Skip to main content

Detection of Paroxysmal EEG Discharges Using Multitaper Blind Signal Source Separation

  • Conference paper
  • 2899 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

The routine electroencephalogram (rEEG) is a useful diagnostic test for neurologists. But this test is frequently misinterpreted by neurologists due to a lack of systematic understanding of paroxysmal electroencephalographic discharges (PEDs), one of the most important features of EEG. A heuristic algorithm is described which uses conventional blind signal source separation (BSSS) algorithms to detect PEDs in a routine EEG recording. This algorithm treats BSSS as a ‘black box’ and applies it in a computationally-intensive multitaper algorithm in order to detect PEDs without a pre-specification of signal morphology or scalp distribution. The algorithm also attempts to overcome some of the limitations of conventional BSSS as applied to the study of neurophysiology datasets, specifically the ‘over-completeness problem’ and the ‘non-stationarity problem’.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zifkin, B.G., Cracco, R.Q.: An Orderly Approach to the Abnormal Electroencephalogram. In: Current Practice of Clinical Electroencephalography, pp. 288–302. Lippincott Williams & Wilkins, Philadelphia, PA (2003)

    Google Scholar 

  2. Benbadis, S.R.: The eeg in nonepileptic seizures. Journal of Clinical Neurophysiology 23, 340–352 (2006)

    Article  Google Scholar 

  3. Westmoreland, B.F.: Benign Electroencephalographic Variants and Patterns of Uncertain Clinical Significance. In: Current Practice of Clinical Electroencephalography, pp. 235–245. Lippincott Williams & Wilkins, Philadelphia (2003)

    Google Scholar 

  4. Wilson, S.B., Emerson, R.: Spike detection: a review and comparison of algorithms. Clinical Neurophysiology 113, 1873–1881 (2002)

    Article  Google Scholar 

  5. da Lopes Silva, F.: Computer-Assisted EEG Diagnosis: Pattern Recognition and Brain Mapping. In: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, vol. 2, pp. 1233–1264. Lippincott Williams & Wilkins, Philadelphia, PA (2005)

    Google Scholar 

  6. Acir, N., Oztura, I., Kuntalp, M., Baklan, B., Guzeli, C.: Automatic detection of epileptiform events in eeg by a three-stage procedure based on artificial neural networks. IEEE Transactions on Biomedical Engineering 52(1), 30–40 (2005)

    Article  Google Scholar 

  7. LeVan, P., Urrestarazu, E., Gotman, J.: A system for automatic artifact removal in ictal scalp eeg based on independent component analysis and bayesian classification. Clinical Neurophysiology 117(117), 912–927 (2006)

    Article  Google Scholar 

  8. Haykin, S., Chen, Z.: The cocktail party problem. Neural Computation 17, 1875–1902 (2005)

    Article  Google Scholar 

  9. Brown, G.D., Yamada, S., Sejnowski, T.J.: Independent component analysis at the neural cocktail party. Trends in Neurosciences 24, 54–63 (2001)

    Article  Google Scholar 

  10. Unsworth, C., Spowart, J., Lawson, G., Brown, J., Mulgrew, B., Minns, R., Clark, M.: Redundancy of independent component analysis in four common types of childhood epileptic seizure. Journal of Clinical Neurophysiology 23(3), 245–253 (2006)

    Article  Google Scholar 

  11. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computing 7, 1129–1159 (1995)

    Article  Google Scholar 

  12. Delorme, A., Makeig, S.: Eeglab: an open source toolbox for analysis of single-trial eeg dynamics. Journal of Neuroscience Methods 134, 9–21 (2004)

    Article  Google Scholar 

  13. Halford, J.J.: Analysis of temporal lobe paroxysmal events using multitaper independent component analysis. Abstract Presentation at the American Epilepsy Society Annual Meeting. San Diago, CA (December 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halford, J.J. (2007). Detection of Paroxysmal EEG Discharges Using Multitaper Blind Signal Source Separation. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics