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Abstract. We present a robust algorithm for independent component
analysis that uses the sum of marginal quadratic negentropies as a depen-
dence measure. It can handle arbitrary source density functions by using
kernel density estimation, but is robust for a small number of samples
by avoiding empirical expectation and directly calculating the integra-
tion of quadratic densities. In addition, our algorithm is scalable because
the gradient of our contrast function can be calculated in O(LN) using
the fast Gauss transform, where L is the number of sources and N is the
number of samples. In our experiments, we evaluated the performance
of our algorithm for various source distributions and compared it with
other, well-known algorithms. The results show that the proposed al-
gorithm consistently outperforms the others. Moreover, it is extremely
robust to outliers and is particularly more effective when the number of
observed samples is small and the number of mixed sources is large.

1 Introduction

In the last decade, Independent Component Analysis (ICA) has shown to be
a great success in many applications, including sound separation, EEG signal
analysis, and feature extraction. ICA shows quite a good performance for sim-
ple source distributions, if given assumptions hold well, but its performance is
degraded for sources with skewed or complex density functions [1]. Several ICA
methods are currently available for arbitrary distributions, but these methods
have not yet shown practical performance when the number of sources is large
and the number of observed samples is small, thus preventing their application
to more challenging real-world applications, such as blind source separation for
non-stationary mixing environments and frequency-domain BSS for convolutive
mixtures [2].

The problem of ICA for arbitrary distributions mainly arises from the diffi-
culty of estimating marginal entropies that usually appear in the contrast func-
tion derived from mutual information. Direct estimation of marginal entripies
without parametric assumptions involves excessive computation, including nu-
merical integration, and is sensitive to outliers because of the log terms. Sev-
eral approximations are available, but these still rely on higher order statistical
terms that are also sensitive to outliers. Different estimators of entropy [3] or
dependence measure based on canonical correlations [1] have been suggested to
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overcome this problem and have shown promising performance. In addition, there
have been approaches using nonparametric mutual information via Renyi’s en-
tropy [4] for ICA [5]. However, this method requires sign correction by kurtosis
because Renyi’s entropy does not have a maximum at a Gaussian distribution [6].

In this paper, we define the concept of quadratic negentropy, replace the orig-
inal negentropy with quadratic negentropy in the original definition of mutual
information, and obtain a new contrast function for ICA. Using kernel density es-
timation along with quadratic negentropy can reduce the integration terms into
sums of pairwise interactions between samples. The final contrast function can
be calculated efficiently using the fast Gauss transform, guaranteeing scalability.
The performance of our algorithm consistently outperforms the best existing al-
gorithms for various source distributions and the existence of outliers, especially
when the number of observed samples is small and the number of mixed sources
is large.

This paper is organized as follows. In Section 2, we review the basic problem
of ICA and the contrast function using negentropy. In Section 3, we define a new
contrast function for ICA using quadratic negentropy along with kernel density
estimation. We also apply the fast Gauss transform to reduce computation. In
Section 4, we evaluate the performance of the derived algorithm on various source
distributions, varying the number of sources and the number of samples, to
compare the proposed algorithm with other, well-known algorithms, such as
FastICA and KernelICA.

2 Background on ICA

In this section, we briefly review the basic problem of ICA and the contrast
function using original negentropy.

2.1 The Basic Problem of ICA

Let s1, s2, ..., sL be L statistically independent source random variables that are
linearly mixed by some unknown but fixed mixing coefficients to form m observed
random variables x1, x2, ..., xL. For example, source variables can be the voices of
different people at a location and observation variables represent the recordings
from several microphones at the location. This can be written in matrix form as

x = As (1)

where x = (x1, x2, ..., xL)T , s = (s1, s2, ..., sL)T , and A is an L × L matrix. The
basic problem of ICA is to determine W, the inverse of mixing matrix A, to
recover the original sources from observations, by using N samples of observation
x under the assumption that sources are independent of each other.

2.2 Contrast Function Using Negentropy

Mutual information between components of estimated source vectors is known
to be a natural contrast function for ICA because it has a zero value when
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the components are independent and a positive value otherwise. In addition,
it is well known that mutual information can be represented using joint and
marginal negentropies [7], as follows:

I(x) = J(x) −
N∑

i=1

J(xi) +
1
2

log
∏

Vii

detV
(2)

where x is a vector random variable of dimension N, xi is the i-th component of x,
V is the covariance matrix of x, and J(x) is the negentropy of a random variable
x, which can be represented using Kullback-Leibler divergence, as shown below.
The proof is based on the fact that only the first and second order moment of
Gaussian density are nonzero and that log pφ(ξ) is a polynomial of degree 2 [7].

J(x) = DKL(px||pφ) =
∫

px(ξ) log
px(ξ)
pφ(ξ)

dξ (3)

where φ is a Gaussian random variable that has the same mean and variance with
x, and pφ is the pdf of φ. As a result, it is nonnegative, invariant to invertible
transforms and zero if px ≡ pφ.

If we assume x be whitened, then the last term of Eq. (2) becomes zero and
only negentropy terms remain. Now, we define the contrast function of ICA using
mutual information, as

C(Ŵ) = −I(ŝ) =
L∑

i=1

J(ŝi) − J(ŝ). (4)

In Eq. (4), ŝ = Ŵx is the estimated sources using the current estimate of
the unmixing matrix Ŵ, and ŝi is the i-th component of ŝ. We assume that the
observation is whitened and thus can restrict the unmixing matrix to rotations
only, thus making the first term constant and the third term zero in Eq. (2).
The final contrast function of ICA using negentropy can be interpreted as the
total nongaussianity of the estimated source components.

3 ICA Using Quadratic Negentropy

3.1 Contrast Function Using Quadratic Negentropy

We replace the KL divergence with the L2 distance in Eq. (3) and obtain
quadratic negentropy defined as

Jq(x) =
∫

(px(ξ) − pφ(ξ))2 dξ. (5)

We can easily show that it is nonnegative, invariant under rotational trans-
form, and zero if px ≡ pφ. Assuming x is whitened and using quadratic negen-
tropy instead of the original negentropy in Eq. (4), we obtain

Cq(Ŵ) = −Iq(ŝ) =
L∑

i=1

Jq(ŝi) − Jq(ŝ). (6)
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In addition, Jq(ŝ) is constant because the quadratic negentropy is invariant
under a rotational transform. Ignoring the constant gives us

Cq(Ŵ) =
L∑

i=1

Jq(ŝi) =
L∑

i=1

∫
(p̂ŝi(ξ) − 1√

2π
e−ξ2/2)2dξ (7)

where p̂ŝi is the estimated marginal pdf of ŝi. Here ŝi has zero mean and unit
variance because Ŵ is rotation and x is whitened. Thus pφ in (5) becomes a
standard Gaussian pdf.

To be a contrast function, Eq. (6) and (7) should have a global maximum when
components are independent. We hope this can be proved for general source
distributions, but currently we have proof only for Laplacian distributions and
further work is needed.

3.2 Kernel Density Estimation

Using kernel density estimation, p̂ŝi can be estimated as

p̂ŝi(y) =
1
N

N∑

n=1

G(y − ŝi(n), σ2) (8)

where N is the number of observed samples, ŝi(n) is the n-th observed sample
of i-th estimated source, and G(y, σ2) is a Gaussian kernel defined as

G(y, σ2) =
1√
2πσ

e−y2/2σ2
. (9)

Interestingly, the calculation of integration involving quadratic terms of p̂ŝi

estimated as (8) can be simplified as pairwise interactions between samples [8].
Simplifying Eq. (7) using this yields

Cq(Ŵ)=
L∑

i=1

(
1

2
√

π
+

1
N2

N∑

n=1

N∑

m=1

G(ŝi(n)−ŝi(m), 2σ2)− 2
N

N∑

n=1

G(ŝi(n), 1+σ2)
)

,

(10)
which is our final contrast function to maximize. Obtaining the partial derivative
of Cq(Ŵ) with respect to wij yields

∂Cq

∂wij
=

N∑

n=1

(
2 · G(ŝi(n), 1 + σ2)ŝi(n)

N · (1 + σ2)

−
N∑

m=1

G(ŝi(n) − ŝi(m), 2σ2)(ŝi(n) − ŝi(m))
N2 · σ2

)
xj(n)

(11)

where symmetry with respect to m and n is utilized to simplify equation. Also
note that ŝi(n) =

∑L
j=1 wijxj(n).
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3.3 Efficient Computation Using Fast Gauss Transform

It takes O(LN2) time to directly compute the gradient given in Eq. (11). To
reduce the computation we use the fast Gauss transform [9] that evaluates the
following in O(N + N ′) time, given ‘source’ points x = {x1, ..., xN} and ‘target’
points y = {y1, ..., yN ′}.

FGT (yj,x,q, h) =
N∑

i=1

qie
−(yj−xi)2/h2

, j = 1, ..., N ′ (12)

where q = {q1, ..., qN} are weight coefficients and h is the bandwidth parameter.
Using Eq. (12), Eq. (10) can be rewritten as

Cq(Ŵ) =
L∑

i=1

(
1

2
√

π
+

1
N2

N∑

n=1

FGT (ŝi(n), ŝi,1,
√

2σ)
2
√

πσ
− 2

N

N∑

n=1

G(ŝi(n), 1+σ2)
)

,

(13)
and the partial derivative in Eq. (10) can be rewritten as

∂Cq

∂wij
=

N∑

n=1

(
2 · G(ŝi(n), 1 + σ2)ŝi(n)

N · (1 + σ2)

− FGT (ŝi(n), ŝi, ŝi,
√

2σ) − FGT (ŝi(n), ŝi,1,
√

2σ)
2
√

π · N2 · σ3

)
xj(n)

(14)

where ŝi = {ŝi(1), ..., ŝi(N)} and 1 is an N-dimensional one vector.
Now, Eq. (13) and Eq. (14) can be computed in O(LN) by performing the

fast Gauss transform 2L times.

3.4 Steepest Descent on Stiefel Manifold

The set of orthogonal matrices is a special case of the Stiefel manifold and a
gradient of a function can be computed based on the canonical metric of the
Stiefel manifold [10]. Unconstrained optimization on the Stiefel manifold is more
efficient than orthogonalizing the weight matrix per each iteration. In this paper,
we used the steepest descent with a bracketed backtracking line search along
geodesics.

3.5 Parameter Selection and Convergence Criterion

Our learning rule has one parameter: the bandwidth parameter σ of the kernel
density estimation. We used σ = 1.06 × N−1/5 [11].

We calculated the value of the contrast function per each iteration to check
convergence. If the difference between iterations becomes less than a given ratio
τ = 10−8 of the contrast function, then it is regarded as convergence.

In general, ICA contrast functions have multiple local maxima. This is also
true for our contrast function, and we needed a fixed number of restarts to find
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a good local optimum. We restarted our algorithm four times with a conver-
gence criterion τ = 10−6 and picked the best one as an initial estimate for final
optimization.

4 Experimental Results

We conducted an extensive set of simulation experiments using a variety of
source distributions, sample numbers, and components. The 18 source distribu-
tions used in our experiment were adopted from the KernelICA paper [1]. They
include subgaussian, supergaussian and nearly Gaussian source distributions and

Table 1. LEFT: The normalized Amari errors (×100) for mixtures of identical
source distributions (top left) and random source distributions (bottom left). L: num-
ber of mixed components, N: number of samples, Fast: FastICA, Np: NpICA, Kgv:
KernelICA-KGV, Imax: extended infomax ICA, QICA: our method. For identical
sources, simulation is repeated 100 times for each of the 18 source distributions for
L = {2, 4}, 50 times for L = 8, and 20 times for L = 16. For random sources, simu-
lation is repeated 2000 times for L = {2, 4}, 1000 times for L = 8, and 400 times for
L = 16. RIGHT: Amari errors for each source distributions for L = 2 and N = 1000.

L N Fast Np Kgv Imax QICA

2
100 20.6 20.3 16.3 21.3 15.7
250 13.0 12.9 8.6 14.4 7.7

1000 6.5 9.8 3.0 8.5 2.9

4
100 28.6 23.0 28.4 23.1 18.9
250 16.8 13.9 19.2 14.5 9.8

1000 6.9 6.5 7.2 8.7 3.6

8
250 30.2 20.9 31.3 18.1 15.9

1000 10.6 7.8 20.6 8.2 4.7
2000 6.4 4.7 14.4 6.2 2.8

16
1000 26.2 17.3 30.4 11.1 12.4
2000 11.8 12.5 26.1 6.6 6.9
4000 7.1 6.9 21.3 4.8 4.3

L N Fast Np Kgv Imax QICA

2
100 18.0 13.6 13.4 19.0 12.0
250 11.3 7.2 6.3 13.1 6.1

1000 5.6 2.8 2.4 6.7 2.5

4
100 24.5 18.1 26.3 21.2 14.9
250 13.7 8.5 14.1 13.1 6.9

1000 5.7 2.6 3.4 5.9 2.5

8
250 25.4 14.8 30.0 16.0 10.1

1000 6.3 2.9 13.4 6.0 2.7
2000 4.0 1.7 5.6 4.1 1.8

16
1000 12.5 8.5 27.9 7.9 4.1
2000 4.3 2.6 27.0 4.3 2.3
4000 2.9 1.2 20.3 2.9 2.0

pdfs Fast Np Kgv Imax QICA
a 4.7 5.6 3.0 2.1 2.7
b 5.5 4.1 3.0 2.7 2.4
c 2.3 3.1 1.6 3.0 2.1
d 7.2 8.8 5.7 6.4 6.4
e 5.7 0.9 1.3 3.3 1.6
f 4.7 26.9 1.5 1.6 1.5
g 1.7 30.0 1.3 1.1 1.3
h 5.8 5.7 4.5 3.4 3.6
i 9.4 14.9 9.5 6.9 7.3
j 7.0 29.7 1.4 11.4 1.4
k 5.8 3.3 2.8 4.9 2.7
l 12.1 4.8 5.5 8.2 4.8

m 3.5 14.9 1.4 4.3 1.4
n 5.7 10.7 1.8 22.3 1.9
o 4.4 3.1 3.6 4.2 3.9
p 3.8 1.1 1.5 8.0 1.6
q 21.8 4.3 2.1 53.2 2.5
r 6.0 3.5 2.9 5.1 3.5

mean 6.5 9.8 3.0 8.5 2.9
std 4.5 9.7 2.1 12.2 1.7
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Fig. 1. Robustness to outliers for L = 2, N = 1000. Up to 25 observations are cor-
rupted by adding +5 or -5. The experiment is repeated 1000 times with random source
distributions.

unimodal, multimodal, symmetric, and skewed sources. We varied the number
of samples from 100 to 4000 and the number of components from 2 to 16.

Comparisons were made with four existing ICA algorithms: the FastICA algo-
rithm [12], the KernelICA-KGV algorithm [1], the extended infomax algorithm
[13] using tanh nonlinearity, and the NpICA algorithm [14]. Software programs
were downloaded from corresponding authors’ websites and were used with de-
fault parameters, except for the extended infomax algorithm, which is our own
implementation. Note that KernelICA-KGV also has four restarts as a default to
obtain initial estimates. The performance was measured using the Amari error
[15], which is invariant to permutation and scaling, lies between 0 and L−1 and
is zero for perfect demixing. We normalized the Amari error by dividing it by
L−1, where L is the number of independent components.

We summarized our results in Table 1. Consistent performance improvement
over existing algorithms was observed. The improvement was significant if the
number of components was large and the number of observations was small.
However, the performance gain became smaller as the number of observations
increased. Amari errors for each source pdf are also shown separately for two-
components and 1000 observations. The proposed method showed the small-
est standard deviation among the five methods. All of the methods, except for
KernelICA-KGV and the proposed method had problems with specific pdfs.

Another interesting result was the high performance of the extended infomax
algorithm for a large number of components. For L = 16, it showed the best
performance among the five methods. But further experiments with outliers
discouraged its practical use.

Fig. 1 shows the result of the outlier experiment. We randomly chose up to
25 observations and added the value +5 or -5 to a single component in the
observation, which was the same as the one in the KernelICA paper. The results
show that our method is extremely robust to outliers.
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5 Conclusions

We have proposed a robust algorithm for independent component analysis that
uses the sum of marginal quadratic negentropies as a dependence measure. The
proposed algorithm can handle arbitrary source distributions and is scalable with
respect to the number of components and observations. Experimental results
have shown that the proposed algorithm consistently outperforms others. In
addition, it is extremely robust to outliers and more effective when the number
of observed samples is small and the number of mixed sources is large.

The proposed contrast function is not guaranteed to have the same maximum
with the original one. Empirically, however, our method shows good perfor-
mance and can be applied to cases where a limited number of observations is
available.
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