if ϕ : Ω and xσ is a variable, then (∀xσ.ϕ) : Ω,
(d) if ϕ : Ω and ψ : Ω, then (ϕ ⇒ ψ) : Ω,
(e) if M : σ→τ and N : σ, then (MN) : τ ,
(f) if M : τ and xσ is a variable, then (λxσ.M) : σ→τ .

3. The set of terms of HOL, Term, is defined by Term := ∪σ∈DTermσ.
4. The set of formulas of HOL, form, is defined by form := TermΩ.

We adapt the well-known notions of free and bound variable, substitution,
β-reduction and β-conversion to the terms of this system. The λ-abstraction
is both used for defining functions of higher type, like λf (σ→σ)→σ.f(λxσ.x) :
(σ→σ)→σ→σ, and for comprehension. Comprehension is the axiom scheme
∃X(∀x(Xx ↔ ϕ), where x is the sequence of free variables of the formula
ϕ. Comprehension holds, because we can always take X := λx.ϕ.

There are no ‘product’ domains (σ × σ) in our logic. We represent functions
of higher arity by currying: a binary function on σ is represented as a term in the
domain σ→(σ→σ). A predicate is represented as a function to Ω, following the
idea (probably due to Church; it appears in [6]) that a predicate can be seen as a
function that takes a value as input and returns a formula. So, a binary relation
over σ is represented as a term in the domain σ→(σ→Ω). (If R : σ→(σ→Ω)
and t, q : σ, then ((Rt)q) : Ω.) The logical connectives are just implication and
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universal quantification. Due to the fact that we have higher order universal
quantification, we can constructively express all other quantifiers using just ⇒
and ∀. See [11] for more details.

We fix the usual notational conventions that outside brackets are omitted
and that in the domains we omit the brackets by letting them associate to the
right, so σ→σ→Ω denotes σ→(σ→Ω). In terms we omit brackets by associating
them to the left, so Rtq denotes (Rt)q.

The derivation rules of HOL are given in a natural deduction style.

Definition 2. The notion of provability, Γ ` ϕ, for Γ a finite set of formulas
(terms of domain form) and ϕ a formula, is defined inductively as follows.

(axiom)
Γ ` ϕ if ϕ ∈ Γ

( ⇒ -introduction)
Γ ∪ ϕ ` ψ

Γ ` ϕ ⇒ ψ

( ⇒ -elimination)
Γ ` ϕ Γ ` ϕ ⇒ ψ

Γ ` ψ

(∀-introduction)
Γ ` ϕ

Γ ` ∀xσ.ϕ
if xσ /∈ FV(Γ )

(∀-elimination)
Γ ` ∀xσ.ϕ

Γ ` ϕ[t/xσ]
if t : σ

(conversion)
Γ ` ϕ

Γ ` ψ
if ϕ =β ψ

Remark 1. The rule (conversion) is an operationalization of the comprehension
axiom. The rule says that we don’t want to distinguish between β-equal propositions.

2.2 Extension with polymorphic domains

Extending higher order logic with polymorphic domains make the system inconstsitent.
This extension amounts to the system U−. Allowing also quantification over all
domains yields teh system U . Both systems were defined in [16] and it was shown
there that U is inconsistent, which became known as Girard’s paradox. Later it
was shown by [10] and [18] that U− is also inconsistent. We now define these
systems.

Definition 3. The set of domains of U− DU is defined by

D ::= Base |VarD |Ω |D→D |ΠA.D



4 H. Geuvers

where VarD is a set of variables ranging over DU and A ∈ VarD.
For σ ∈ DU , the set of terms of domain σ in U−, TermU−

σ is inductively
defined as follows.

1. if t : ΠA.τ and σ ∈ DU , then tσ : τ [σ/A]
2. if t : τ , then λA.t : ΠA.τ

The derivation rules for U− are the same as for HOL.
The system U is the extension of U−, where the terms are extended as follows.

3. if ϕ : Ω, then ∀A.ϕ : Ω

The additional derivation rules for U are:

(∀2-introduction)
Γ ` ϕ

Γ ` ∀A.ϕ
if A /∈ FV(Γ )

(∀2-elimination)
Γ ` ∀A.ϕ

Γ ` ϕ[σ/A]
if σ ∈ DU

The systems U and U− are inconsistent, which can be phrased as “higher
order logic with polymorphic domains is inconsistent”. However, the Calculus
of Constructions [9] contains both higher order logic and polymorphic domains
but it is still consistent. How to understand this seeminlgly paradoxical situation
will be explained in this paper, using a model of higher order logic, defined as a
typed λ calculus.

The Calculus of Constructions is a type theory where no distinction between
objects and proofs is made. The Curry-Howard formulas as types embedding
gives an embedding of higher order logic into CC, but it is not conservative.
However, CC is consistent and contains higher order logic, so it must be possible
extends HOL with polymorphic domains in a consistent way. To see that, we
define PREDω, which is a variant of HOL and its extension PREDω+, which
is higher order logic with polymorphic domains.

Definition 4. The set of domains of PREDω Dω is defined by

Dw ::= Ds |Dp

Dp ::= Ω |D→Dp

Ds ::= B |D→Ds

The rules for terms and the derivation rules are the same as for HOL.
The system PREDω+ is the extension of PREDω, where the domains Ds

are as follows.
Ds ::= Base |VarD |D→Ds |ΠA.Ds

where VarD is a set of variables ranging over Ds and A ∈ VarD.
For σ ∈ D, the set of terms of type σ in U−, TermPREDω+

σ is inductively
defined as follows.
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1. if t : ΠA.τ and σ ∈ Ds, then tσ : τ [σ/A]
2. if t : τ and τ ∈ Ds, then λA.t : ΠA.τ

The derivation rules for PREDω+ are the same as for PREDω.

It can be shown that PREDω is isomorphic to HOL. The system PREDω+

is in flavor very close to U−, both being extensions of HOL with polymorphic
domains. However, PREDω+ is consistent.

2.3 Pure Type Systems for higher order logic

In type theory, one interprets formulas and proofs via the well-known ‘formulas-
as-types’ and ‘proofs-as-terms’ embedding, originally due to Curry, Howard and
de Bruijn. (See [17, 5].) Under this interpretation, a formula is viewed as the
type of its proofs. It turns out that one can define a typed λ-calculus λHOL
that represents HOL in a very precise way. What very precise means will not
be defined here, but see e.g. [2] or [12]. In this section we briefly introduce the
general framework of Pure Type Systems or PTSs. These were first introduced
by [3] and [23], under different names and with slightly different definitions, as
a generalization of the so called λ-cube, see [2]. The reason for defining the class
of PTSs is that many known systems are (or better: can be seen as) PTSs. Here
we will focus on higher order logic seen as a PTS.

Definition 5. For S a set (the set of sorts), A ⊂ S ×S (the set of axioms)and
R ⊂ S ×S ×S (the set of rules), the Pure Type System λ(S,A,R) is the typed
lambda calculus with the following deduction rules.

(sort) ` s1 : s2 if (s1, s2) ∈ A

(var)
Γ ` T : s

Γ, x:T ` x : T
if x /∈ Γ

(weak)
Γ ` T : s Γ `M : U

Γ, x:T `M : U
if x /∈ Γ

(Π)
Γ ` T : s1 Γ, x:T ` U : s2

Γ ` Πx:T.U : s3
if (s1, s2, s3) ∈ R

(λ)
Γ, x:T `M : U Γ ` Πx:T.U : s

Γ ` λx:T.M : Πx:T.U

(app)
Γ `M : Πx:T.U Γ ` N : T

Γ `MN : U [N/x]

(convβ)
Γ `M : T Γ ` U : s

Γ `M : U
T =β U
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If s2 ≡ s3 in a triple (s1, s2, s3) ∈ R, we write (s1, s2) ∈ R. In the derivation
rules, the expressions are taken from the set of pseudo-terms T defined by

T ::= S | V | (ΠV:T .T ) | (λV:T .T ) | T T .

The pseudo-term T is legal if there is a context Γ and a pseudo-term U such
that Γ ` T : U or Γ ` U : T is derivable. The set of legal terms of λ(S,A,R) is
denoted by Term(λ(S,A,R)).

By convention we write A→B for Πx:A.B if x /∈ FV(B).
It is instructive to define an example PTS to see how flexible the notion is.

In the following, we describe a PTS by just listing the sort, the axioms and the
rules in a box. For higher order logic HOL this amounts to the following λHOL.

λHOL
S ?,�,∆
A ? : �,� : ∆
R (?, ?), (�,�), (�, ?)

The formulas-as-types interpretation from higher order predicate logic HOL
into λHOL maps a formula to a type and a derivation (in natural deduction) of
formula ϕ to a typed λ-term (of the type associated with ϕ):

Σ

ψ

7→ [[Σ]] : [(ψ)]

where [(−)] denotes the interpretation of formulas as types and [[−]] denotes
the interpretation of derivations as λ-terms. In a derivation, we use expressions
from the logical language (e.g. to instantiate the ∀), which may contain free
variables, constants and domains. In type theory, in order to make sure that all
terms are well-typed, the basic items (like variables and domains) have to be
declared explicitly in the context. Also, a derivation will in general contain non-
discharged assumptions (ϕ1, . . . , ϕn) that will appear as variable declarations
(z1 : ϕ1, . . . , zn : ϕn) in the type theoretic context. So the general picture is this.

ϕ1 . . . ϕn

Σ

ψ

7→ ΓΣ , z1 : ϕ1, . . . , zn : ϕn ` [[Σ]] : [(ψ)],

where ΓΣ is the context that declares all domains, constants and free variables
that occur in Σ.

The system λHOL is stratified in the sense that one can alternatively define
it “layer by layer”, starting from the terms of type ∆, then the terms of type
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A where A : ∆ etcetera. We introduce some naming and notation conventions
for λHOL. Some of these depend on properties of λHOL that we do not prove
here.

Remark 2. 1. There is only one term of type ∆, and that is �.
2. A term of type � is called a kind. Typical kind names are σ, τ, . . .. So a kind

is a term σ with Γ ` σ : � for some Γ . All kinds are of the shape σ1→ . . .→?
or σ1→ . . .→A with A a variable of type �.

3. A term of type a kind is called a constructor. Typical constructor names are
P,Q, . . .. So a constructor is a term P with Γ ` P : σ, where σ is a kind (so
Γ ` σ : �) for some Γ . If σ = ?, then we call P a type. Typical type names
are ϕ,ψ, . . .. So a type is a term ϕ with Γ ` ϕ : ? for some Γ .

4. An object is a term of a type, so a p with Γ ` p : ϕ where ϕ is a type, for
some Γ . Typical object names are p, q, . . ..

Calling the kinds σ conforms with the use of these names in HOL, where the
domains were called σ. A domain in HOL corresponds with a kind in λHOL.

Remark 3. There are three “ways” of introducing a variable in λHOL. For each
of these cases we take the variables from a specific subset of Var and we use
specific notations for these variables. So we assume Var to be the disjoint subset
of Var∆, Var� and Var?. The three cases are:

1. A : �; we take these variables, the kind variables, from Var∆ and we use A
as a typical name for such a variable.

2. v : σ with σ : �; we take these variables, the constructor variables, from
Var� and we use α as a typical name for such a variable.

3. v : ϕ with ϕ : ?; we take these variables, the object variables, from Var? and
we use x as a typical name for such a variable.

Here is a visual way of thinking of these classes of terms

∆ ∆
.. ..
� �
.. ..

kinds σ ? a special kind
.. ..

constructors P ϕ types (a special case of constructors)
..
p objects

The systems U− and U can easily be seen as a Pure Type System as follows.

Definition 6. The systems λU− and λU are defined by adding to λHOL respectively
the rule (∆,�) and the rules (∆,�) and (∆, ?).
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Another way of looking at higher order logic is the system PREDω. This
can be turned into a PTS as follows (originally due to [3]).

λPREDω
S Set,Types,Prop,Typep

A Set : Types,Prop : Typep

R (Set,Set), (Set,Typep), (Typep,Typep), (Prop,Prop),
(Set,Prop), (Typep,Prop)

It can be formally shown that λHOL and λPREDω are isomorphic. We will
come to that later. We can also view λPREDω in a stratified way and we could
have introduced in in that way. This would be very close to starting off from the
domains, then the terms and then the proofs, as we did for PREDω.

Types

..
Set Typep Typep

.. .. ..
sets σ K Prop kinds (Prop is a special kind)

.. .. ..
set objects t P ϕ constructors (a type is a special constr.)

..
p proof objects

We can also add polymorphic types to λPREDω, which amounts to the
system λPREDω+

Definition 7. The systems λPREDω+ is defined by adding to λPREDω the
rule (Types,Set).

We introduce two other known type systems as PTSs: Fω of [16]) and the
Calculus of Constructions, CC of [9].

CC
S ?,�
A ? : �
R (?, ?), (?,�), (�, ?), (�,�)

Fω
S ?,�
A ? : �
R (?, ?), (�,�), (�, ?)

In view of higher order predicate logic, one can understand CC as the system
obtained by smashing the sorts Prop and Set into one, ?. Hence, higher order
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predicate logic can be done inside the Calculus of Constructions. We describe
the map from λPREDω to CC later in detail.

The system Fω is known to be consistent. As a consequence, λHOL is
consistent: if we map all kind variables to ?, then the rules are preserved, so
we have an embedding of λHOL into Fω, where ⊥ (:= Πα : ?.α) is mapped to
itself. As ⊥ is not inhabited in Fω, it is not inhabited in λHOL.

One can sometimes relate results of two different systems by defining an
embedding between them. There is one very simple class of embeddings between
PTSs.

Definition 8. For T = λ(S,A,R) and T ′ = λ(S ′,A′,R′) PTSs, a PTS-morphism
from T to T ′ is a mapping f : S → S ′ that preserves the axioms and rules.
That is, for all s1, s2 ∈ S, if (s1, s2) ∈ A then (f(s1), f(s2)) ∈ A′ and if
(s1, s2, s3) ∈ R then (f(s1), f(s2), f(s3)) ∈ R′.

A PTS-morphism f from λ(S,A,R) to λ(S ′,A′,R′) extends immediately to
a mapping f on pseudo-terms and contexts. Moreover, this mapping preserves
reduction in a faithful way: M →β N iff f(M) →β f(N). We have the following
property.

Proposition 1. For T and T ′ PTSs and f a PTS-morphism from T to T ′, if
Γ `M : A in T , then f(Γ ) ` f(M) : f(A) in T ′.

Not all PTSs are Strongly Normalizing. We have the following well-known
theorem.

Theorem 1. The Calculus of Constructions, CC, is Strongly Normalizing.

The proof can e.g. be found in [15], [13], [3].
As a consequence we find that many other PTSs are Strongly Normalizing as

well. This comprises all the sub-systems of CC and also all systems T for which
there is a PTS-morphism from T to CC. (Note that a PTS-morphism preserves
infinite reduction paths.)

Corollary 1. The following PTSs are all Strongly Normalizing. All subsystems
of CC; λPRED; λPREDω.

Well-known example of PTSs that are not Strongly Normalizing are λU and
λU−.

As a matter of fact, we now have two formalizations of higher order predicate
logic as a PTS: λHOL and λPREDω. We employ the notion of PTS-morphism
to see that they are equivalent. From λPREDω to λHOL, consider the PTS-
morphism f given by

f(Prop) = ?,

f(Set) = �,

f(Typep) = �,

f(Types) = ∆.
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One verifies immediately that f preserves A and R, hence we have

Γ `λPREDω M : A =⇒ f(Γ ) `λHOL f(M) : f(A).

The inverse of f can almost be described as a PTS-morphism, but not quite.
Define the PTS-morphism g from λPREDω to λHOL as follows.

g(?) = Prop,

g(�) = Set,

g(∆) = Types

(In λHOL the sort ∆ can not appear in a context nor in a term on the left side
of the ‘:’.) We extend g to derivable judgments of λHOL in the following way.

g(Γ `M : A) = g(Γ ) ` g(M) : g(A), if A 6= Typep,

g(Γ `M : Typep) = g(Γ ) ` g(M) : Set, if M ≡ · · ·→α, (α a variable),
g(Γ `M : Typep) = g(Γ ) ` g(M) : Typep, if M ≡ · · ·→Prop.

By easy induction one proves that g preserves derivations. Furthermore, f(g(Γ `
M : A)) = Γ ` M : A and g(f(Γ ` M : A)) = Γ ` M : A. Hence, λPREDω
and λHOL are equivalent systems. This equivalence implies that the system
λHOL is Strongly Normalizing as well. But we already knew that, because it is
also a consequence of the embedding of λHOL into Fω and the fact that Fω is
Strongly Normalizing.

3 The model construction

3.1 Combinatory Algebras

To model the set of pseudo-terms of type theories we can use combinatory
algebras ca, or variants of combinatory algebras, like partial combinatory algebras
pca or conditionally partial combinatory algebras c-pca. We list the important
notions used in this paper. Most of the definitions in this section are taken from
[1] and [4].

Definition 9. A combinatory algebra (ca) is an applicative structure A =
〈 A , . , k , s , =A 〉 with distinguished elements k and s satisfying

(k.x).y =A x , ((s.x).y).z =A (x.z).(y.z)

The application (.) is usually not written.

Definition 10. The set of terms over A (notation T (A)) is defined as follows.

T ::= Var |A | T T
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Every ca is combinatory complete, i.e., for every T ∈ T (A) with FV(T ) ⊂ {x},
there exists an f ∈ A such that

f · a =A T [a/x] ∀a ∈ A.

Such an element f will be denoted by λx.T in the sequel. It is well-known that
one can define λ as the standard abstraction λ∗ with the help of the combinators
k and s as follows, by induction on the structure of terms.

Definition 11.

λx.P := kP if x /∈ FV(P )
λx.x := skk

λx.PQ := s(λx.P )(λx.Q)

In the following we could restrict ourselves completely to the combinatory
algebra (Λ, ·, λxy.x, λxyz.xz(yz),=β), where Λ is the set of (open, untyped) λ-
terms and · denotes application, which we usually don’t write. But the constructions
apply more generally to other combinatory algebras, as long as they are weakly
extensional, i.e. if the following holds

A |= ∀x(T1 = T2) → λx.T1 = λx.T2.

The combinatory algebra CL (combinatory logic) is not weakly extensional.
The combinatory algebra (Λ, ·, λxy.x, λxyz.xz(yz),=β) is weakly extensional, if
we take for λx.T just λx.T or the definable λ − .− as given above. It is well-
known that if we take for Λ the set of closed lambda terms, the ca is not weakly
extensional. Another interesting example of a weakly extensional ca is Λ(C),
the set of open λC-terms (i.e. lambda-terms over some constant set C) modulo
βc-equality, where the c-equality rule is defined by cN =c c, λv.c =c c (for all
c ∈ C and N ∈ ΛC).

3.2 The Model for λHOL

The notion of λHOL-structure and the interpretations of the typable terms of
are explained informally in the next paragraphs.

The typable terms of λHOL are mapped into a (set-theoretical) hierarchical
structure (called λHOL-structure) according to their classification as objects,
types, constructors, or kinds. The kinds of λHOL are interpreted as sets from
a predicative structure N, so Typep is interpreted as N. Predicative structures
are closed under set-theoretical function space construction. The impredicative
universe Prop is interpreted as a collection P of subsets of the underlying ca. We
call this collection polystructure and its elements polysets. P itself is an element of
N and is closed under non-empty intersections and a function space construction
(to be defined). Constructors are interpreted as elements of

⋃
X∈N

X (
⋃

N in short).

Their interpretations are called poly-functionals. In particular, types are mapped
to polysets.
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Definition 12. A polyset structure over the weakly extensional combinatory
algebra A is a collection P ⊆ ℘(A) such that

1. A ∈ P,
2. P is closed under arbitrary non-empty intersection

⋂
: if I 6= ∅ and ∀i ∈

I(Xi ∈ P), then
⋂

i∈I Xi ∈ P.
3. P is closed under function space, i.e. if X,Y ∈ P, then X→0Y ∈ P, where

X→0Y is defined as

{a ∈ A | ∀t ∈ X(a · t ∈ Y )}.

The elements of a polyset structure are called polysets.

Example 1. 1. We obtain the full polyset structure over the weca A if we take
P = ℘(A).

2. The simple polyset structure over the weca A is obtained by taking P =
{∅,A}. It is easily verified that this is a polyset structure.

3. Given the weca Λ(C) as defined in Example ?? (so C is a set of constants),
we define the polyset structure generated from C by

P := {X ⊆ Λ(C) | X = ∅ ∨ C ⊆ X}.

4. Given the weca A and a set C ⊆ A such that ∀a, b ∈ A(a ·b ∈ C =⇒ a ∈ C,
we define the power polyset structure of C by

P := {X ⊆ A |X ⊆ C ∨X = A}.

5. The degenerate polyset structure is P := {A}, in which all types are interpreted
as A, so in this structure there are no empty types.

The function space of a polyset structure will be used to interpret types of
the form ϕ→ψ, where both ϕ and ψ are types. The intersection will be used
to interpret types of the form Πα:σ.ϕ, where σ is a kind and ϕ is a type. To
interpret types we need a predicative structure.

Definition 13. For P a polyset structure, the predicative structure over P is
the collection of sets N defined inductively by

1. P ∈ N,
2. If X,Y ∈ P, then X→1Y ∈ N, where →1 denotes the set-theoretic function

space.

Definition 14. If A is a weakly extensional combinatory algebra, P a polyset
structure over A and N the predicative structure over P, then we call the tuple
〈A,P,N〉 a λHOL-model.

Remark 4. It is possible to vary on the notions of polystructure and predicative
structure by requiring closure under dependent function spaces (in P and/or N).
In that case we obtain models that can interpret dependent types. For details
we refer to [21] or [14].
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We now define the interpretation function [[−]], which maps kinds to elements
of N, constructors to elements of

⋃
N (and types to elements of P, which is

a subset of
⋃

N) and objects to elements of the combinatory algebra A. All
these interpretations are parameterized by valuations, assigning values to the
free variables (declared in the context).

Definition 15. A variable valuation is a map from Var∆ ∪ Var� ∪ Var? to
N ∪

⋃
N ∪ A that consists of the union of an object variable valuation ρ0 :

Var? → A, a constructor variable valuation ρ1 : Var� →
⋃

N and a kind variable
valuation ρ2 : Var� → N.

Definition 16. For ρ a variable valuation, we define the map [(−)]ρ on the set of
well-typed objects as follows. (We leave the model implicit.)

[(x)]ρ := ρ(x),
[(tq)]ρ := [(t)]ρ · [(q)]ρ, if q is an object,
[(tQ)]ρ := [(t)]ρ, if Q is a constructor,

[(λx:ϕ.t)]ρ := λv.[(t)]ρ(x:=v), if ϕ is a type,

[(λα:σ.t)]ρ := [(t)]ρ, if σ is a kind.

Definition 17. For ρ a variable valuation, we define the maps V(−)ρ and [[−]]ρ
respectively from kinds to N and from constructors to

⋃
N as follows. (We leave

the model implicit.)

V(?)ρ := P,

V(A)ρ := ρ(A), if A is a kind variable,
V(σ→τ)ρ := V(σ)ρ→1V(τ)ρ,

[[α]]ρ := ρ(α),

[[Πα:σ.ϕ]]ρ :=
⋂

a∈V(σ)ρ

[[ϕ]]ρ(α:=a), if σ is a kind,

[[ϕ→ψ]]ρ := [[ϕ]]ρ→0[[ψ]]ρ, if ϕ,ψ are a types,
[[PQ]]ρ := [[P ]]ρ([[Q]]ρ),

[[λα:σ.P ]]ρ := λλa ∈ V(σ)ρ.[[P ]]ρ(α:=a).

Definition 18. For Γ a λHOL-context, ρ a variable valuation, we say that ρ
fulfills Γ , notation ρ |= Γ , if for all A ∈ Var∆, x ∈ Var? and α ∈ Var�, A ∈
� ∈ Γ ⇒ ρ(A) ∈ N, α : σ ∈ Γ ⇒ ρ(α) ∈ V(σ)ρ and x : ϕ ∈ Γ ⇒ ρ(x) ∈ [[ϕ]]ρ.

It is (implicit) in the definition that ρ |= Γ only if for all declarations x:ϕ ∈ Γ ,
[[σ]]ρ is defined (and similarly for α:σ ∈ Γ ).
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Definition 19. The notion of truth in a λHOL-model, notation |=S and of
truth, notation |= are defined as follows. For Γ a context, t an object, ϕ a type,
P a constructor and σ a kind of λHOL,

Γ |=S t : ϕ if ∀ρ[ρ |= Γ ⇒ [(t)]ρ ∈ [[ϕ]]ρ],

Γ |=S P : σ if ∀ρ[ρ |= Γ ⇒ [[P ]]ρ ∈ V(σ)ρ].

Quantifying over the class of all λHOL-models, we define, for M an object or
a constructor of λHOL,

Γ |= M : T if Γ |=S M : T for all λHOL-models S.

Soundness states that if a judgment Γ `M : T is derivable, then it is true in
all models. It is proved ‘model-wise’, by induction on the derivation in λHOL.

Theorem 2 (Soundness). For Γ a context, M an object or a constructor and
T a type or a kind of λHOL,

Γ `M : T ⇒ Γ |= M : T.

Example 2. Let A be a weca.

1. The full λHOL-model over A is S = 〈A,P,N〉, where P is the full polyset
structure over A (as defined in Example 1).

2. The simple λHOL-model over A is S = 〈A,P,N〉, where P is the simple
polyset structure over A. (So P = {∅,A}.)

3. The simple λHOL-model over the degenerate A is also called the proof-
irrelevance model or PI-model for λHOL.

4. For C a set of constants, the λHOL-model generated from C is defined by
S = 〈Λ(C),P,N〉, where P is the polyset structure generated from C.

4 Extending the model construction

4.1 Extensions of λHOL

The model for λHOL can be extended to other type theories. First of all we
remark that the rule (∆, ?) can easily be interpreted by putting

[[ΠA:�.ϕ]]ρ :=
⋂

W∈N

[[ϕ]]ρ(A:=W ).

This can be interpreted in any model, so the extension of λHOL with the
rule (∆, ?) is consistent.

The rule (∆,�) makes λHOL inconsistent. This can be observed in the
model, because the only possible interpretation in N for ΠA:�.σ would be

V(ΠA:�.σ)ρ :=
⋂

W∈N

V(σ)ρ(A:=W ),
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which would only make sense if N were also a polyset structure. (If N were
set theoretic, V(ΠA:�.σ)ρ would just be empty.) But this can only be achieved
by taking P := {A}, the degenerate polyset structure. (See 1.) then N := {{A}},
which can be seen as a polyset structure and is then closed under →0. In this
model all types are interpreted as a non-empty set (A), which conforms with
the fact that λU− is inconsistent.

4.2 λPREDω and extensions

As λHOL is isomorphic to λPREDω, we also have a model for λPREDω. As
we want to vary on the type theory λPREDω, we make the model construction
for λPREDω precise here. As a model we just take the definition of λHOL-
model as given in Definition 14.

Definition 20. A variable valuation is a map from VarTypes

∪VarTypep

∪VarSet∪
VarProp to N ∪

⋃
N ∪ A that consists of the union of an proof object variable

valuation ρ0 : VarProp → A, a constructor variable valuation ρ1a : VarTypep

→⋃
N, a set object variable valuation ρ1b : VarSet →

⋃
N and a set variable

valuation ρ2 : VarTypes

→ N.

Definition 21. For ρ a variable valuation, we define the map [(−)]ρ on the set of
well-typed proof objects of λPREDω as follows. (We leave the model implicit.)

[(x)]ρ := ρ(x),
[(tq)]ρ := [(t)]ρ · [(q)]ρ, if q is a proof object,
[(tQ)]ρ := [(t)]ρ, if Q is a constructor or a set object,

[(λx:ϕ.t)]ρ := λv.[(t)]ρ(x:=v), if ϕ is a type,

[(λα:U.t)]ρ := [(t)]ρ, if U is a kind or a set.

Definition 22. For ρ a variable valuation, we define the maps V(−)ρ and [[−]]ρ
respectively from kinds of λPREDω to N and from constructors and set objects
of λPREDω to

⋃
N as follows. (We leave the model implicit.)

V(Prop)ρ := P,

V(A)ρ := ρ(A), if A ∈ VarTypes

,

V(σ→τ)ρ := V(σ)ρ→1V(τ)ρ,

[[α]]ρ := ρ(α), if α ∈ VarTypep

∪VarSet,

[[Πα:U.ϕ]]ρ :=
⋂

a∈V(U)ρ

[[ϕ]]ρ(α:=a), if U is a kind or a set,

[[ϕ→ψ]]ρ := [[ϕ]]ρ→0[[ψ]]ρ, if ϕ,ψ are a types,
[[PQ]]ρ := [[P ]]ρ([[Q]]ρ), if Q is a constructor or a set object,

[[λα:U.P ]]ρ := λλa ∈ V(U)ρ.[[P ]]ρ(α:=a) if U is a kind or a set.
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For Γ a λPREDω-context, ρ a variable valuation, the notion of ρ fulfills Γ
(ρ |= Γ ), is the similar to the one for λHOL:
A ∈ Set ∈ Γ ⇒ ρ(A) ∈ N, α : σ ∈ Γ ⇒ ρ(α) ∈ V(σ)ρ (for σ a set), α : K ∈ Γ ⇒
ρ(α) ∈ V(K)ρ (for K a kind) and x : ϕ ∈ Γ ⇒ ρ(x) ∈ [[ϕ]]ρ.

The notion of truth is the same as for λHOL models (Definition 19) and we
also have a soundness result, like Theorem 2.

To compare the situation fro λHOL and λPREDω, we can take a look at
the two figures 1 and 2. The first describes how the different “levels” of λHOL
and λPREDω are interpreted in the model. (Forget about the part of dashed
arrows for now.) The second describes how the function spaces are interpreted
in the model. Again omit the dashed arrows and the part that is not between
the two dashed lines on the right.

∆

�

?

ϕ

p
..

..

..

..
�

..

..

ϕ

p
..

..

..

K

Q

..

..

..

..

..
Set

K σ

Q t

{N}

N

{N}

N Typep Typep

Types

PropN � K

A � t

K ∈ N

Q ∈
⋃

N

t ∈ A

X ∈ P

P ∈ N

P � X
⋃

N � Q

N � P

Fig. 1. Interpretation of the different object, types and sorts

We now want to look at λPREDω+, the extension of λPREDω with polymorphic
kinds (higher order logic with polymorphic domains). In this system we have
types of the form ΠA:Set.A→A : Set and the system is known to be consistent.
According to the λPREDω semantics, we would have to put

V(ΠA:Set.A→A)ρ ∈ N,

but then we would have to interpret the Π either as a set-theoretic dependent
function space (which is not possible due to cardinality reasons) or as an intersection,
and then N would have to be a polyset structure as well. The latter would amount
to a model in which all types are interpreted as non-empty sets, which is not
what we want.

The solution is to “shift” the interpretation of the sort Set one level down,
interpreting Set as P and σ : Set as a polyset. Then the interpretation of
ΠA:Set.A→A will be as follows.

[[ΠA:Set.A→A]]ρ =
⋂

X∈P

X→0X ∈ P.

This amounts to the dashed arrows in the Figures 1 and 2. In order to
define this interpretation we have to extend the notions of polyset structure
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XXXXXXXX

XXXXXXXX

HHHHHHHH

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

(Types,Set)

(Set,Typep)

(Typep,Set)

(Typep,Prop)

(Types,Typep)

→1 in N (�,�)

(�, ?)

(�, ?) (Prop,Prop)

(Set,Set)

(Set,Prop)

→0 in P

∩ in P

→1 in N

∩ in P

→0 in P

→2 from P to N

→d in P

Fig. 2. Interpretation of the different (dependent) function spaces

and predicative structure a bit. As we now have dependent types at the polyset
level, we need a dependent function type in P. Moreover, we have type dependent
functions from polysets to predicative set.

Definition 23. A polyset structure for λPREDω+ is a polyset structure that
is moreover closed under dependent function spaces, (→p in Figure 2): if F :
X → P is a function such that

t =A q ⇒ F (t) = F (q),

then P also contains∏
A(X,F ) := {f ∈ A | ∀n ∈ X(f · n ∈ F (n))}

For convenience
∏

A(X,F ) will be denoted by
∏

A x ∈ X.F (x). Like in type
theory, if F is a constant function onX, say F (x) = Y , then we denote

∏
A(X,F )

is just the function space X→0Y , which is defined as {f ∈ A | ∀n ∈ X(f · n ∈
Y )}.

Definition 24. A predicative structure for λPREDω+ over P is a predicative
structure that is moreover closed under function spaces from P to N, (→2 in
Figure 2): if X ∈ P and K ∈ N, then the following is also in N

X→2K := {h | ∀t, q ∈ X, t =A q ⇒ h(t) = h(q) ∈ K}.
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Note that the elements of X→2K are set-theoretic functions.

We now make the model construction for λPREDω+ precise. As a model
we just take the definition of λHOL-model, where the polyset structure and the
predicative structure are as in Definitions ??, 24. The interpretations will be
such that they conform with the dashed arrows in Figures 1 and 2.

Definition 25. A variable valuation for λPREDω+ is a map from VarTypes

∪
VarTypep

∪VarSet ∪VarProp to N∪
⋃

N∪A that consists of the union of an proof
object variable valuation ρ0 : VarProp → A, a constructor variable valuation
ρ1a : VarTypep

→
⋃

N, a set object variable valuation ρ1b : VarSet → A and a set
variable valuation ρ2 : VarTypes

→ P.

Definition 26. For ρ a variable valuation for λPREDω+, we define the map
[(−)]ρ on the set of well-typed proof objects and set objects of λPREDω as follows.

[(x)]ρ := ρ(x), if x ∈ VarProp ∪VarSet,

[(tq)]ρ := [(t)]ρ · [(q)]ρ, if q is a proof object or set object,
[(tQ)]ρ := [(t)]ρ, if Q is a constructor or a set,

[(λx:U.t)]ρ := λv.[(t)]ρ(x:=v), if U is a type or a set,

[(λα:K.t)]ρ := [(t)]ρ, if K is a kind or Set.

Definition 27. For ρ a variable valuation, we define the maps V(−)ρ and [[−]]ρ
respectively from kinds of λPREDω+ and {Set} to N and from constructors and
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sets of λPREDω+ to
⋃

N as follows.

V(Prop)ρ := P,

V(Set)ρ := P,

V(K1→K2)ρ := V(K1)ρ→1V(K2)ρ, if K1 is a kind,
V(σ→K)ρ := [[σ]]ρ→2V(K)ρ, if σ is a set,

[[A]]ρ := ρ(A), if A ∈ VarTypes

,

[[α]]ρ := ρ(α), if α ∈ VarTypep

,

[[ΠA:Set.σ]]ρ :=
⋂

X∈P

[[σ]]ρ(A:=X),

[[K→σ]]ρ := [[σ]]ρ, if K is a kind,

[[Πα:K.ϕ]]ρ :=
⋂

a∈V(K)ρ

[[ϕ]]ρ(α:=a), if K is a kind,

[[Πα:σ.ϕ]]ρ :=
∏
A

t ∈ [[σ]]ρ.[[ϕ]]ρ(α:=t), if σ is a set,

[[U→T ]]ρ := [[U ]]ρ→0[[T ]]ρ, if T,U are types or sets,
[[PQ]]ρ := [[P ]]ρ([[Q]]ρ), if Q is a constructor,
[[Pt]]ρ := [[P ]]ρ([(t)]ρ), if t is a set object,

[[λα:K.P ]]ρ := λλa ∈ V(K)ρ.[[P ]]ρ(α:=a) if K is a kind,

[[λα:σ.P ]]ρ := λλa ∈ [[σ]]ρ.[[P ]]ρ(α:=a) if σ is a set.

Similar to λHOL and λPREDω there is a soundness result for λPREDω+,
saying that, if the valuation ρ fulfill the context Γ , then if Γ ` P : K (K a kind
or Set), then [[P ]]ρ ∈ V(K)ρ and if Γ ` t : T (T a type or a set), then [(t)]ρ ∈ [[T ]]ρ.

As a consequence of the model construction, λPREDω+ is consistent, but
we already knew that (because of the embedding into CC). It is noteworthy that
the model for λPREDω+ is very different from the model for λPREDω. This
is no surprise, because we know from [20] that polymorphism is no set-theoretic,
so a λPREDω model does not extend to a λPREDω+ model in a direct way.

To illustrate this further we consider the following λPREDω context

Γ := B : Set, E : B→Prop, ε : Prop→B, h : Πα:PropE(εα) = α.

. Here, = denotes the Leibniz equality on Prop: ϕ = ψ := ΠP :Prop→Prop.P ϕ→P ψ.
This context was considered by Coquand in [8] as a context of CC, so Γ := B :
?,E : B→?, ε : ?→B, h : Πα: ? E(εα) = α. It was shown that Γ is inconsistent,
because one can embed λU− into it. Here we use Γ to show the difference
between λPREDω and λPREDω+.

Lemma 1. Γ is consistent in λPREDω.

Proof. Take a model in which ∅ ∈ P and take the valuation ρ as follows: ρ(B) :=
P, ρ(E) = ρ(ε) is the identity, ρ(h) := λx.x. Then ρ |= Γ and [[Πα:Prop.α]]ρ = ∅,
so Γ is consistent.
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Lemma 2. Γ is inconsistent in λPREDω+.

It is instructive to first look at the interpretation of Γ in a λPREDω+ model.
Suppose ρ(B) = B. Then V(()ρB→Prop) = B→2P and [[Prop→B]]ρ = B. So for
a valuation ρ to fulfill Γ , we need that ρ(ε) ∈ B and ρ(E) ∈ B→2P such that
ρ(E)ρ(ε) = X for any X ∈ P. This is only possible if P = {A}, the degenerate
polyset structure in which all polysets are non-empty.

We now give the proof of the Lemma, which basically follows Coquand’s
proof in [8] (but Coquand’s proof is for CC).

Proof. We embed λU− into the context Γ of λPREDω+ as follows.

∆ := Types ΠA:�.σ := ΠA:Types.σ
� := Set σ→τ := σ→τ
? := B Πα:σ.ϕ := ε(Πα:σ.ϕ

ϕ→ψ := ε(Eϕ→Eψ)

Now one can prove the following

Γ ′ `λU− M : T ⇒ Γ, Γ ′ `λPREDω+ M : T if T : �,∆

Γ ′ `λU− M : T ⇒ ∃N [Γ, Γ ′ `λPREDω+ N : ET ] if T : ?

Therefore Γ ` N : E(Πα: ? .α) for someN . But E(Πα: ? .α) = E(ε(Πα:B.Eα)) =
Πα:B.Eα, so we have a term of Πα:B.Eα. Taking ε⊥ for α, we have E(ε⊥)
and therefore ⊥. ut
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