Skip to main content

3D Bathymetry Reconstruction from Airborne Topsar Polarized Data

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4707))

Included in the following conference series:

  • 1149 Accesses

Abstract

This paper introduces a new methods for three-dimensional(3D) ocean bathymetry reconstruction using Airborne TOPSAR Synthetic Aperture data. The new method is based on integration between Fuzzy B-spline and Volterra algorithm. Volterra algorithm is used to simulate the ocean surface current from TOPSAR data. Then, ocean surface current information used as input for continuity equation to estimate the water depths at different locations in TOPSAR data. This study shows that 3D ocean bathymetry can be reconstructed from TOPSAR data. The maximum water depth of 20 m can be captured from TOPSAR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpers, W., Hennings, I.: A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. Journal of Geophysical Research 89, 10529–10546 (1984)

    Google Scholar 

  2. Anile, A.M.: Report on the activity of the fuzzy soft computing group, Technical Report of the Dept. of Mathematics, University of Catania, pages. 10 (March 1997)

    Google Scholar 

  3. Anile, A.M., Deodato, S., Privitera, G.: Implementing fuzzy arithmetic. Fuzzy Sets and Systems 72, 123–156 (1997)

    Google Scholar 

  4. Anile, A.M., Gallo, G., Perfilieva, I.: Determination of Membership Function for Cluster of Geographical data. Genova, Italy: Institute for Applied Mathematics, National Research Council, University of Catania, Italy, October 1997. vol. 26/97 p. 25 Technical Report (1997)

    Google Scholar 

  5. Forster, B.C.: Mapping Potential of Future Spaceborne Remote Sensing System. In: Procs of 27th Australia Survey Congress, Alice Springs, Institution of Surveyors, Australia, Australia, pp. 109–117 (1985)

    Google Scholar 

  6. Fuchs, H., Kedem, Z.M., Uselton, S.P.: Optimal Surface Reconstruction from Planar Contours. Communications of the ACM 20, 693–702 (1997)

    Article  MathSciNet  Google Scholar 

  7. Guenther, G.C., Cunningham, A.G., LaRocque, P.E., Reid, D.J.: In: Proceedings of EARSeL-SIG-Workshop LIDAR,Dresden/FRG,EARSeL, Strasbourg, France (June 16-17, 2000)

    Google Scholar 

  8. Hesselmans, G.H, Wensink, G.J., Koppen, C.G.V., Vernemmen, C.: Bathymetry assessment Demonstration off the Belgian Coast-Babel. The Hydrographica Journal 96, 3–8 (2000)

    Google Scholar 

  9. Inglada, J., Garello, R.: Depth estimation and 3D topography reconstruction from SAR images showing underwater bottom topography signatures. In: Proceedings of Geoscience and Remote Sensing Symposium, 1999, IGARSS’99, Hamburg, Germany, 28 June-2 July 1999, IEEE Geoscience and Remote Sensing Society, USA. vol. 2, pp. 2956–2958 (1999)

    Google Scholar 

  10. Inglada, J., Garello, R.: On rewriting the imaging mechanism of underwater bottom topography by synthetic aperture radar as a Volterra series expansion. IEEE Journal of Oceanic Engineering 27, 665–674 (2002)

    Article  Google Scholar 

  11. Keppel, E.: Approximation Complex Surfaces by Triangulations of Contour Lines. IBM Journal of Research Development 19, 2–11 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lee, J.S., Schuler, D., Ainsworth, T.L., Krogager, E., Kasilingam, D., Boerner, W.M.: On the estimation of radar polarization orientation shifts induced by terrain slopes. IEEE Transactions on Geosciences and Remote Sensing 40, 30–41 (2002)

    Article  Google Scholar 

  13. Maged, M.: Coastal Water Circulation off Kuala Terengganu, Malaysia. MSc. Thesis Universiti Pertanian Malaysia (now Universiti Putra Malaysia) (1994)

    Google Scholar 

  14. Maged, M.: Fuzzy B-spline and Volterra algorithms for modelling surface current and ocean bathymetry from polarised TOPSAR data. Asian Journal of Information Technology 4, 1–6 (2005)

    Google Scholar 

  15. Melba, M., Kumar, S., Richard, M.R., Gibeaut, J.C., Amy, N.: Fusion of Airborne polarmetric and interferometric SAR for classification of coastal environments. IEEE Transactions on Geoscience and Remote Sensing 37, 1306–1315 (1999)

    Article  Google Scholar 

  16. Mills, G.B.: NOAA, Office of Coast Survey, Hydrographic Surveys Division, 1315 East-West Highway, Station 6859, Silver Spring, Maryland, USA 20910-3282 (accessed December 2006), (Url: http://chartmaker.ncd.noaa.gov/hsd/ihr-s44.pdf

  17. Romeiser, R., Alpers, W.: An improved composite surface model for the radar backscattering cross section of the ocean surface, 2, Model response to surface roughness variations and the radar imaging of underwater bottom topography. Journal of Geophysical Research 102, 25251–25267 (1997)

    Article  Google Scholar 

  18. Shuchman, R.A., Lyzenga, D.R., Meadows, G.A.: Synthetic aperture radar imaging of ocean-bottom topography via tidal-current interactions: theory and observations. International Journal of Remote Sensing 6, 1179–1200 (1985)

    Article  Google Scholar 

  19. Yu, Y., Scott, T.A.: Speckle reducing anisotropic diffusion. IEEE Transactions on Geoscience and Remote Sensing 11, 1260–1270 (2002)

    Google Scholar 

  20. Vogelzang, J.: Mapping submarine sand waves with multiband imaging radar, 1, Model development and sensitivity analysis. Jornal of Geophysical Research 102, 1163–1181 (1997)

    Article  Google Scholar 

  21. Vogelzang, J., Wensink, G.J., Calkoen, C.J., van der Kooij, M.W.A.: Mapping submarine sand waves with multiband imaging radar, 2, Experimental results and model comparison. Journal of Geophysical Research 102, 1183–1192 (1997)

    Article  Google Scholar 

  22. Vogelzang, J., Wensink, G.J., de Loor, G.P., Peters, H.C., Pouwels, H.: Sea bottom topography with X band SLAR: the relation between radar imagery and bathymetry. International Journal of Remote Sensing 13, 1943–1958 (1992)

    Article  Google Scholar 

  23. Wensink, H., Campbell, G.: Bathymetric map production using the ERS SAR. Backscatter 8(1), 17–22 (1997)

    Google Scholar 

  24. Homer, J., Longstaff, D., She, Z.: Improved digital elevation models via multi-baseline interferometric SAR. In: Proceedings of IGARSS, pp. 1579–1581 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marghany, M., Hashim, M., Cracknell, A.P. (2007). 3D Bathymetry Reconstruction from Airborne Topsar Polarized Data. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74484-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74484-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74482-5

  • Online ISBN: 978-3-540-74484-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics