
Indexing Set-Valued Attributes with a
Multi-level Extendible Hashing Scheme

Sven Helmer1, Robin Aly2, Thomas Neumann3, and Guido Moerkotte4

1 University of London, United Kingdom
2 University of Twente, The Netherlands

3 Max-Planck-Institut für Informatik, Germany
4 University of Mannheim, Germany

Abstract. We present an access method for set-valued attributes that
is based on a multi-level extendible hashing scheme. This scheme avoids
exponential directory growth for skewed data and thus generates a much
smaller number of subqueries for query sets (so far fast-growing directories
have prohibited hash-based index structures for set-valued retrieval). We
demonstrate the advantages of our scheme over regular extendible hashing
both analytically and experimentally. We also implemented a prototype
and briefly summarize the results of our experimental evaluation.

1 Introduction

Efficiently retrieving data items with set-valued attributes is an important task
in modern applications. These queries were irrelevant in the relational context
since attribute values had to be atomic. However, newer data models like the
object-oriented (or object-relational) models support set-valued attributes, and
many interesting queries require a set comparison. An example would be to find
persons who match a job offering. In this case the query set required-skills is a
subset of the persons’ set-valued attribute skills . Note that we assume to work on
a large number of objects, but with limited set cardinality. We believe that this is
the most common case found in practice. This belief is backed by our observations
on real applications for object-oriented or object-relational databases (as found,
for example, in product and production models [6] and molecular databases [21]).

One way to support the efficient evaluation of queries is by employing in-
dex structures. Hash-based data structures are among the most efficient access
methods known, allowing retrieval in nearly constant time. Nevertheless, when
applying hash-based techniques to set-valued retrieval on secondary storage we
have to meet two main challenges. As it is too expensive to completely reorganize
hash tables on secondary storage, dynamic hashing schemes, like linear hashing
[15] and extensible hashing [4], are used. However, dynamic hashing schemes
exhibit exponentially growing directory sizes on skewed data. (Even if the em-
ployed hash function works reasonably well, it cannot offset the effect of multiple
copies of certain sets.) Moreover, evaluating set-valued queries on hash tables is
difficult: in order to access all subsets/supersets of a query set, we have to gener-
ate all possible subsets/supersets of the query set and probe the hash table with

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 98–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Indexing Set-Valued Attributes 99

them. Obviously, in the average case this will have an exponential running time.
However, many of the generated sets are redundant, as the respective entries in
the directory of the hash table point to the same (shared) buckets or are empty.

We propose a dynamic multi-leveled hashing scheme to remedy this situation.
As we have shown in [10], this hashing scheme can handle skewed data much
better than existing schemes. Here we focus on adapting this index structure to
retrieving data items with set-valued attributes efficiently. We demonstrate that
hash-based schemes are a viable approach to indexing set-valued attributes.

The remainder of this work is organized as follows. The following section de-
scribes related work and the context of our work. We give a brief introduction to
superimposed coding and show how to apply signatures to set-valued retrieval in
Section 3. Section 4 contains a short description of our (regular) multi-level hash-
ing scheme, while Section 5 describes how this scheme is adapted to set-valued
retrieval. In Section 6 we summarize the results of our experimental evaluation.
Section 7 concludes the paper.

2 Related Work

Work on the evaluation of queries with set-valued predicates is few and far
between. Several indexes dealing with special problems in the object-oriented
[2] and the object-relational data models [18] have been invented, e.g. nested
indexes [1], path indexes [1], multi indexes [16], access support relations [13],
and join index hierarchies [22]. These index structures focus on evaluating path
expressions efficiently.

One of the dominant techniques for indexing set-valued attributes is super-
imposed coding, where sets are represented by bit vector signatures. Existing
techniques for organizing signatures include: sequential files [12], hierarchical or-
ganization (signature trees [3], Russian Doll Trees [7]), and partitioning (S-tree
split [19], hierarchical bitmap index [17]).

At first glance, methods from text retrieval appear to be similar to set re-
trieval. However, text retrieval methods (like [23]) focus on partial-match re-
trieval, that is, retrieving supersets of the query set. Set retrieval also supports
subset and exact queries, which are relevant and common for example in molec-
ular databases (e.g. searching for characteristic parts of a large molecule).

3 Preliminaries

3.1 Querying Set-Valued Attributes

Let us assume that our database consists of a finite set O of data items oi

(1 ≤ i ≤ n) having a finite set-valued attribute A with a domain D. Let oi.A ⊆ D
denote the value of the attribute A for some data item oi. A query predicate
P consists of a set-valued attribute A, a finite query set Q ⊆ D, and a set
comparison operator θ ∈ {=, ⊆, ⊇}. A query of the form {oi ∈ O|Q = oi.A} is
called an equality query, a query of the form {oi ∈ O|Q ⊆ oi.A} is called a subset

100 S. Helmer et al.

query, and a query of the form {oi ∈ O|Q ⊇ oi.A} is called a superset query.
Note that containment queries of the form {oi ∈ O|x ∈ oi.A} with x ∈ D are
equivalent to subset queries with Q = {x}.

3.2 Signature-Based Retrieval

Superimposed coding is a method for encoding sets as bit vectors. It uses a coding
function to map each set element to a bit field of length b (b is the signature
length) such that exactly k < b bits are set. The code for a set (also known as
the set’s signature; abbreviated as sig) is the bitwise or of the codes for the set
elements [5,14].

The following properties of signatures are essential (let s and t be two arbitrary
sets):

s θ t =⇒ sig(s) θ sig(t) for θ ∈ {=, ⊆, ⊇} (1)

where sig(s) ⊆ sig(t) :=sig(s)&˜sig(t)=0 and sig(s) ⊇ sig(t) :=sig(t)&˜sig(s) = 0
(& denotes bitwise and and ˜ denotes bitwise complement).

As set comparisons are very expensive, using signatures as filters is helpful.
Before comparing the query set Q with the set-valued attribute oi.A of a data
item oi, we compare their signatures sig(Q) and sig(oi.A). If sig(Q) θ sig(oi.A)
holds, then we call oi a drop. If additionally Q θ oi.A holds, then oi is a right
drop; otherwise it is a false drop. We have to eliminate the false drops in a
separate step. However, the number of sets we need to compare in this step is
drastically reduced as only drops need to be checked.

There are three reasons for using signatures to encode sets. First, they are of
fixed length and hence very convenient for index structures. Second, set com-
parison operators on signatures can be implemented by efficient bit operations.
Third, signatures tend to be more space efficient than explicit set representation.

4 Multi-level Hashing

As in other dynamic hashing schemes (e.g. [4,15]), our multi-level hashing index
(MLH index) is divided into two parts, a directory and buckets. In the buckets we
store the full hash keys of and pointers to the indexed data items. We determine
the bucket into which a data item is inserted by looking at a prefix hg of g bits
of a hash key h. Let us take a look at a non-hierarchical hashing scheme first.
It has a directory with 2g entries, where g is called the global depth of the hash
table. The prefix hg identifies one of these entries and we follow the link in this
entry to access the corresponding bucket.

On the other hand, in our MLH index things are done differently. We also
check the prefix of a hash key to find the right bucket, but the length of the
prefix that we check may vary depending on the level in the directory where we
finally find the correct bucket (our hashing scheme is not necessarily balanced).

Indexing Set-Valued Attributes 101

4.1 General Description

Due to space constraints, we can only give a brief description; for details see [9,10].
We employ a multi-level extendible hash tree in which hash tables share pages
according to a buddy scheme. In this buddy scheme, z-buddies are hash tables
that reside on the same page and whose stored hash keys share a prefix of z bits.
Consequently, all buddy hash tables in our tree have the same global depth z.

Let us illustrate our index with an example. We assume that a page can hold
2n entries of a hash table directory. Furthermore, we assume that the top level
hash table directory (also called the root) is already filled, contains 2n different
entries at the moment, and that another overflow occurs (w.l.o.g. in the first
bucket). In this case, we allocate a new hash table of global depth 1 (beneath
the root) to distinguish the elements in the former bucket according to their
(n + 1)st bit. However, we do this not only for the overflowing bucket, but also
for all 1-buddies of this bucket. The hash tables for the buddies are created in
anticipation of further splits. All of these hash tables can be allocated on a single
page, resulting in the structure shown in Figure 1.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 0 0 0 0 0 0 01 1 1 1 1 1 1

Fig. 1. Overflow in our multi-level hash tree

In a naive hierarchical hash
tree, we would have allocated
just one hash table with depth
n for the overflowed bucket. If
other buckets overflow, we al-
locate new recursive hash ta-
bles for them as well. The main
problem with naive hash trees
is waste of memory: almost
all entries in these newly al-
located hash tables share the
same buckets, i.e. we do not
need a directory with depth n
yet. At first glance our scheme
does not seem that much differ-
ent, as we also allocate a whole page. However, due to the data skew we expect
splits near buckets that have already split. Even when the anticipated splits do
not occur, we can eliminate unnecessary directory pages.

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Fig. 2. Overflow on the second level

If another overflow oc-
curs in one of the hash ta-
bles on level 2, causing it
to grow, we increase the
global depth of all hash
tables on this page by 1,
doubling their directory
sizes. We now need two
pages to store these ta-
bles, so we split the orig-
inal page and copy the

102 S. Helmer et al.

lookup(hashkey, value) {
currentLevel = 0;

while(true) {
pos = relevant part of hashkey

(for current level);
determine offset;

pos = pos + offset;

nodeId = slot[pos];

if(nodeId is a null-pointer) {
return false;

}
if(node is bucket) {

search in bucket;
return answer;

}

currentLevel++;
}

}

(a) Pseudocode for lookups

lookup(hashkey, buddies, curdepth, localwidth) {
for all nodes n in buddies {

subhash = hashkey[b-curdepth...b-depth-width];
for all sub-/supersets s of subhash {

pos = buddyoffset(n) + s;
nodeId = slot[pos];

if(nodeId is not a null pointer) {
if(node is an unmarked bucket) {

scan(node);

add content to answer;
mark(node);

}
else {

add nodeId and localwidth to children;

}
}

}
}

for all c in children {
lookup(hashkey, c.nodeId,

curdepth+localwidth, c.localwidth);

}
}

(c) Pseudocode for looking up sub-/supersets

insert(hashkey, value) {
currentLevel = 0;

while(true) {
pos = relevant part of hashkey

(for current level);
determine offset;

pos = pos + offset;

nodeId = slot[pos];

if(nodeId is a null-pointer) {
allocate new bucket;

insert pointer to bucket into hash table;
insert data item;

return;
}
if(node is bucket) {

if(node is not full) {
insert data item;

return;
}
if(local depth of bucket <

global depth of table) {
split bucket;

adjust hash table;
insert(hashkey, value);

return;
}
if(global depth < bits per level) {

split inner node;
adjust buddies;

insert(hashkey, value);
return;

}

insert new level;
insert(hashkey, value);

return;
}

currentLevel++;
}

}

(b) Pseudocode for inser-
tions

Fig. 3. Pseudo-code for multi-level hashing

content that does not fit to a new page. Then we adjust the pointers in the
parent directory. The left half of the pointers referencing the original page still
point to this page, the right half to the new page (see Figure 2).

The space utilization of our index can be improved by eliminating pages with
unnecessary hash tables. The page on the right-hand side of the second level in
Figure 2 is superfluous, as the entries in the directories of all hash tables point
to a single bucket, i.e. all buckets have local depth 0. In this case, the page is
discarded and all buckets are connected directly to the hash table on the next
higher level.

Indexing Set-Valued Attributes 103

Due to our buddy scheme, we have a very regular structure that can be
exploited. Indeed, we can compute the global depths of all hash tables (except
the root) by looking at the pointers in the corresponding parent table. Finding
2n−i identical pointers there means that the referenced page contains 2n−i i-
buddies of global depth i. Consequently, we can utilize the whole page for storing
pointers, as no additional information has to be kept.

4.2 Lookups

Lookups are easily implemented (for the pseudocode see Figure 3(a)). We have
to traverse inner nodes until we reach a bucket. On each level we determine
the currently relevant part of the hash key. This gives us the correct slot in
the current hash table. As more than one hash table can reside on a page, we
may have to add an offset to access the right hash table. Due to the regular
structure, this offset can be easily calculated. We just shift the last n − i bits of
the relevant pointer in the parent table by the size of a hash table on the shared
page. If n − i = 0, we do not need an offset, as only one hash table resides on
this page. If we reach a bucket, we search for the data item. If the bucket does
not exist (no data item is present there at the moment), we hit a NULL-pointer
and can abort the search.

4.3 Insertions

After finding the bucket where the new data item has to be inserted (using the
lookup procedure), we have to distinguish several cases for inserting the new item
(for the pseudocode see 3(b)). We concentrate on the most difficult case, where an
overflow of the bucket occurs and the global depth of the hash table on the current
level increases. The other cases can be handled in a straightforward manner.

If the hash table has already reached its maximal global depth (i.e. it resides
alone on a page), we add a new level with 2n−1 hash tables of global depth 1 to
the existing index structure (comparable to Figure 1). If we have not reached the
maximal global depth yet (i.e. the hash table shares a page with its buddies), the
global depth of all hash tables on this page is increased by 1. The hash tables on
the first half of the page remain there. The hash tables on the second half of the
page are moved to a newly allocated page. Then the pointers in the parent hash
table are modified to reflect the changes. We optimize the space utilization at
this point if we discover that the buckets of all hash tables in one of the former
halves have a local depth of one (or are not present yet). In this case (compare
the node in the lower right corner of Figure 2) we do not need this node yet and
connect the buckets directly to the parent hash table.

5 Adapting ML-Hashing to Set-Valued Queries

Using a (non-hierarchical) hashing scheme in a naive way to evaluate a set-
valued query is quite straightforward. All the hashing keys employed in our

104 S. Helmer et al.

scheme are made up of signatures encoding sets. When processing a query we first
determine the signature of the query set via superimposed coding. Depending
on the type of the query (subset or superset query) we generate all supersets
or all subsets of the query signature’s prefix hg and initiate subqueries with all
of these generated sets. When we reach a bucket, we compare the full query
signature to all signatures stored there to decide whether to access a data item
or not. For our multi-level hashing scheme we generate the relevant supersets

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Fig. 4. Accessing a non-hierarchical hash table

and subsets of the query signa-
ture on demand on each level
of the data structure. If we
encounter buckets on our way
down we also compare the full
query signature to the signa-
tures stored in each bucket. Fig-
ure 3(c) shows this algorithm in
pseudocode (parameters for the
lookup function are the hashkey, a set consisting of the root node, current depth
0, and the local width of the root table). For insertions the same code as in
Figure 3(b) is used.

5.1 Example

00 01 10 11

00 01 10 11

0 1 0 1

Fig. 5. Accessing a multi-level hash ta-
ble

The following example demonstrates the
difference between non-hierarchical hash-
ing schemes and our multi-level approach.
Let A be a non-hierarchical hash table
with a global depth of four. We wish to
obtain the supersets of our query set Q
with signature sig(Q) = 001011101110.
The relevant prefix of sig(Q) is 0010, and
for A we must now generate all eight su-
perset prefixes, namely 0010, 0011, 0110,
1010, 0111, 1011, 1110, and 1111. Thus,
for a non-hierarchical hash table, we must
start eight subqueries to access three of
the seven buckets (see also Figure 4).

For our multi-level hashing approach,
on the other hand, we begin by generating
only the top level supersets 00, 01, 10, and 11 and then the superset 1 for the
hash table on the left-hand side of the second level, followed by the supersets
10 and 11 for the hash table on the right-hand side of the second level (see also
Figure 5). Thus, we need to generate only seven rather than eight supersets; at
first glance, this may not seem like huge savings, but the next section will show
that the savings grow when the tables are larger.

Indexing Set-Valued Attributes 105

5.2 Comparison of ML-Hashing with Regular Extendible Hashing

If skewed data is inserted into a hash table, the directory of a non-hierarchical
hashing scheme grows exponentially. This is bad news for the naive method of
generating all subset or supersets, as on average we have to generate

2�
g
2 � + 2�

g
2 �

2
(2)

signatures (including the original prefix of sig(Q)).1 For large values of g this is
clearly infeasible. The worst thing is that most of these signatures are generated
needlessly. Hash tables containing skewed data look a lot like the one depicted
in Figure 4. In this example sixteen entries share seven buckets, which means
that most of the subqueries will access the same buckets over and over again.

How do we cope with this situation? First of all, our MLH index can handle
skewed data much better than other dynamic hashing schemes resulting in a
much smaller directory. Summarizing the results from [9,10], in which we have
substantiated our claim experimentally, we can say that the main idea is to
unbalance the hierarchical directory of our hash table on purpose. We did this
because obviously we are unable to change the fact that skewed data has been
inserted into our hash table, meaning that we have many data items on our hands
whose hash keys share long prefixes. In order to distinguish these data items we
need a hash table with a large depth. However, we want to make sure that
other data items are not “punished” for this. Second, when generating subsets
and supersets of query signatures while evaluating set-valued queries, we do not
generate them en bloc for the whole prefix. Instead, we generate the appropriate
subsets and supersets for each level separately. On each level we have hash tables
with a maximum depth of n, so we have to generate 2� n

2 �+2� n
2 �

2 signatures on
average. We have to do this for each level we look at. Let us assume that the
largest prefix we distinguish in our MLH index is g. Then we generate

2�
n
2 � + 2�

n
2 �

2
· � g

n
� +

2�
g mod n

2 � + 2�
g mod n

2 �

2
(3)

signatures in the average case.2

Formula (3) does not yet consider that we can have hash tables with different
depths on the same level in our directory. If the left page on the second level in
Figure 2 were to split again, this would result in two pages containing two hash
tables with depth three each. The other page on the second level is unaffected
by this, still keeping its four hash tables with depth two. So in the worst case
we have to generate signatures for each depth up to n on each level (except the
first; if g < n use Formula (2)):

1 Here we assume that on average half of the bits in a signature are set to 0 and half
are set to 1. This is the case if the parameters b and k (the size of a signature and
the number of set bits per hash value) have been optimized correctly.

2 If we traverse all levels of the directory.

106 S. Helmer et al.

2�
n
2 � + 2�

n
2 �

2
+

(
n∑

i=1

2�
i
2 � + 2�

i
2 �

2

)
· �g − n

n
� +

g mod n∑
i=1

2�
i
2 � + 2�

i
2 �

2
(4)

For a closed-form formula of (4) see our technical report [8]. Figure 6 com-
pares the number of generated signatures for our hierarchical directory versus a
non-hierarchical directory. As can be clearly seen, the curves for the hierarchi-
cal directories break away at some point from the exponentially growing curve
for non-hierarchical directories. This happens when the top-level directory page
reaches n, the maximum depth of the hierarchical hash tables.

In summary we can say that our MLH index is suited better for set-valued
retrieval than other hash-based indexes, because it does not need exponential
running time for generating the subqueries and it is able to cope better with
data skew.

6 Summary of Experimental Evaluation

Due to space constraints, we can only give a summary of the experimental eval-
uation here. For a detailed description see [8].

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 10 20 30 40 50 60

no
 o

f g
en

er
at

ed
 b

it
st

rin
gs

global depth

Average number of generated bit strings

non-hierarchical
n = 30
n = 20
n = 10

n = 5

Fig. 6. Reducing the number of generated sets

MLH clearly shows the
best behavior among all
the index structures we
compared it to: a se-
quential signature scan
[12], an extensible sig-
nature hashing scheme
[11], and two S-tree ap-
proaches [20] (one with a
linear splitting and one
with a quadratic split-
ting algorithm). It is best
both in terms of the
number of page accesses
and total running time
when evaluating subset
queries. While for uni-
formly or mildly skewed
data, ESH achieves a performance comparable with that of MLH, the draw-
backs of ESH become apparent when the data is heavily skewed: in that case,
ESH suffers due to directory growth and the exponential cost of generating sub-
queries. The scanning methods (SIGSCAN and SETSCAN) which have mainly
been added as a reference are not able to compete with MLH either. The big
surprise is the hierarchical S-tree index structure. In contrast to the results pre-
sented in [20] we show that the tree-based access methods are not suitable for
indexing set-valued attributes, because they do not scale - the prevalence of all-1

Indexing Set-Valued Attributes 107

nodes nullifies the inner nodes’ filtering capacity. The superiority of hash-based
schemes for equality queries does not come as a big surprise, since point queries
are the strong point of hash table approaches. We have demonstrated that even
in terms of index size, MLH copes extremely well with skewed data: unlike ESH
the directory does not grow exponentially. Instead, the growth is linear, much
as for lightly skewed or uniformly distributed data.

7 Conclusion

We presented the first secondary-storage, hash-based access method for indexing
set-valued attributes that is able to outperform other index structures for set re-
trieval. Until now the fast directory growth of hash-based schemes has prevented
their use for evaluating queries with subset and superset queries, as the number
of subqueries that had to be submitted was exponential in the size of the direc-
tory. Our approach generates a number of subqueries linear in the global depth
of the hash table. We demonstrated the competitiveness of our index structure
analytically (and experimentally).

Although superimposed coding and dynamic hashing schemes have attracted
some attention when they first appeared, they were not able to make their way
into industrial strength database systems. One of the main reasons was their
susceptibility to skewed data, which robust, data-driven index structures like B+-
trees were able to handle much better. Our multi-level hashing scheme represents
an interesting compromise between data-driven and space-driven data structure
and could renew the interest in hash-based, superimposed coding schemes.

References

1. Bertino, E., Kim, W.: Indexing techniques for queries on nested objects. IEEE
Trans. on Knowledge and Data Engineering 1(2), 196–214 (1989)

2. Cattell, R. (ed.): The Object Database Standard: ODMG 2.0. Morgan Kaufmann,
San Francisco (1997)

3. Deppisch, U.: S-tree: A dynamic balanced signature index for office retrieval. In:
Proc. of the 1986 ACM Conf. on Research and Development in Information Re-
trieval, Pisa (1986)

4. Fagin, R., Nievergelt, J., Pippenger, N., Strong, H.R.: Extendible hashing – a fast
access method for dynamic files. ACM Transactions on Database Systems 4(3),
315–344 (1979)

5. Faloutsos, C., Christodoulakis, S.: Signature files: An access method for documents
and its analytical performance evaluation. ACM Transactions on Office Informa-
tions Systems 2(4), 267–288 (1984)

6. Grobel, T., Kilger, C., Rude, S.: Object-oriented modelling of production orga-
nization. In: Tagungsband der 22. GI-Jahrestagung, Karlsruhe, September 1992,
Springer, Heidelberg (1992)

7. Hellerstein, J.M., Pfeffer, A.: The RD-tree: An index structure for sets. Technical
Report 1252, University of Wisconsin at Madison (1994)

108 S. Helmer et al.

8. Helmer, S., Aly, R., Neumann, T., Moerkotte, G.: Indexing Set-Valued At-
tributes with a Multi-Level Extendible Hashing Scheme. Technical Report BBKCS-
07-01, Birkbeck, University of London, http://www.dcs.bbk.ac.uk/research/
techreps/2007/

9. Helmer, S., Neumann, T., Moerkotte, G.: A robust scheme for multilevel
extendible hashing. Technical Report 19/01, Universität Mannheim (2001),
http://pi3.informatik.uni-mannheim.de

10. Helmer, S., Neumann, T., Moerkotte, G.: A robust scheme for multilevel extendible
hashing. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 220–227.
Springer, Heidelberg (2003)

11. Helmer, S., Moerkotte, G.: A performance study of four index structures for set-
valued attributes of low cardinality. VLDB Journal 12(3), 244–261 (2003)

12. Ishikawa, Y., Kitagawa, H., Ohbo, N.: Evaluation of signature files as set access
facilities in OODBs. In: Proc. of the 1993 ACM SIGMOD, Washington, pp. 247–
256. ACM Press, New York (1993)

13. Kemper, A., Moerkotte, G.: Access support relations: An indexing method for
object bases. Information Systems 17(2), 117–146 (1992)

14. Knuth, D.E.: The Art of Computer Programming. In: Sorting and Searching, Ad-
dison Wesley, Reading, Massachusetts (1973)

15. Larson, P.A.: Linear hashing with partial expansions. In: Proc. of the 6th VLDB
Conference, Montreal, pp. 224–232 (1980)

16. Maier, D., Stein, J.: Indexing in an object-oriented database. In: Proc. of the IEEE
Workshop on Object-Oriented DBMSs, Asilomar, California (September 1986)

17. Morzy, M., Morzy, T., Nanopoulos, A., Manolopoulos, Y.: Hierarchical bitmap
index: An efficient and scalable indexing technique for set-valued attributes. In:
Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003.
LNCS, vol. 2798, pp. 236–252. Springer, Heidelberg (2003)

18. Stonebraker, M., Moore, D.: Object-Relational DBMSs: The Next Great Wave.
Morgan Kaufmann, San Francisco (1996)

19. Tousidou, E., Bozanis, P., Manolopoulos, Y.: Signature-based structures for objects
with set-valued attributes. Information Systems 27(2), 93–121 (2002)

20. Tousidou, E., Nanopoulos, A., Manolopoulos, Y.: Improved methods for signature-
tree construction. The Computer Journal 43(4), 301–314 (2000)

21. Will, M., Fachinger, W., Richert, J.R.: Fully automated structure elucidation - a
spectroscopist’s dream comes true. J. Chem. Inf. Comput. Sci. 36, 221–227 (1996)

22. Xie, Z., Han, J.: Join index hierarchies for supporting efficient navigation in object-
oriented databases. In: Proc. Int. Conf. on Very Large Data Bases (VLDB), pp.
522–533 (1994)

23. Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files
for text indexing. Technical Report CITRI/TR-95-5, Collaborative Information
Technology Research Institute (CITRI), Victoria, Australia (1995)

http://www.dcs.bbk.ac.uk/research/techreps/2007/
http://www.dcs.bbk.ac.uk/research/techreps/2007/
http://pi3.informatik.uni-mannheim.de

	Indexing Set-Valued Attributes with a Multi-level Extendible Hashing Scheme
	Introduction
	Related Work
	Preliminaries
	Querying Set-Valued Attributes
	Signature-Based Retrieval

	Multi-level Hashing
	General Description
	Lookups
	Insertions

	Adapting ML-Hashing to Set-Valued Queries
	Example
	Comparison of ML-Hashing with Regular Extendible Hashing

	Summary of Experimental Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

