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Abstract

Given a time series of multicomponent measurements of

an evolving stimulus, nonlinear blind source separation

(BSS) seeks to find a “source” time series, comprised of

statistically independent combinations of the measured

components. In this paper, we seek a source time se-

ries with local velocity cross correlations that vanish ev-

erywhere in stimulus state space. However, in an earlier

paper the local velocity correlation matrix was shown to

constitute a metric on state space. Therefore, nonlinear

BSS maps onto a problem of differential geometry: given

the metric observed in the measurement coordinate sys-

tem, find another coordinate system in which the metric

is diagonal everywhere. We show how to determine if the

observed data are separable in this way, and, if they are,

we show how to construct the required transformation to

the source coordinate system, which is essentially unique

except for an unknown rotation that can be found by ap-

plying the methods of linear BSS. Thus, the proposed

technique solves nonlinear BSS in many situations or, at

least, reduces it to linear BSS, without the use of prob-

abilistic, parametric, or iterative procedures. This paper

also describes a generalization of this methodology that

performs nonlinear independent subspace separation. In

every case, the resulting decomposition of the observed

data is an intrinsic property of the stimulus’ evolution

in the sense that it does not depend on the way the ob-

server chooses to view it (e.g., the choice of the observing

machine’s sensors). In other words, the decomposition is

a property of the evolution of the “real” stimulus that

is “out there” broadcasting energy to the observer. The

technique is illustrated with analytic and numerical ex-

amples.

1. INTRODUCTION

Humans can often decompose a signal time series into
components from different sources and then use the
results to construct a representation of the evolving
state of each source. For example, suppose someone
is listening to a monaural audio track of a “cocktail”
party that records the utterances of a speaker in the
presence of other sound sources (“noise”). Know-
ing little or nothing about the sound sources, most
listeners can extract the speech content of such a
recording for a large range of signal-to-noise ratios
and for many different types of speakers and noise
processes. Remarkably, the brain does this by pro-
cessing the sensory output of the ear, which is nonlin-
early related to the superposed acoustic waves from
the sound sources. The success of this natural bio-
logical “experiment” has inspired many attempts to
devise numerical algorithms that perform this type
of “blind” source separation (BSS).
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Most efforts have focused on the problem of sepa-
rating signals that are linearly mixed. For example,
suppose that x̃(t) is a multiplet of n observed time-
dependent signals (x̃k for k = 1, 2, . . . , n), and sup-
pose that x̃ is a linear combination of n source signals
xk

x̃(t) = M x(t) (1)

where M is an unknown n xn matrix. If the compo-
nents of x are assumed to be statistically independent
of one another, we can attempt to compute M by
imposing this constraint. For example, second-order
statistical independence can be imposed by requiring
that cross-correlations between x components vanish;
i.e., we can demand that < xx > be a diagonal ma-
trix. This determines M up to n-dimensional rota-
tions, scaling transformations, and subspace permu-
tations. In most cases, the unknown rotation can be
computed by imposing some criterion of higher-order
(greater than second-order) statistical independence,
and many statistical objective functions have been
devised for this purpose [1]. Finally, it is worth men-
tioning that there is a related linear BSS problem,
sometimes called independent subspace analysis, in
which the source components can be partitioned into
groups, so that components from different groups are
statistically independent but components belonging
to the same group may be dependent [2]. This weaker
assumption is utilized by imposing less restrictive cri-
teria of statistical independence; e.g., by demanding
that < xx > be block-diagonal, instead of fully diag-
onal. Reference [1] describes many fruitful investiga-
tions of the linear BSS problem, as well as a host of
applications.
In the nonlinear BSS problem, we consider a time

series of observations x̃(t) that are instantaneous mix-
tures of source components x(t)

x̃(t) = f [x(t)] (2)

where f is an unknown, possibly nonlinear,
n-component mixing function. As before, the ob-
jective is to compute the mixing function from the
observed values of x̃ and the statistical independence
of the components of x. In many approaches to this
problem, the mapping f is parametrically modeled
by a neural network. The network’s weights can

be computed by maximizing the statistical indepen-
dence of its input, as measured by mutual informa-
tion or other criteria [3]. Alternatively, the network’s
parameters can be determined by probabilistic learn-
ing methods [4], although computational expense can
be great and results may be degraded if the system
is attracted to a local minimum. Other investiga-
tors [5] have employed collections of linear BSS algo-
rithms to exploit statistical information in clustered
subsets of the observed data, which have been identi-
fied with nonlinear techniques. Furthermore, signif-
icant attention has been directed at the separation
of post-nonlinear mixtures, a special case of nonlin-
ear BSS in which each observed signal component
is a nonlinear function of a fixed linear combination
of source components [6]. For a review of these and
many other approaches to nonlinear BSS, see Ref. [7].
In nonlinear BSS, the search space of all smooth

real functions is much larger than the search space
in linear BSS (i.e., the space of linear transforma-
tions). This suggests that nonlinear BSS will require
the imposition of much stronger criteria for statis-
tical independence than were employed to solve the
linear problem. Instead of using higher-order statis-
tical constraints for this purpose, we assume that the
components of the source’s time derivatives ẋ are sta-
tistically independent of one another in each neigh-
borhood of x-space. This means that all of the lo-
cal cross-correlations of these derivatives must van-
ish; i.e., < (ẋk − ¯̇xk) (ẋl − ¯̇xl) >x must be diago-
nal for each value of x, where the bracket denotes
the time average over the trajectory’s segments in a
small neighborhood of x and where ¯̇x =< ẋ >x, the
local time average of ẋ. Given the observed data x̃(t),
each of these conditions is a constraint on f−1. The
technical problem is to simultaneously impose all of
these constraints, which are infinite in number. No-
tice that x̃(t) and x(t) represent the same stimulus
trajectory in two different coordinate systems on the
stimulus state space. So, the challenge is two-fold: 1)
we must use the observed stimulus trajectory in the
x̃ coordinate system in order to determine if there is
another coordinate system (x) in which the local ve-
locity correlation matrix is diagonal everywhere; 2)
if such a coordinate system exists, we must find the
transformation (f−1) to it. This can be done in the
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framework of an earlier paper [8], in which the ve-
locity correlation matrix was shown to constitute a
metric on the stimulus state space. In this context,
nonlinear BSS maps onto the following problem of
differential geometry [9]: given the metric observed
in the x̃ coordinate system, ascertain if there is an-
other coordinate system x in which the metric is di-
agonal, and, if such a coordinate system exists, find
the transformation to it. Both of these tasks can be
accomplished with the help of the parallel transfer
operation and the curvature tensor that the observed
trajectory x̃(t) induces on the stimulus state space.
This paper actually describes a more general method
that also performs nonlinear independent subspace
separation. Specifically, we show how to systemati-
cally determine if there is another (x) coordinate sys-
tem in which the metric is block-diagonalized for all
x, and, if that transformation exists, we show how to
construct it.
There are several ways in which the methodology

of this paper differs from previously-described tech-
niques. First of all, the proposed method exploits
second-order statistical constraints on source time
derivatives that are locally defined in the stimulus
state space, in contrast to the usual criteria for sta-
tistical independence that are global conditions on
the source time series or its time derivatives [10]. In
addition, in this paper, these constraints are solved
in a ”deterministic” manner, without the need for
probabilistic learning methods. Nor have we found
it necessary to parameterize the unknown function f
with a neural network architecture or other means.
Furthermore, unlike many other approaches, higher-
order statistical constraints are not used to unravel
the nonlinearities of the mixing function, although
they may be useful once the problem has been re-
duced to linear BSS. Finally, the use of differential
geometry in this paper should not be confused with
existing applications of differential geometry to BSS.
In our case, a metric on the system’s state space is de-
rived from the observed measurement trajectory. The
separability constraints, which are relatively easy to
derive in the source (x) coordinate system, are then
formulated as coordinate-system-independent condi-
tions on the space’s data-derived curvature tensor.
These constraints can be solved in the measurement

(x̃) coordinate system in order to determine if the
observed process is separable and, if so, to find the
transformation to the source coordinate system. In
contrast, other authors [11] define a metric on a com-
pletely different space, the search space of possible
mixing functions, so that ”natural” (i.e., covariant)
differentiation can be used to expedite the search for
the function that optimizes the fit to the observed
data.

The next section describes the theoretical frame-
work of the new method, and Section 3 describes
illustrative examples. Specifically, in Section 3, we
show how almost any classical physical description
of two non-interacting processes can be used to con-
struct trajectories that are separable by means of the
proposed BSS technique. Section 3 also briefly de-
scribes a specific numerical “experiment” in which
the new method was used to perform nonlinear in-
dependent subspace separation. The implications of
this work are discussed in Section 4. A detailed de-
scription of the numerical example is given in the
Appendix.

2. THEORY

This Section shows how to test the stimulus trajec-
tory observed in the measurement-defined coordinate
system in order to determine if the data are separa-
ble and, if it is, to find the transformation to a source
coordinate system in which groups of coordinate com-
ponents are independent of one another.

Suppose that x(t) (xk for k = 1, 2, . . . , n) denotes
the multiplet of state space coordinates of an evolving
physical stimulus, and let x̃(t) be an n-dimensional
multiplet of measurements that are instantaneous
mixtures of the xk, as shown in Eq.(2). The unknown
function f is assumed to be real, differentiable, and
invertible. In most physical situations, invertibility is
a weak assumption for the following reason. Suppose
that the sensors of the observing machine produce at
least 2n + 1 signals, which are functions of the in-
stantaneous configuration of the stimulus’ n degrees
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of freedom. The numerical simulation in Section 3
and the Appendix is a specific example of this type
of situation: namely, a stimulus with three degrees
of freedom that is observed with sensors producing
20 measurements. In all cases like this, the Takens
embedding theorem [12] states that the mapping be-
tween the stimulus state x and the multiplet of sensor
signals is almost certainly invertible. Therefore, if a
dimensional reduction technique [13] is used to define
an n-dimensional x̃ coordinate system on the mani-
fold of observed sensor signals, x and x̃ will be related
in an invertible fashion. In other words, because of
the Takens’ theorem, invertibility is almost guaran-
teed as long as care is taken to equip the observing
machine with a sufficient number of sensors. Notice
that the invertibility of f implies that the sensors of
each observing machine define a “measurement” co-
ordinate system (x̃) on the stimulus state space, and,
in fact, the only essential difference between machines
equipped with different sensors is that they record the
stimulus trajectory in different coordinate systems

Now consider the local second-order correlation
matrix mentioned in Section 1

gkl(x) =< (ẋk − ¯̇xk) (ẋl − ¯̇xl) >x, (3)

and assume that this quantity approaches a definite
limit as the neighborhood shrinks to zero around x.
Because this correlation matrix transforms as a sym-
metric contravariant tensor, it can be taken to be
a contravariant metric on the system’s state space.
Furthermore, as long as the local velocity distribution
is not confined to a hyperplane in velocity space, this
tensor is positive definite and can be inverted to form
the corresponding covariant metric gkl. Thus, under
these conditions, the system’s trajectory induces a
non-singular metric on state space [8].

How strong are the foregoing assumptions? The
right side of Eq.(3) is expected to have a well-defined
local limit if the trajectory densely covers a patch of
state space and if its local distribution of velocities
varies smoothly over that space. Specifically, suppose
that there is a density function ρ(x, ẋ), which varies
smoothly with x and which measures the fraction of
total trajectory time that the trajectory spends in a
small neighborhood dxdẋ of (x, ẋ)-space (i.e., phase

space). In that case, the limit in Eq.(3) certainly ex-
ists and is proportional to a second moment of that
function. In Section 3, we show that the trajecto-
ries of a wide variety of classical physical systems are
described by such density functions in phase space.

Our goal is to devise a way to test the data in
any coordinate system (e.g., the x̃ coordinate sys-
tem) in order to determine if it is separable. So,
we will proceed by assuming that the data are sep-
arable, and then we will derive necessary conditions
that the data-derived metric must satisfy in any co-
ordinate system. First, let’s assume that, in the
x coordinate system, the density function can be
separated into the product of two density functions
ρ(x, ẋ) = ρA(xA, ẋA)ρB(xB , ˙xB), where xA and xB

are components of x with consecutive indices xAk =
xk for k = 1, 2, . . . , nA < n and xBk = xk for k =
nA + 1, nA + 2, . . . , n. The factorizibility of the den-
sity function implies that the metric is block-diagonal
in the x coordinate system; i.e.,

gkl(x) =

(

gA(xA) 0

0 gB(xB)

)

kl

(4)

where gA and gB are nA xnA and nB xnB matrices,
nB = n−nA, and each 0 symbol denotes a null matrix
of appropriate dimensions.

Next, define the A (B) subspace at each point x to
be the hyperplane through that point with constant
xB (xA). Projecting the trajectory’s velocity vector
at x onto the A and B subspaces at that point sep-
arates it into components that represent the motion
of the A and B processes, respectively. The operator
that performs this projection onto the A subspace is
the n xn matrix Ak

l

Ak
l =

(

1 0

0 0

)

kl

(5)

where 1 is the nA xnA identity matrix. In other
words, if ẋ is the velocity of the stimulus at x, then
Ak

lẋl is the velocity of the A process, where we have
used Einstein’s convention of summing over repeated
indices. The complementary projector onto the B
subspace is Bk

l = δkl − Ak
l, where δkl is the Kro-

necker delta. In any other coordinate system (e.g.,
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the x̃ coordinate system), the corresponding projec-
tors (Ãk

l and B̃k
l) are mixed-index tensor transfor-

mations of the projectors in the x coordinate system;
for example,

Ãk
l(x̃) =

∂x̃k

∂xk′

∂xl′

∂x̃l

Ak′

l′ (6)

.
Because the A and B projectors permit the local

separation of the A and B processes, it will be use-
ful to be able to construct them in the measurement
(x̃) coordinate system. Our strategy for doing this is
to find conditions that the projectors must satisfy in
the x coordinate system and then transfer those con-
ditions to the x̃ coordinate system by writing them
in coordinate-system-independent form. First, note
that Eq.(5) implies that Ak

l is idempotent

Ak
k′Ak′

l = Ak
l, (7)

and it is unequal to the identity and null matri-
ces. Next, consider the Riemann-Christoffel curva-
ture tensor of the stimulus state space [9]

Rk
lmn(x) = −

∂Γk
lm

∂xn

+
∂Γk

ln

∂xm

+Γk
imΓi

ln−Γk
inΓ

i
lm,

(8)
where the affine connection Γk

lm is defined in the usual
way

Γk
lm =

1

2
gkn(

∂gnl
∂xm

+
∂gnm
∂xl

−
∂glm
∂xn

). (9)

The block-diagonality of gkl in the x coordinate sys-
tem implies that Γk

lm and Rk
lmn are also block-

diagonal in all of their indices. The block-diagonality
of the curvature tensor, together with Eq.(5), implies

Rj
klm(x)Ak

i −Aj
kR

k
ilm(x) = 0 (10)

at each point x. Covariant differentiation of Eq.(10)
will produce other local conditions that are neces-
sarily satisfied by separable data. It can be shown
that these conditions are also linear constraints on
the subspace projector because the projector’s covari-
ant derivative vanishes.
What is the intuitive meaning of Eq.(10)? Because

of the block-diagonality of the affine connection in

the x coordinate system, it is easy to see that paral-
lel transfer of a vector lying within the A (or B) sub-
space at any point produces a vector within the A (or
B) subspace at the destination point. Consequently,
parallel transfer of the corresponding projectors (Ak

l

and Bk
l) is path-independent. In particular, parallel

transferring one of these projectors along the ith di-
rection and then along the jth direction will give the
same result as parallel transferring it along the jth

direction and then along the ith direction. Equation
(10) is the statement of this path-independent paral-
lel transfer of the projectors that exist on separable
manifolds. In contrast, for most inseparable Rieman-
nian manifolds there are no non-trivial solutions of
Eqs.(7) and (10). For example, on any intrinsically
curved two-dimensional surface (e.g., a sphere), it is
not possible to find a one-dimensional projector at
each point (i.e., a direction at each point) that satis-
fies Eq.(10). This is because the parallel transfer of
directions on such a surface is path dependent.
Notice that the quantities in Eqs.(7) and (10)

transform as tensors when the coordinate system is
changed. Therefore, these equations must be true in
any coordinate system on a separable state space. In
particular, in the x̃ coordinate system that is defined
by the sensors of the observing machine, we have

Ãk
k′(x̃)Ãk′

l(x̃) = Ãk
l(x̃) (11)

R̃j
klm(x̃)Ãk

i(x̃)− Ãj
k(x̃)R̃

k
ilm(x̃) = 0. (12)

So far, we have shown that in any coordinate sys-
tem on a separable space there must be non-trivial
solutions to Eqs.(11) and (12); i.e., there are special
projectors or directions at each point that parallel
transfer path-independently. Thus, separability im-
poses a significant constraint on the curvature tensor
of the space and, therefore, on the observed data.
Likewise, if no solution of Eqs.(11) and (12) exists,
we can immediately conclude that the data are not
separable by any nonlinear transformation.
On the other hand, if the data are separable, we

can use the solutions of Eqs.(11) and (12) to explicitly
separate it; i.e., we can construct a transformation
from the measurement coordinate system (x̃) to the
source coordinate system (x). First, we solve these
equations at a single point x̃0 in order to find Ãk

l(x̃0)
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and its complement B̃k
l(x̃0). Then, the following

procedure can be used to construct a geodesic coor-
dinate system in which the metric is explicitly block-
diagonal. First, select n linearly independent small
vectors δỹ(i) (i = 1, 2, . . . , n) at x̃0, and use Ãk

l(x̃0)

and B̃k
l(x̃0) to project them onto the local A and B

subspaces. Then, use the results to create a set of nA

linearly independent vectors δx̃(a) (a = 1, 2, . . . , nA)
and a set of nB linearly independent vectors δx̃(b)

(b = nA + 1, nA + 2, . . . , n), which lie within the A
and B subspaces, respectively. Finally: 1) starting
at x̃0, use the affine connection to repeatedly parallel
transfer all δx̃ along δx̃(1); 2) starting at each point
along the resulting geodesic path, repeatedly paral-
lel transfer these vectors along δx̃(2); ... n) start-
ing at each point along the most recently produced
geodesic path, parallel transfer these vectors along
δx̃(n). Each point in the neighborhood of x̃0 is as-
signed the geodesic coordinate s (sk, k = 1, 2, . . . , n),
where each component sk represents the number of
parallel transfers of the vector δx̃(k) that was required
to reach it. If one visualizes these projection and par-
allel transfer procedures in the x coordinate system
of a separable space, it is not hard to see that the first
nA components of s (i.e., sA)will be functions of xA

and the last nB components of s (sB) will be func-
tions of xB . In other words, s and x will just differ
by a coordinate transformation that is block-diagonal
with respect to the subspaces. Therefore, the met-
ric will be block-diagonal in the s coordinate system,
just like it is in the x coordinate system. But, be-
cause s is defined by coordinate-system-independent
procedures, the same s coordinate system will be con-
structed by performing these procedures in the mea-
surement (x̃) coordinate system. In summary: sep-
arability necessarily implies that the subspace pro-
jectors satisfy Eqs.(11) and (12) at x̃0 and that the
metric will be block-diagonal in the geodesic (s) co-
ordinate system computed from those projectors.

We are now in a position to systematically deter-
mine if the observed data can be decomposed into
independent subspaces. The first step is to use the
observed measurements x̃(t) to compute the met-
ric (Eq.(3)), affine connection (Eq(9)), and curva-
ture tensor (Eq.(8)) at one particular point x̃0 in the

state space. Next, Eqs.(11) and (12) are solved al-
gebraically to find all possible subspace projectors
Ãk

l(x̃0) at that point. If non-trivial solutions are not
found, we conclude that the observations are not sep-
arable into independent subspaces. If solutions are
found, each one is used to construct an s (geodesic)
coordinate system. If the metric is not block-diagonal
in the s coordinate systems computed from any of
these solutions, we conclude that the observations
cannot be separated by any nonlinear transformation.
If the metric is block-diagonal in a geodesic coor-

dinate system, we continue the separation procedure
by applying all of the above procedures separately
to the metrics on the A and B subspaces in order
to see if they can be subdivided into smaller sub-
spaces with independent second-order velocity statis-
tics. This process is repeated until the metric is
block-diagonal and has blocks that cannot be fur-
ther subdivided in this way. The resulting geodesic
coordinate systems comprise all coordinate systems
in which the metric is block-diagonal, up to permu-
tations of blocks and transformations of coordinates
within blocks (or groups of blocks). Therefore, the
coordinates of each independent source process must
correspond to the blocks (or groups of blocks) of one
of these geodesic coordinate systems. Additional cri-
teria of statistical independence, such as those used
in linear BSS [1], can be employed to determine which
blocks (or groups of blocks) of geodesic coordinates
are truly independent (in the sense that they lead
to factorization of the trajectory’s density function).
For example, we can check whether there is a vanish-
ing second-order correlation between the components
of any two blocks, we can determine if higher-order
correlations among components from different blocks
factorize into the products of lower-order correlations
of components within blocks, etc. If any groups of
blocks do not pass these tests, it may be necessary to
aggregate them into larger blocks.
There is one exceptional situation that can arise in

this serial decomposition procedure. If two or more
one-dimensional subspaces are produced by repeat-
edly applying the second-order statistical criterion,
each of the corresponding diagonal metric compo-
nents (i.e., the corresponding 1 x 1 blocks) can be
transformed to unity by appropriate linear or nonlin-
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ear scale transformations on those subspaces. There-
fore, these subspaces can be mixed by any rotation,
without affecting the block-diagonality of the metric
(i.e., without affecting the second-order statistical in-
dependence of ṡ). This unknown rotation could be
determined by applying the above-mentioned crite-
ria of statistical independence used in linear BSS [1].
Thus, in this exceptional case, the proposed method-
ology fails to completely define blocks of indepen-
dent source variables, but it does reduce the non-
linear BSS problem to linear BSS. There is another
way to understand the failure of Eqs.(11) and (12) to
fully determine the source coordinate system for flat
spaces. Because the curvature tensor vanishes on a
flat space, Eq.(12) imposes no constraint on the sub-
space projectors in that case. This is related to the
fact that, in a flat space, any vectors or projectors at
a given point can be parallel transferred to other loca-
tions in a path-independent manner, unlike a curved
space in which only special projectors (or none at
all) have this property. Therefore, in a flat space, we
have more freedom (an undetermined rotation) in our
choice of the projectors that can be used to construct
a geodesic coordinate system in which the metric is
diagonal.

3. EXAMPLES

In this Section, we demonstrate large classes of stimu-
lus trajectories, satisfying the assumptions in Section
2. In these cases: 1) the trajectory’s statistics are de-
scribed by a density function in phase space; 2) the
trajectory-derived metric is well-defined and can be
computed analytically; 3) there is a source coordinate
system in which the density function is separable into
the product of two density functions and in which the
metric is block-diagonal. Many of these trajectories
are constructed from the behavior of physical sys-
tems that could be realized in the laboratory. This
Section concludes with a brief description of a nu-
merical simulation of such a laboratory experiment.
A detailed description of this simulation is given in
the Appendix.

First, consider the energy of a physical process with
n degrees of freedom x (xk for k = 1, 2, . . . , n)

E(x, ẋ) =
1

2
µkl(x)ẋkẋl + V (x) (13)

where µkl and V are some functions of x. Further-
more, suppose that

µkl(x) =

(

µA(xA) 0

0 µB(xB)

)

kl

(14)

V (x) = VA(xA) + VB(xB) (15)

where µA and µB are nA xnA and nB xnB matri-
ces for 1 ≤ nA < n and nB = n − nA, where each
0 symbol denotes a null matrix of appropriate di-
mensions, and where xAk = xk for k = 1, 2, . . . , nA

and xBk = xk for k = nA + 1, nA + 2, . . . , n. These
equations describe the degrees of freedom (xA and
xB) of almost any pair of classical physical systems,
which do not exchange energy or interact with one
another. A simple system of this kind consists of
a particle with coordinates xA moving in a poten-
tial VA on a possibly warped two-dimensional fric-
tionless surface with physical metric µAkl(xA), to-
gether with a particle with coordinates xB moving
in a potential VB on a two-dimensional frictionless
surface with physical metric µBkl(xB). In the gen-
eral case, suppose that the system intermittently ex-
changes energy with a thermal “bath” at temperature
T. This means that the system evolves along one tra-
jectory from the Maxwell-Boltzmann distribution at
that temperature and periodically jumps to another
trajectory randomly chosen from that distribution.
After a sufficient number of jumps, the amount of
time the system will have spent in a small neighbor-
hood dxdẋ of (x, ẋ) is given by the product of dxdẋ
and a density function that is proportional to the
Maxwell-Boltzmann distribution [14]

µ(x) exp [−E(x, ẋ)/kT ] (16)

where k is the Boltzmann constant and µ is the de-
terminant of µkl. As described in Section 2, the ex-
istence of this density function means that a well-
defined local velocity covariance matrix exists, and
computation of Gaussian integrals shows that it is

< (ẋk − ¯̇xk) (ẋl − ¯̇xl) >x= kTµkl(x). (17)
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where µkl is the contravariant tensor equal to the in-
verse of µkl. It follows that the trajectory-induced
metric on the stimulus state space is well-defined
and is given by gkl(x) = µkl(x)/kT . Furthermore,
Eq.(14) shows that the metric has a block-diagonal
form in the x coordinate system. This reflects the
fact that the density function in Eq.(16) is the prod-
uct of the density functions of the two non-interacting
subsystems.

In order to test these ideas “experimentally”, we
numerically simulated a stimulus with three degrees
of freedom. Specifically, the stimulus consisted of
two particles, one of which moved freely on a spheri-
cal surface and the other of which moved freely on a
line. These particles were “observed” by a simulated
machine that was equipped with five pinhole cam-
eras that suffered from nonlinear distortions of their
optical paths. These sensors produced 20 numbers
at each time point, consisting of the coordinates of
the particles in the distorted images of all cameras.
After dimensional reduction by locally linear embed-
ding [13], the measurement time series was blindly
processed by the technique described in Section 2.
Equations (11) and (12) were found to have non-
trivial solutions corresponding to a two-dimensional
subspace and a complementary one-dimensional sub-
space, and the metric was found to be nearly block-
diagonal in the corresponding geodesic coordinate
system. This geodesic coordinate system was ex-
pected to be identical to the separable coordinate
system in which the system was originally defined,
except for coordinate transformations confined to the
individual subspaces. This was demonstrated by
showing that the first two geodesic coordinate com-
ponents correctly described an “independent” two-
dimensional process, which corresponded to the par-
ticle’s path on the spherical surface. A detailed de-
scription of this “experiment” is given in the Ap-
pendix.

4. DISCUSSION

This paper outlines a new approach to nonlinear
blind source separation, as well as nonlinear inde-
pendent subspace separation. In many situations,
the method solves the nonlinear BSS problem, or, at
least, it reduces nonlinear BSS to linear BSS, with-
out the use of probabilistic, parametric, or iterative
procedures. The first step is to rephrase the problem
in the following manner: 1) given a time series of ob-
servations in a sensor-defined coordinate system (x̃)
on the stimulus state space, determine if there is an-
other coordinate system (a source coordinate system
x) in which groups of components are statistically
independent of one another; 2) if such a coordinate
system exists, find the transformation to it. The ex-
istence (or lack thereof) of such a source coordinate
system is a coordinate-system-independent property
of the stimulus’ evolution (i.e., an intrinsic or invari-
ant property). This is because, in all coordinate sys-
tems, there either is or is not a transformation to
such a source coordinate system. In general, differ-
ential geometry provides mathematical machinery for
determining whether a manifold has a coordinate-
system-independent property like this. In the case
at hand, we can induce a geometric structure on the
stimulus space by identifying its metric with the lo-
cal second-order correlation matrix of the stimulus’
velocity. Then, a necessary condition for BSS (the
block-diagonalizibility of the metric everywhere) can
be shown to impose constraints on the data-derived
curvature tensor in all coordinate systems (includ-
ing the measurement coordinate system). If the cur-
vature tensor violates those conditions, the observa-
tions are not separable. However, if the curvature
tensor satisfies those constraints, the x̃ metric can be
used to construct a geodesic (s) coordinate system
in which the metric has a block-diagonal form (i.e.,
in which groups of stimulus velocity components are
statistically independent to second order). The coor-
dinates of independent source processes must corre-
spond to blocks (or groups of blocks) of these geodesic
coordinates. An exceptional situation arises if there
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is a multidimensional flat subspace. In that case,
the desired source coordinate system may differ from
a geodesic coordinate system by a rotation on this
subspace. Additional statistical criteria, such as the
second-order and higher-order statistical constraints
used in linear BSS [1], can be used to compute the
unknown rotation and to determine if any blocks
of geodesic coordinates need to be fused into larger
blocks.
In a sense, the methodology in this paper is an

application of the general framework described in an
earlier report [8]. That paper introduced the idea of
using the local velocity correlation matrix as a met-
ric on the stimulus state space. The parallel transfer
operation, derived from that metric, was then em-
ployed to describe relative stimulus locations. As an
example of such a description, suppose that stimuli
A, B, and C differ by small stimulus transformations,
and suppose that a more distant stimulus D can be
described as being related to A, B, and C by the
following procedure: “D is the stimulus that is pro-
duced by the following sequence of operations: 1)
start with stimulus A and parallel transfer the vec-
tors A → B and A → C along A → B 23 times; 2)
start at the end of the resulting geodesic and parallel
transfer A → C along itself 72 times”. All such state-
ments about relative stimulus locations derived from
parallel transfer are coordinate-system-independent.
They are also machine-independent because the only
essential difference between machines equipped with
different sensors is that they record the stimulus state
in different coordinate systems (Section 2). Figures
3(c) and 3(d) (see Appendix) demonstrate an exam-
ple of the machine-independence of such statements
about relative stimulus locations. Specifically, this
figure shows how many parallel transfers of the vec-
tors δx̃i were required to reach each point on the test
pattern, as computed by a machine Õb equipped with
five pinhole camera sensors (narrow black lines) and
as computed by a different machine Ob that directly
sensed the values of x (thick gray lines). In Ref. [8], it
was emphasized that different machines can use this
technology to navigate through stimulus space and
to represent stimuli in the same way, even though
they do not communicate with one another. The en-
tire set of such statements about relative stimulus

locations constitutes a rich stimulus representation
that is intrinsic to the stimulus’ evolution in the sense
that it does not depend on extrinsic factors such as
the observer’s choice of a coordinate system in which
the stimulus is viewed (i.e., the observer’s choice of
sensors). The current paper shows how a “blinded”
observer can glean another intrinsic property of the
stimulus’ evolution, namely its separability.
What are the limitations on the application of this

method? As discussed in Section 2, the metric is
expected to be well-defined if the trajectory densely
covers a patch of state space and if its local distri-
bution of velocities varies smoothly over that space.
In any event, the metric certainly exists if the tra-
jectory is described by a density function in phase
space. In Section 3, we showed that these conditions
were satisfied by trajectories describing a wide vari-
ety of physical systems. In practical applications, one
must have observations that cover state space densely
enough in order to compute the metric, as well as its
first and second derivatives (required to compute the
affine connection and curvature tensor). In the nu-
merical simulation in Section 3 and the Appendix,
approximately 8.3 million short trajectory segments
(containing a total of 56 million points) were used to
compute the metric and curvature tensor on a 32 x
32 x 32 grid on the three-dimensional state space.
Of course, if the dimensionality of the state space is
higher, even more data will be needed. So, like a hu-
man infant, machines of this type must observe stim-
uli for relatively long periods of time in order to be
able to discern their separable nature. If a machine’s
sensors are changing in time, the method should be
run in an adaptive mode, in which the metric is de-
rived from recently observed data. Of course, the
adaptation time must be long enough to allow the
stimulus trajectory to cover state space with the re-
quired density. There are few other limitations on
the applicability of the technique. For example, it
can be applied to machines equipped with just about
any sensors, as long as each sensor’s output is an
instantaneous function of the stimulus state and as
long as more than 2n sensors are used to observe an
n-dimensional stimulus. In particular, because the
method is blinded to the physical nature of each sen-
sor, it can effortlessly fuse the outputs of sensors from
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different modalities. Furthermore, computational ex-
pense is not prohibitive. The computation of the
metric is the most CPU-intensive part of the method.
However, it can be distributed over multiple proces-
sors by dividing the observed data into “chunks” cor-
responding to different time intervals, each of which
is sent to a different processor where its contribution
to the metric is computed. As additional data is ac-
cumulated, it can be processed separately and then
added into the time average of the data that was
used to compute the earlier estimate of the metric
(Eq.(3)). Thus, the earlier data need not be pro-
cessed again, and only the latest observations need
to be kept in memory.

It is interesting to return to the biological phe-
nomena that have inspired work on BSS, as men-
tioned in Section 1. Many psychological experiments
suggest that human perception is remarkably sensor-
independent. Specifically, suppose that an individ-
ual’s visual sensors are changed by having the sub-
ject wear goggles that distort and/or invert the ob-
served scene. Then, after a sufficiently long period
of adaptation, most subjects perceive the world in
approximately the same way as they did before the
experiment [15]. An equally remarkable phenomenon
is the approximate universality of human perception:
i.e., the fact that perceptions seem to be shared by in-
dividuals with different sensors (e.g., different ocular
anatomy and different microscopic brain anatomy),
as long as they have been exposed to similar stimuli
in the past. Thus, many human perceptions seem to
represent properties that are “intrinsic” to stimuli in
the sense that they do not depend on the way the
stimuli are observed (i.e., they don’t depend on the
type of sensors or on the nature of the sensor-defined
coordinate system on state space). This paper and
an earlier one [8] describe a method of finding such
“inner” properties of a sufficiently dense stimulus tra-
jectory. Is it possible that the human brain some-
how extracts these particular invariants from sensory
data? The only way to test this speculation is to
perform biological experiments to determine if the
human brain actually utilizes the specific metric and
geometric structure described in these two papers.
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APPENDIX: NUMERICAL

EXAMPLE

In this Appendix, the scenario described in Section 3
is illustrated by the numerical simulation of a stimu-
lus with three degrees of freedom. The stimulus was
comprised of two moving particles of unit mass, one
moving on a transparent frictionless curved surface
and the other moving on a frictionless line. Figure
1 shows the curved surface, which consisted of all
points within one radian of a randomly chosen point.
Figure 1 also shows that the curved surface and line
were oriented at arbitrarily-chosen angles with re-
spect to the simulated laboratory coordinate system.
Both particles moved freely, and they were in thermal
equilibrium with a bath for which kT = 0.01 in the
chosen units of mass, length, and time. As in Sec-
tion 3, the source trajectory was created by tempo-
rally concatenating approximately 8.3 million short
trajectory segments randomly chosen from the corre-
sponding Maxwell-Boltzmann distribution, given by
Eqs.(13-16) with µA equal to the metric of the spheri-
cal surface, µB equal to a constant, and VA = VB = 0.
Figure 1 shows a small sample of those trajectory seg-
ments.
The particles were “watched” by a simulated ma-

chine Õb equipped with five pinhole cameras, which
had arbitrarily chosen positions and faced the cylin-
der/line with arbitrarily chosen orientations (Fig. 1).
The image created by each camera was transformed
by an arbitrarily chosen second-order polynomial,
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Figure 1: The thin black curved lines comprise a small
sample of the trajectory segments traversed by the parti-
cle that was confined to a spherical surface, and the long
thick black line shows the corresponding trajectory seg-
ments of the second particle constrained to a straight line.
The stimulus was “watched” by five simulated pinhole
cameras. Each small triplet of orthogonal straight lines
shows the relative position and orientation of a camera,
with the long thick line of each triplet being the perpen-
dicular to a camera focal plane that was represented by
the two short thin lines of each triplet. One camera is
nearly obscured by the spherical surface. The thick gray
curved lines show some latitudes and longitudes on the
spherical surface.
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Figure 2: (a) A small sample of stimulus trajectory seg-
ments after they were mapped into the 20-dimensional
space of camera outputs. Only the first three principal
components are shown. (b) A small sample of stimu-
lus trajectory segments after dimensional reduction was
used to map them from the 20-dimensional space onto the
three-dimensional measurement (x̃) space. (c) A small
sample of stimulus trajectory segments after they were
transformed from the x̃ coordinate system to the geodesic
(s) coordinate system (i.e., the “experimentally” deter-
mined source coordinate system).

which varied from camera to camera. In other words,
each pinhole camera image was distorted by transla-
tional shift, rotation, rescaling, skew, and quadratic
deformations that simulated the effect of a distorted
optical path between the particles and the camera’s
focal plane. The output of each camera was com-
prised of the four numbers representing the two par-
ticles’ locations in the distorted image on its “focal”
plane. As the particles moved, the cameras created
a time series of sensor multiplets, each of which con-
sisted of the 20 numbers produced by all five cam-
eras at one time point. Figure 2(a) shows the first
three principal components of the system’s trajectory
through the corresponding 20-dimensional space. A
dimensional reduction technique (locally linear em-
bedding [13]) was applied to the full 20-dimensional
time series in order to identify the underlying three-
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dimensional measurement space and to establish a co-
ordinate system (x̃) on it. The value of x̃ associated
with each stimulus state (i.e., each location of the two
particles) defined the sensor state (or measurement
state) of Õb. Because the stimulus state space had
dimensionality n = 3 and because the sensor multi-
plets had more than 2n components, the Takens em-
bedding theorem [12] virtually guaranteed that there
was a one-to-one mapping between the stimulus and
measurement states. Therefore, the x̃ coordinate sys-
tem, defined by dimensional reduction of the sensor
data, was a coordinate system on the stimulus state
space as well. The exact nature of that coordinate
system depended on the the channels and sensors
used to make the machine’s measurements (e.g., it
depended on the positions, orientations, and optical
path distortions of the five pinhole cameras). Fig-
ure 2(b) shows typical trajectory segments in the x̃
coordinate system.
Next, Eqs.(3), (9), and (8) were used to compute

the metric, affine connection, and curvature tensor
in this coordinate system. Then, Eqs.(11) and (12)
were solved at a point x̃0. One pair of solutions
was found, representing a local projector onto a two-
dimensional subspace and the complementary projec-
tor onto a one-dimensional subspace. Following the
procedure in Section 2, we selected three small lin-
early independent vectors δỹ(i) (i = 1, 2, 3) at x̃0,
and we used the projectors at that point to project
them onto the putative A and B subspaces. Then,
the resulting projections were used to create a set of
two linearly independent vectors δx̃(a) (a = 1, 2) and
a single vector δx̃(3) within the A and B subspaces,
respectively. Finally, the geodesic (s) coordinate sys-
tem was constructed by using the affine connection to
parallel transfer these vectors throughout the neigh-
borhood of x̃0. After the metric was transformed into
the s coordinate system, it was found to have a nearly
block-diagonal form, consisting of a 2 x 2 block and
a 1 x 1 block. In other words, the time derivatives of
the corresponding groups of s variables were approx-
imately statistically independent to second-order, as
expected. Because the two-dimensional subspace had
non-zero intrinsic curvature (proportional to the in-
trinsic curvature of the underlying spherical surface),
it could not be decomposed into smaller (i.e., one-

dimensional) independent subspaces. Therefore, in
this example, the data were separable, and the source
coordinate system was the geodesic (s) coordinate
system, which was unique up to coordinate transfor-
mations on each block and up to subspace permuta-
tions.
In order to demonstrate the accuracy of the separa-

tion process, we defined “test lines” that had known
projections onto the independent subspaces used to
define the stimulus. Then, we compared those pro-
jections with the test pattern’s projection onto the
independent subspaces that were “experimentally”
determined by the proposed method. First, we de-
fined a Cartesian x coordinate system in which xA

was the position (longitude, latitude) of the parti-
cle on the spherical surface and in which xB was
the position of the other particle along the line (Fig.
1). In this coordinate system, the test lines con-
sisted of straight lines that were oriented at various
angles with respect to the xB = 0 plane and that
projected onto the grid-like array of latitudes and
longitudes in that plane. In other words, each line
corresponded to a path generated by moving the first
particle along a latitude or longitude of the sphere
and simultaneously moving the second particle along
its constraining line. The points along these test lines
were “observed” by the five pinhole cameras to pro-
duce corresponding lines in the 20-dimensional space
of the cameras’ output (Fig. 3(a)). These lines were
then mapped onto lines in the x̃ coordinate system
by means of the same procedure used to dimension-
ally reduce the trajectory data (Fig. 3(b)). Finally,
the test pattern was transformed from the x̃ coordi-
nate system to the s coordinate system, the geodesic
coordinate system that comprised the “experimen-
tally” derived source coordinate system. As men-
tioned above, the s coordinate system was the only
possible separable coordinate system, except for ar-
bitrary coordinate transformations on each subspace.
Therefore, it should be the same as the x coordinate
system (an exactly known source coordinate system),
except for such block-diagonal transformations. The
nature of that coordinate transformation depended
on the choice of vectors that were parallel transfered
to define the geodesic (s) coordinate system on each
subspace. In order to compare the test pattern in
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Figure 3: (a) The test lines after they were mapped into
the 20-dimensional space of camera outputs. The fig-
ure only depicts the resulting pattern’s projection onto
the space of the first three principal components of the
20-dimensional stimulus trajectory. (b) The test lines af-
ter dimensional reduction was used to map them from
the 20-dimensional space onto the three-dimensional mea-
surement (x̃) space traversed by the trajectory segments.
(c) The thin black lines show the test pattern after it was
transformed from the x̃ coordinate system to the geodesic
(s) coordinate system, which comprises the “experimen-
tally” derived source coordinate system. The thick gray
lines show the test lines in the comparable exact source
coordinate system. (d) The thin and thick black lines
show the first two components of the test patterns in
(c). These collections of lines represent the projection of
the test pattern onto the “experimentally” derived two-
dimensional independent subspace and onto the exactly
known independent subspace, respectively.

the “experimentally” derived source coordinate sys-
tem (s) with the appearance of the test pattern in
the exactly known source coordinate system (x), we
picked x̃0 and the δỹ vectors so that the s and x
coordinate systems would be the same, as long as
the independent subspaces were correctly identified
by Õb. Specifically: 1) x̃0 was chosen to be the map-
ping of the origin of the x coordinate system, which
was located on the sphere’s equator and at the line’s
center; 2) δỹ(1) and δỹ(2) were chosen to be map-
pings of vectors projecting along the equator and the
longitude, respectively, at that point; 3) all three δx̃
were normalized with respect to the metric in the
same way as the corresponding unit vectors in the x
coordinate system. Figure 3(c) shows that the test
pattern in the “experimentally” derived source coor-
dinate system consisted of nearly straight lines (nar-
row black lines), which almost coincided with the test
pattern in the exactly known source coordinate sys-
tem (thick gray lines). Figure 3(d) shows that the
test pattern projected onto a grid-like pattern of lines
on the “experimentally” determined A subspace (nar-
row black lines), and these lines nearly coincided with
the test pattern’s projection onto the exactly known
A subspace (thick gray lines). These results indicate
that the proposed BSS method correctly determined
the source coordinate system. In other words, the
“blind” observer Õb was able to separate the state
space into two independent subspaces, which were
nearly the same as the independent subspaces used
to define the stimulus.
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