Skip to main content

A Comparison Between Complexity and Temporal GIS Models for Spatio-temporal Urban Applications

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4706))

Included in the following conference series:

Abstract

Spatio-temporal modeling for urban applications has received special attention lately. Due to the recent advances in computer and geospatial technologies, the temporal aspect of urban applications which was ignored in conventional systems, is under consideration nowadays. This new interest in spatio-temporal modeling, in spite of all its deficiencies, has brought about great advances in spatio-temporal modeling and will enhance the urban systems dramatically. This paper investigates two different viewpoints in spatio-temporal modeling for urban applications. The first category involves CA based modeling, agent based modeling, Artificial Neural Networks modeling and fractal based modeling. These models which have been widely used in simulating complex urban systems are here distinguished as complexity models. The applications of these approaches in modeling complex urban systems are comprehensively reviewed and advantages and weak points of each model are depicted. On the other hand, temporal GIS models as another approach for spatio-temporal modeling are briefly reviewed. Eventually the conceptual differences between these two categories are mentioned to aid modelers to mindfully select the appropriate models for urban applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahart, R.J., Kneale, P.E.: Exploring Neural Network Rainfall-Runoff modeling. Proc. 6th Brit. Hydro. Soc. Sym. 935–944 (1997)

    Google Scholar 

  2. Allen, P.M.: Cities and regions as evolutionary complex systems. Geographical Systems 4, 103–130 (1997)

    MATH  Google Scholar 

  3. Armstrong, M.P.: Temporality in spatial databases. In: Proceedings: GIS/LIS’88, vol. 2, pp. 880–889 (1988)

    Google Scholar 

  4. Axtell, R.L.: Why Agents? On the varied motivations for agent computing in the social sciences. Center on social and economic dynamics (The Brookings Institute): Working Paper 17, Washington, D.C (2000)

    Google Scholar 

  5. Batty, M., 1995. New ways of looking at cities. Nature. 377, 574.

    Google Scholar 

  6. Batty, M.: Urban evolution on the desktop: simulation with the use of extended CA. Environment and Planning A. 30(11), 1943–1967 (1998)

    Article  Google Scholar 

  7. Batty, M.: Agent-Based pedestrian modeling. Environment and Planning B 28(3), 321–326 (2001)

    Article  MathSciNet  Google Scholar 

  8. Batty, M.: Agents, cells and cities: new representational models for simulating multi-scale urban dynamics. Working Paper Series, Paper 65. Center for Advanced Spatial Analysis, University College London (2003)

    Google Scholar 

  9. Batty, M., Desyllas, J., Duxbury, E.: Safety in numbers? Modeling crowds and designing control for the Notting Hill Carnival. Urban Studies 40(8), 1573–1590 (2003)

    Article  Google Scholar 

  10. Batty, M., Longley, P.: Fractal cities: A geometry of form and function. Academic Press, London, San Diego (1994)

    MATH  Google Scholar 

  11. Batty, M., Xie, Y., Sun, Z.: Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems 23, 205–233 (1999)

    Article  Google Scholar 

  12. Benati, S.: A cellular automata for the simulation of competitive location. Environment and Planning B: Planning and Design 24, 205–218 (1997)

    Article  Google Scholar 

  13. Benenson, I.: Multi-agent simulations of residential dynamics in the city. Environment and Urban Systems 22(1), 25–42 (1998)

    Article  Google Scholar 

  14. Bishop, I.: Comparing regression and neural net based approaches to modeling of scenic beauty. Centre for Geographic Information Systems and Modeling. The University of Melbourne. Melbourne, Australia (1994)

    Google Scholar 

  15. Brown, D.G., Riolo, R., Robinson, D.T., North, M., Rand, W.: Spatial process and data models: Toward integration of agent-based models and GIS. Journal of Geographical Systems. Special Issue on Space-Time Information Systems 7(1), 25–47 (2005)

    Google Scholar 

  16. Castle, C.E.: Using Repast to develop a prototype agent-based pedestrian evacuation model. In: Proceedings of the Agent 2006 Conference on Social Agents: Results and Prospects, Chicago, USA (2006)

    Google Scholar 

  17. Castle, C.J.E., Crooks, A.T.: Principles and concepts of agent-based modeling for developing geospatial simulations. Centre for Advanced Spatial Analysis (University College London): Working Paper 110, London (2006)

    Google Scholar 

  18. Cecchini, A.: Urban modeling by means of cellular automata: generalized urban automata with the help on-line (AUGH) model. Environment and Planning B 23, 721–732 (1996)

    Article  Google Scholar 

  19. Chen, J., Gong, P., He, C., Luo, W., Tamura, M., Shi, P.: Assessment of the urban development plan by using a CA-based urban growth model. Photogrammetric Engineering and Remote Sensing 68(10), 1063–1071 (2002)

    Google Scholar 

  20. Cheng, J.: Modeling spatial and temporal urban growth. PhD thesis ITC, Enschede, the Netherlands (2003)

    Google Scholar 

  21. Claramunt, C., Jiang, B.: A representation of relationships in temporal spaces. In: Innovation in GIS VII: Geocomputation, ch. 4, pp. 41–53. Taylor and Francis, Abington (2000)

    Google Scholar 

  22. Clarke, K.C., Gaydos, L.J.: Loose coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal Geographical Information Sciences 12, 699–714 (1998)

    Article  Google Scholar 

  23. Corne, S., Murray, T., Openshaw, S., See, L., Turton, I.: Using computational intelligence techniques to model sub glacial water systems. Journal of Geographical System 1, 37–60 (1999)

    Article  Google Scholar 

  24. Couclelis, H.: Cellular worlds: a framework for modeling micro-macro dynamics. Environment and Planning A 17, 585–596 (1985)

    Article  Google Scholar 

  25. Couclelis, H.: Modeling frameworks, paradigms, and approaches. In: Clarke, K.C., Parks, B.E., Crane, M.P. (eds.) Geographic Information Systems and Environmental Modeling. Prentice Hall, London (2002)

    Google Scholar 

  26. DuBose, P., Klimasauskas, C.: Introduction to neural networks with examples and applications, NeuralWare Inc. Pittsburgh (1989)

    Google Scholar 

  27. Egenhofer, M.J., Frank, A.U.: Object-oriented modeling in GIS. URISA Journal 4(2), 3–19 (1992)

    Google Scholar 

  28. Fischer, M.M.: Fundamentals in neuro-computing. In: Fischer, M.M., Sikos, T., Bassa, L. (eds.) Recent Developments in Spatial Information, Modeling and Processing, Geomarket, Budapest, pp. 31–43 (1995)

    Google Scholar 

  29. Fischer, M.M., Gopal, S., Staufer, P., Steinnocher, K.: Evaluation of neural pattern classifiers for a remote sensing application. Geographical Systems 4(2), 195–226 (1997)

    Google Scholar 

  30. Frankhauser, P.: The Fractal approach: a new tool for the spatial analysis of urban agglomerations, Population: An English Selection, pp. 205–240 (1998)

    Google Scholar 

  31. Gimblett, R.H., Ball, G.L.: Neural network architectures for monitoring and simulating changes in forest resource management. AI Applications 9(2) (1995)

    Google Scholar 

  32. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading (1995)

    Google Scholar 

  33. Itami, R.M.: Simulating spatial dynamics: cellular automata theory. Landscape and Urban Planning 30, 27–47 (1994)

    Article  Google Scholar 

  34. Jenerette, G.D., Wu, J.: Analysis and simulation of land-use change in the central Arizona Phoenix region, USA. Landscape Ecology 16, 611–626 (2001)

    Article  Google Scholar 

  35. Jennings, N.R.: On agent-Based software engineering. Artificial Intelligence 117(2), 277–296 (2000)

    Article  MATH  Google Scholar 

  36. Kerridge, J., Hine, J., Wigan, M.: Agent-based modeling of pedestrian movements: the questions that need to be asked and answered. Environment and Planning B: Planning and Design 28, 327–341 (2001)

    Article  Google Scholar 

  37. Khaddaj, S., Adamu, M., Morad, M.: Construction of an integrated object oriented system for temporal GIS. American Journal of Applied Sciences 2(12), 1584–1594 (2005)

    Article  Google Scholar 

  38. Kropp, J.: A neural network approach to the analysis of city systems. Applied Geography 18(1), 83–96 (1998)

    Article  Google Scholar 

  39. Langran, G.: Time in geographic information systems. Taylor and Francis Ltd, Abington (1992)

    Google Scholar 

  40. Langran, G., Chrisman, N.R.: A framework for temporal geographic information. Cartographica 25(3), 1–14 (1988)

    Google Scholar 

  41. Le, Y.: A feature-based temporal representation and its implementation with object-relational schema for base geographic data in object-based form, presented at UCGIS Assembly (2004)

    Google Scholar 

  42. Li, X., Yeh, A.G.O.: Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environment and Planning A 33, 1445–1462 (2001)

    Article  Google Scholar 

  43. Liu, X.H.: Change detection for urban growth modeling: an artificial neural network approach. In: Proc. 4th International Conference on Integrating GIS and Environmental Modeling (GIS/EM4): Problems, Prospects and Research Needs. Banff, Alberta, CA (2000)

    Google Scholar 

  44. Liu, Y., Phinn, S.R.: Modeling urban development with cellular automata incorporating fuzzy-set approaches. Computers, Environment and Urban Systems (2002)

    Google Scholar 

  45. Macal, C.N., North, M.J.: Tutorial on agent-based modeling and simulation. In: Proceedings of the 2005 Winter Simulation Conference (2005)

    Google Scholar 

  46. Makse, H.A., Hablin, S., Stanley, H.E.: Modeling urban growth patterns. Nature 377, 608–661 (2002)

    Article  Google Scholar 

  47. Mandelbrot, B.B.: The fractal geometry of nature, 3rd edn. W.H. Freeman, San Francisco (1983)

    Google Scholar 

  48. Montgomery, L.D.: Temporal GIS technology and requirements. MSc Thesis, University of Ohio State, USA (1995)

    Google Scholar 

  49. Najlis, R., North, M.J.: Repast for GIS, Proceedings of Agent 2004: Social Dynamics: Interaction, Reflexivity and Emergence, University of Chicago and Argonne National Laboratory, IL, USA (2004)

    Google Scholar 

  50. Odell, J.: Objects and Agents: how do they differ? JOOP 13(6), 50–53 (2000)

    Google Scholar 

  51. Openshaw, S.: Geocomputation. In: Openshaw, S., Abrahart, R.J. (eds.) Geocomputation. Taylor and Francis, London (2000)

    Google Scholar 

  52. O’Sullivan, D., Torrens, P.M.: Cellular models of urban systems. In: Bandini, S., Worsch, T. (eds.) Theoretical and Practical Issues on Cellular Automata, pp. 108–116. Springer, London (2000)

    Google Scholar 

  53. O’Sullivan, D.: Toward micro-scale spatial modeling of gentrification. Journal of Geographical Systems 4, 251–274 (2002)

    Article  Google Scholar 

  54. O’Sullivan, D., Unwin, D.J.: Geographic Information Analysis. Wiley, Hoboken, NJ (2003)

    Google Scholar 

  55. Pang, M.Y.C., Shi, W.Z.: Development of a process-based model for dynamic interaction in spatio-temporal GIS. Geoinformatica 6, 323–344 (2002)

    Article  MATH  Google Scholar 

  56. Parker, D.C.: Integration of Geographic Information Systems and Agent-based models of Land Use: Challenges and Prospects. In: Maguire, D., Goodchild, J.M.F., Batty, M. (eds.) GIS, Spatial Analysis and Modeling. ESRI Press, Redlands, CA (2004)

    Google Scholar 

  57. Pelekis, N., Theodoulidis, B., Kopanakis, I., Theodoridis, Y.: Literature Review of Spatio-Temporal Database Models. The Knowledge Engineering Review journal 19(3), 235–274 (2005)

    Article  Google Scholar 

  58. Peuquet, D.J., Duan, N.: An event-based spatio-temporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Systems 9(1), 7–24 (1995)

    Article  Google Scholar 

  59. Pijanowskia, B.C., Brown, D.G., Shellitoc, B.A., Manikd, G.A.: Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, Environment and Urban Systems 26(6), 553–575 (2002)

    Article  Google Scholar 

  60. Portugali, J.: Self-organization and the city. Springer, New York (2000)

    MATH  Google Scholar 

  61. Raza, A.: Object-oriented temporal GIS for urban applications. PhD thesis, University of Twente (2001)

    Google Scholar 

  62. Rigol, J.P., Jarvis, C.H., Stuart, N.: Artificial neural networks as a tool for spatial interpolation. International Journal of Geographical Information Science 15(4), 322–343 (2001)

    Article  Google Scholar 

  63. Rodrigue, J.P.: Parallel modeling and neural networks: an overview for transportation/land use systems. Transportation Research Part C 5(5), 259–271 (1997)

    Article  Google Scholar 

  64. Sanders, L., Pumain, D., Mathian, H., Guérin-Pace, F., Bura, S.: SIMPOP: A multi-agent system for the study of urbanism. Environment and Planning B: Planning & Design 24, 287–305 (1997)

    Article  Google Scholar 

  65. Schelhorn, T., O’Sullivan, D., Haklay, M., Thurstain-Goodwin, M.: Streets: an agent-based pedestrian model. Working Paper Series, Paper 9, Centre for Advanced Spatial Analysis, University College London (1999)

    Google Scholar 

  66. Schechter, B.: A new geometry of nature. Discover, 66–68 (June 1982)

    Google Scholar 

  67. Semboloni, F.: An urban and regional model based on cellular automata. Environment and Planning. B 24, 589–612 (1997)

    Article  Google Scholar 

  68. Semboloni, F., Assfalg, J., Armeni, J., Gianassi, R., Marsoni, F.: CityDev, an interactive multi-agents urban model on the web. Computers, Environment and Urban Systems 28, 45–64 (2004)

    Article  Google Scholar 

  69. Shen, G.: Fractal dimension and fractal growth of urbanized areas. International Journal of Geographical Information Science 16(5), 419–437 (2002)

    Article  Google Scholar 

  70. Shmueli, D.: Applications of neural networks in transportation planning. Progress in Planning 50, 141–204 (1998)

    Article  Google Scholar 

  71. Smolensky, P.: On the proper treatment of connectionism. Behavioral and Brain Sciences 11, 1–74 (1998)

    Article  Google Scholar 

  72. Soares-Filho, B.S., Coutinho-Cerqueira, G., Lopes-Pennachin, C.: DINAMICA- A stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modeling 154(3), 217–235 (2002)

    Article  Google Scholar 

  73. Stevens, D., Dragecevic, S., Rothley, K.: iCity: a GIS-CA modeling tool for urban planning and decision making. Environmental Modeling & Software  (2006)

    Google Scholar 

  74. Sui, D.Z.: An Initial Investigation of Integrating Neural Networks with GIS for Spatial Decision Making. In: Proceedings of GIS/LIS 92, San Jose California (1992)

    Google Scholar 

  75. Torrens, P.M.: Can geocomputation save urban simulation? Throw some agents into the mixture, simmer, and wait, Paper 32, Centre for Advanced Spatial Analysis (CASA), University College London (UCL) (2001)

    Google Scholar 

  76. Torrens, P.M.: A geographic automata model of residential mobility. Environment & Planning B (in press)

    Google Scholar 

  77. Torrens, P.M., Benenson, I.: Geographic Automata Systems. International Journal of Geographic Information Systems 19(4), 385–412 (2005)

    Article  Google Scholar 

  78. Torrens, P.M., O’Sullivan, D.: Cities, cells, and complexity: Developing a research agenda for urban geocomputation. In: 5th international conference on GeoComputation, University of Greenwich, UK (2000)

    Google Scholar 

  79. Torrens, P.M., O’Sullivan, D.: Cellular automata and urban simulation: where do we go from here? Environment and Planning B: Planning and Design 28, 163–168 (2001)

    Article  Google Scholar 

  80. Torrens, P.M.: Simulating Sprawl: A Dynamic Entity-Based Approach to Modeling North American Suburban Sprawl Using Cellular Automata and Multi-Agent Systems. Ph.D. Thesis, University College London, London (2004)

    Google Scholar 

  81. White, R., Engelen, G.: Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A 25, 1175–1199 (1993)

    Article  Google Scholar 

  82. White, R., Engelen, G.: Cellular automata as the basis of integrated dynamic regional modeling. Environment and Planning B – Planning & Design 24(2), 235–246 (1997)

    Article  Google Scholar 

  83. White, R., Engelen, G.: High resolution integrated modeling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems 24, 383–440 (2000)

    Article  Google Scholar 

  84. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Journal of Knowledge Engineering Review 10(5), 115–152 (1995)

    Article  Google Scholar 

  85. Worboys, M.: Object-oriented models of spatio-temporal information. In: The proceedings of the GIS/LIS, ASPRS/ACSM, pp. 825–834 (1992)

    Google Scholar 

  86. Worboys, M.F.: Object-oriented approaches to geo-referenced information. International Journal of Geographical Information Systems 8(4), 385–399 (1994)

    Article  Google Scholar 

  87. Wu, F.: An experiment on the generic polycentricity of urban growth in a cellular automatic city. Environment and Planning B: Planning and Design 25, 731–752 (1998)

    Article  Google Scholar 

  88. Wu, F.: A simulation approach to urban changes: experiments and observations on fluctuations in cellular automata. In: Rizzi, P. (ed.) Sixth International Conference on Computers in Urban Planning and Urban Management, Venice, Italy (1999)

    Google Scholar 

  89. Wu, F., Martin, D.: Urban expansion simulation of Southeast England using population surface modeling and cellular automata. Environment and Planning A 34(10), 1855–1876 (2002)

    Article  Google Scholar 

  90. Wu, F., Webster, C.T.: Simulation of land development through the integration of cellular automata and multi-criteria evaluation. Environment and Planning B: Planning and Design 25 (1998)

    Google Scholar 

  91. Xie, Y., Batty, M.: Automata-based exploration of emergent urban form. Geographical System 4, 83–102 (1997)

    Google Scholar 

  92. Yeh, A.G., Li, X.: A constrained CA model for the simulation and planning of sustainable urban forms by using GIS. Environment and Planning B: Planning and Design 28, 733–753 (2001)

    Article  Google Scholar 

  93. Yeh, A.G., Li, X.: A cellular automata model to simulate development density for urban planning. Environment and Planning B: Planning and Design 29, 431–450 (2002)

    Article  Google Scholar 

  94. Yeh, A.G., Li, X.: Error propagation and model uncertainties of cellular automata in urban simulation with GIS. In: 7th International Conference on GeoComputation, University of Southampton, UK (2003)

    Google Scholar 

  95. Yuan, M.: Representation of Wildfire in Geographic Information Systems. Ph.D. dissertation. Department of Geography, State University of New York at Buffalo (1994)

    Google Scholar 

  96. Yuan, M.: Temporal GIS and spatio-temporal modeling. In: Goodchild, M. (eds.) Proceedings of the Third International Conference in Integrating GIS and Environmental Modeling. CDROM. Santa Fe, New Mexico (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pooyandeh, M., Mesgari, S., Alimohammadi, A., Shad, R. (2007). A Comparison Between Complexity and Temporal GIS Models for Spatio-temporal Urban Applications. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74477-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74475-7

  • Online ISBN: 978-3-540-74477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics