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Abstract. Markov logic, as a highly expressive representation formal-
ism that essentially combines the semantics of probabilistic graphical
models with the full power of first-order logic, is one of the most in-
triguing representations in the field of probabilistic logical modelling.
However, as we will show, models in Markov logic often fail to general-
ize because the parameters they contain are highly domain-specific. We
take the perspective of generative stochastic processes in order to de-
scribe probability distributions in relational domains and illustrate the
problem in this context by means of simple examples.
We propose an extension of the language that involves the specification
of a priori independent attributes and that furthermore introduces a dy-
namic parameter adjustment whenever a model in Markov logic is instan-
tiated for a certain domain (set of objects). Our extension removes the
corresponding restrictions on processes for which models can be learned
using standard methods and thus enables Markov logic networks to be
practically applied to a far greater class of generative stochastic pro-
cesses.

1 Introduction

In artificial intelligence (AI), a variety of applications can greatly benefit from
a unification of logical and probabilistic knowledge representations. The former
enable us to deal with complex, relational domains by offering an expressive
language, and the latter allow us to soundly handle uncertainty. In any suffi-
ciently complex AI application, both are of utmost importance and need to be
fully integrated. Yet for a long time, the development of both strands has been
largely separate. Especially in recent years, however, a number of alternative
approaches towards a unification have been proposed. Theoretical contributions
to the field that has now emerged as statistical relational learning date back
to at least Nilsson [1], Halpern [2] and Bacchus [3], while the more practically
oriented research has only recently gained momentum [4,5,6,7]. One of the most
promising approaches currently available is Markov logic [8,9], as it essentially
combines, unlike most other approaches, the full power of first-order logic with
probability. It is thus one of the most general, yet it is still supported by a
suite of tools that are geared towards practical applicability (the Alchemy sys-
tem [10]). Because of their exceptional expressivity and simplicity, Markov logic



networks have gained a lot of attention lately, including an invited talk by Pedro
Domingos at AAAI-06.

In principle, any language that unifies statistical and relational representa-
tions and that is furthermore supported by a number of sufficiently efficient
learning and inference algorithms, so that it can truly be applied in practice, is
not only inherently appealing but can also serve as an interface layer between
learning and inference on the one side and higher-level AI applications on the
other [11], increasing the interoperability between implementations on both sides
of the layer if it is established as a standard. Markov logic is a prime candidate
for a representation language on which such an interface layer could be based.

1.1 Application Scenarios

There are countless applications for probabilistic relational representations and
the corresponding interface layer. Consider, for example, a system such as ASpo-
GAMo [12], which observes football games, recognizes and classifies the ball
actions that occur within them, determines the parameters of the actions, char-
acterizes the situations in which the actions are performed and analyzes the
effects of the actions. In the context of such an application, we could use the
data that is collected to build comprehensive models of the game process, which
could then be used to answer a wide range of queries automatically. For instance,
we might ask for the probability that a pass played by a certain type of player
succeeds in a given situation — or the probability that a ball passed by a side
midfielder is generally received by a striker if it is played with specific parameters
(speed, direction) in a given situation.

Fig. 1. Applying Markov logic

Figure 1 depicts a schematic application of Markov logic that could be capa-
ble of answering such queries. It shows the typical process of learning a model
from relational data and reasoning about it. The source data could, for example,
be given in a relational database. Ideally, we would then only need to provide



a set of formulas that hold in the domain and learn the model’s parameters in
order to be able to query the model by instantiating it for a concrete set of
objects and calculating the conditional probabilities we are interested in.

There are several obvious characteristics of such applications and the rep-
resentations they need in order to perform their tasks. First, the models cre-
ated and used must represent uncertainty: football games are notoriously non-
deterministic, for results of actions are caused by the interplay of situations and
actions that are only incompletely characterized, and important information for
analysis, such as the intentions of players, cannot be inferred. Second, the ques-
tions we ask essentially make use of the power of natural language: They ask
about classes of players, infer information about the relation of actions’ effects
and the situations they are performed in, and the domains of events we query
are dynamically determined. Whatever the concrete application, a probabilistic
relational representation that is able to represent full-joint distributions over
any given domain of a certain type is desirable, for complex queries cannot be
answered otherwise.

1.2 Contributions

In this paper, we lay down a number of properties of probabilistic logical rep-
resentation languages that are essential for the modelling of some aspects of
probabilistic relational domains. In particular, the language must be capable of
describing general principles about multiple objects having similar properties,
which should then be applicable in several contexts, i.e. in several different do-
mains. Markov logic networks that are learned using standard methods in many
cases do not possess some of these properties and consequently fail to represent
the intended probability distribution when we move from one domain to another,
i.e. when we perform a domain shift.1 Because Markov logic seems to have been
used mainly in rather specialized applications, the problem we describe may have
been hitherto unnoticed. We illustrate the problem using particularly simple ex-
amples and subsequently propose an extension of the language that solves it. In
essence, our solution involves the formulation of hard constraints on probabilities
that are used to dynamically calculate some of the probabilistic parameters of
models in Markov logic that would otherwise remain fixed.

In the following section, we thus begin by stating the properties of repre-
sentation languages we deem desirable. Next, in Sect. 3, we briefly introduce
Markov logic networks and define the problems that limit their applicability to
relational domains. Subsequently, in Sect. 4, we show why Markov logic networks
are, under certain conditions, unable to handle domain shifts and, in Sect. 5, we
suggest a corresponding extension of the language, which we explain in detail.
Finally, we summarize our results and provide an outlook on future research.
1 Note that the term domain is used at two different levels. At the higher level, we

mean the general scenario that a model deals with, i.e. a specification of the types
of objects, their attributes and the relations that are considered. At the lower level,
which is relevant in this particular case, we mean a concrete set of constants referring
to objects in the world (i.e. instances of the types declared at the higher level).



2 Demands on the Representation Language

We believe that, beyond the ability of handling uncertainty as well as a high
degree of complexity, a probabilistic logical language should fulfill a number of
additional requirements. In this paper, we take the perspective of probabilistic
knowledge representation in relational domains, i.e. we seek to model probability
distributions over relational data. A common way to view a probability distribu-
tion is to see it as the result of a generative stochastic process. Correspondingly,
the goal of probabilistic logical modelling is simply to obtain an accurate model
of the underlying process. In a relational setting, the process typically generates
objects with certain attributes as well as relations between objects according to
a set of rules. The representation language should allow us to concisely describe
these rules. In this context, the aforementioned criteria that the representation
language and its associated learning and inference mechanisms should ideally
fulfill are:

1. It should be possible for a domain expert to specify his/her knowledge in
a straightforward, declarative way. The addition of new, relevant knowledge
should lead to an improvement of the corresponding model (or at least leave
the model unchanged); and the failure to represent specific aspects of a do-
main should not render the model useless with respect to aspects untouched
by the omission.

2. It should be possible to unambiguously define a probability distribution over
arbitrary domains (of a certain type) by characterizing the corresponding
stochastic process. In particular, a model should be universally valid, speci-
fying arbitrarily general rules that may be independent of concrete objects.
The probability model should generalize to arbitrary domains and arbitrary
objects within them — much in the same way as universally quantified formu-
las in first-order logic that deal with objects of a certain type are applicable
to arbitrary objects of these particular types.

When working with Markov logic, issues related to the first point can be
observed — in the sense that additional, relevant formulas may negatively affect
certain queries in an unforeseeable fashion — but we found this to be a result of
a problem that is more closely related to the second point, for which we provide
a solution further on. In Chap. 3.2, we point out the cause of the problem, and
in Sect. 4, we analyze it in more detail, providing some examples. But first, we
lay the necessary groundwork by introducing Markov logic networks.

3 Markov Logic Networks

Markov logic networks (MLNs) are probabilistic logical models that combine the
semantics of probabilistic graphical models (namely Markov networks) with the
full power of first-order logic. An MLN can be seen as a set of constraints on
the set of possible worlds that is implicitly defined by a set of logical predicates
and a set of constants, as each logical atom that can be constructed using these



domain elements is viewed as a boolean variable. Specifically, the constraints are
formulas in first-order logic with attached numeric weights that quantify their
hardness.

Formally, a Markov logic network L is a set of pairs (Fi, wi), where Fi is a
formula in first-order logic and wi is a real number, the weight of formula Fi.
Together with a finite set of constants C, an MLN defines a Markov network
ML,C , the ground Markov network, as follows:

1. ML,C contains one binary node for each possible grounding of each predicate
appearing in the formulas of the Markov logic network L.

2. ML,C contains one feature for each possible grounding of each formula Fi

in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is wi.

The ground Markov network’s set of variables X is the set of ground atoms
that is implicitly defined by the predicates in the MLN and the set of constants
C. The Markov logic network specifies a probability distribution over the set of
possible worlds X , i.e. the set of possible assignments of truth values to each of
the ground atoms in X, as follows,

P (X = x) =
1
Z
· exp

(∑
i

wi · ni(x)

)

=
exp (

∑
i wi · ni(x))∑

x′∈X exp (
∑

i wi · ni(x′))
(1)

where the inner sums are over indices of MLN formulas and ni(x) is the number
of true groundings of the i-th formula in possible world x.

3.1 Inference

Since (1) provides the full-joint distribution over the variables in X, it can be used
to compute arbitrary conditional probabilities: The probability that a formula
F1 holds given that formula F2 does can be computed as

P (F1 | F2, L, C) = P (F1 | F2,ML,C) =
P (F1 ∧ F2 | ML,C)

P (F2 | ML,C)

=

∑
x∈XF1∩XF2

P (X = x)∑
x∈XF2

P (X = x)

=

∑
x∈XF1∩XF2

exp (
∑

i wi · ni(x))∑
x∈XF2

exp (
∑

i wi · ni(x))
=:

WF1∧F2

WF2

(2)

where XFi is the set of possible worlds in which Fi holds, and WF1∧F2 and WF2

are the sums of exponentiated sums of weights for possible worlds where F1∧F2

holds and where F2 holds respectively (this is a notation that we continue to use
further on).



3.2 Problems

Since a Markov logic network is not (necessarily) specific to concrete domain
elements but is instead designed to be applicable to arbitrary domains over the
classes of objects that it models, MLNs should satisfy the generality requirement
made above. However, with the current set of concepts in place, it is in many
cases not possible to learn the characteristics of the respective generating pro-
cesses from data, because parameter learning in MLNs is an ill-posed problem,
and the solution that is obtained is usually specific to the concrete set of objects
that were used for learning. An MLN obtained via parameter learning cannot,
without restrictions, be applied to a domain with a different number of objects
than the one it was learned with.

The weights in an MLN are usually learned using MAP estimation or, in the
absence of a prior distribution over parameter settings, maximum likelihood —
i.e. they are chosen in such a way that the probability of a training database,
which specifies the truth values of ground atoms for one particular domain, is
maximized. Yet clearly, there can be more than one generative stochastic process
that could have produced any given training database, and obviously, a process
cannot be uniquely identified through a single sample taken from it (such as a
training database). Unfortunately, the MLN language itself is not sufficient in
order to make the necessary distinctions prior to parameter learning, for it lacks
the ability to specify unconditional independencies in terms of structure; in many
cases, the MLN language therefore does not allow us to adequately characterize
the concrete process we are dealing with when the weights are yet unknown.

When applying an MLN whose weights were learned using a particular train-
ing database is applied to a different domain, it is assumed that the parameters
that adequately describe the concrete distribution observed in the training data
also fully characterize the process that generated it. This assumption, however,
is rarely justified. And whenever the assumption is indeed not justified, the MLN
models the desired probability distribution only for a single instantiation, namely
the training database. It is thus no more useful than the corresponding ground
Markov network, and the general, relational character of the model is essentially
lost.

4 Analyzing the Problem

Let us consider a simple example to explain why this is the case. We first intro-
duce the domain we will use for our experiments before turning to the problem
of domain shifts in detail.

4.1 The Example Domain

In our example domain, we consider the simplest of scenarios where there are two
types of objects and a relation connecting them. Suppose the concrete types of
objects are people and drinks, and that there exists a relation that captures the



consumption of drinks. Both people and drinks are characterized by a single at-
tribute that classifies them: Each person has a rank (either Student or Professor),
and each drink has a type (either Tea or Coffee). In an MLN, both attributes can
be represented using appropriate predicates, e.g. rank(person, rankvalue) and
drinkType(drink, typevalue).2 Now suppose there is a difference in the drinking
habits of students and professors; professors might, for example, consume more
drinks than students do and students might not drink any coffee at all. In gen-
eral, we can describe arbitrary drinking habits in a Markov logic network simply
by including the following conjunctions3

w1 consumed(p, d) ∧ rank(p, Student) ∧ drinkType(d, Tea)
w2 consumed(p, d) ∧ rank(p, Student) ∧ drinkType(d, Coffee)
w3 ¬consumed(p, d) ∧ rank(p, Student) ∧ drinkType(d, Tea)
w4 ¬consumed(p, d) ∧ rank(p, Student) ∧ drinkType(d, Coffee)
w5 consumed(p, d) ∧ rank(p, Professor) ∧ drinkType(d, Tea)
w6 consumed(p, d) ∧ rank(p, Professor) ∧ drinkType(d, Coffee)
w7 ¬consumed(p, d) ∧ rank(p, Professor) ∧ drinkType(d, Tea)
w8 ¬consumed(p, d) ∧ rank(p, Professor) ∧ drinkType(d, Coffee)

which exhaustively define the various cases for each possible consumption of a
drink by a person. The weight wi of each conjunction describes, when viewed
relative to the weights of the other conjunctions, how likely the respective case
really is.

4.2 Domain Shifts

The most important observation in this context is that if the only formulas the
MLN includes are the above conjunctions, then the marginal distributions of
people’s ranks and drink types are fully determined by the drinking habits. Peo-
ple are less likely to have a certain rank if people of that rank are less likely
to (not) consume drinks. Especially in the case of ranks, a perhaps more intu-
itive model would state that the marginal distribution of ranks (when we know
nothing about consumptions) is independent of potential consumptions and that
it is in fact rather the ranks that lead to a specific drinking behaviour. During
parameter learning, this is, however, a distinction that is not being made, since
we obtain any one of infinitely many weight vectors that accurately represent
the distribution present in the training data but which generalize to variable-size
domains in different ways.

For example, let us look at a single person, say P , and the drinks that P can
potentially have consumed. Let the set Xm contain the set of possible worlds for
2 Note that when modelling the attributes in this way, it is necessary to include con-

straints that define the attribute values as mutually exclusive and exhaustive. Hence-
forth, we silently assume that, for each attribute, the corresponding constraints are
included in each model.

3 We adopted the convention of using lower-case letters as variables and words be-
ginning with upper-case letters as constants. Any free variables in the formulas are
(implicitly) universally quantified.



a domain with only one person P and m drinks. The probability of P being a
student is, following (2), given by

pm = PXm(rank(P,Student))

=
f(m,w1, w2, w3, w4)

f(m,w1, w2, w3, w4) + f(m,w5, w6, w7, w8)
(3)

with

f(m, x1, x2, x3, x4) (4)

=

mX
t=0

tX
ct=0

m−tX
cc=0

 
m

t

! 
t

ct

! 
m − t

cc

!
exp(x1ct + x2cc + x3(t − ct) + x4(m − t − cc))

where t is the number of teas, ct is the number of teas that are consumed and
cc is the number of coffees that are consumed. If there is an asymmetry in the
impact of the weights for students and professors, then pm is not independent
of m. For example, if w2 = −100 and all other weights are 0 (i.e. students
hardly ever drink coffee but all other consumption events are equally likely),
then p1 ≈ 4−1

8−1 ≈ 0.4286, p2 ≈ 16−7
32−7 ≈ 0.3600 and p3 ≈ 64−37

128−37 ≈ 0.2967. The
probability that any given person is a student thus decreases as the number of
drinks in the domain increases, which was to be expected, because the worlds
in which P is a student and consumes even one cup of coffee are (virtually)
impossible, and the fraction of such worlds increases with the number of drinks.
So depending on the number of drinks, the weight vector apparently determines
a different marginal for rank(p, Student). However, the generating process might
dictate a more intuitive view, where the marginal probability of a certain rank
is independent of the number of drinks; it might, for example, state that the
marginal probability of a person being a student is 1

3 .
Let us consider ways in which we might address the problem. A perhaps

straightforward formula to add to the MLN would be a unit clause such as
rank(p, Student), which can obviously be used to influence the probabilities of
worlds in which there are students and hence the marginal probability of the
rank Student. In fact, we could argue that a unit clause is the only candidate
formula for such a correction, because unit clauses are the only formulas that
affect only the marginal distribution we are interested in and nothing else. Unfor-
tunately, the impact of the unit clause’s weight does not depend on the number
of drinks, so a correction for arbitrary domains is not possible. This is evident
from the fact that the sum of exponentiated sums of weights for worlds where
P is a student would only be scaled by a factor of exp(w) if w was the weight
of the newly introduced formula rank(p, Student). Therefore, we cannot obtain
a size-invariant marginal distribution for P ’s rank when using an asymmetric
configuration of weights of the eight conjunctions, because the unit clause can
only have the desired effect for a fixed number of objects; and unfortunately, the
weight configurations obtained via standard parameter learning are not ensured
to be symmetric.4 The inclusion of the unit clause can, however, result in pre-
4 By symmetric, we here mean a symmetric impact of the weights, such that the

resulting distribution is a uniform distribution.



cisely the correction that we want for a fixed number of drinks. Yet obviously,
our generality requirement is not met.

Whenever we learn the parameters of an MLN that contains at least one
proper relation connecting objects of different types, we will usually obtain very
accurate weights for the concrete set of objects found in the training database
(provided that our formulas are sufficiently expressive), yet the weights will not
generalize to other domains if we impose the requirement that certain marginals
remain invariant. In particular, if a relation exists, then the unit clause’s weight
on its own gives no indication of the probability of the corresponding attribute,
for its purpose is primarily to counterbalance the effects of the relation — and
these effects depend on the number of tuples that can be constructed.

To further illustrate this problem, let us compare a Markov logic network,
which we can instantiate on demand, to several Bayesian networks that we can
specifically create for each concrete domain (set of objects) according to a well-
defined schema (as we might describe it in, for example, a Bayesian logic program
[6]). As MLN formulas, we simply use the eight conjunctions describing consump-
tion behaviour listed above as well as unit clauses for rank and drinkType, plus
a rule that states that a drink cannot be consumed by more than one person.
To learn the MLN’s parameters, i.e. the formulas’ weights, we use a training
database containing one student (who drank one cup of tea) and two professors
(where the first drank one cup of tea and one cup of coffee and the other drank
just one cup of coffee). Let L be the resulting Markov logic network — obtained
via maximum likelihood parameter learning.

Let us now perform inferences in several ground Markov networks based
on L. We compare results obtained for several domains: By Dn,m we denote a
domain where the set of people contains n elements, {P1 = P, . . . , Pn}, and the
set of drinks contains m elements, {D1, . . . , Dm}.5 In particular, we will look at
D1,1 and D1,3; Figure 2 shows the corresponding Bayesian networks, in which
we assume that the marginal distributions of both ranks and drink types are to
remain fixed.

Comparing the results in Table 1, we gather that the probabilities computed
using the Markov logic network are clearly dependent on the number of ob-
jects (as expected). Only for domain D3,4, which contains precisely the number
of objects found in the training database, does the MLN compute the desired
probabilities. There is, unfortunately, no formula that we could have added to
the MLN in order to encode the invariants of the generative stochastic process
that we imagine to have created the training database.

4.3 Domain-specific Modifications

In fact, the set of formulas included above would in theory already be sufficient
to represent precisely the size-invariant probability distribution that we want,

5 Note that we here assume a typed predicate logic, where the set of constants is not
a mere set but rather an ordered set of sets containing one set of objects for each
class.



Fig. 2. Bayesian Networks BD1,1 (left) and BD1,3 (right). The conditional probability
tables in BD1,3 are the same as in BD1,1 .

ML,D1,1 BD1,1 ML,D1,3 BD1,3 ML,D3,4
P (drinkT(D1, Tea)) 68.3% 50.0% 68.3% 50.0% 50.0%
P (rank(P, Stud)) 29.3% 33.3% 32.0% 33.3% 33.3%
P (rank(P, Stud) | cons(P, D1)) 30.1% 25.0% 32.7% 25.0% 25.0%
P (rank(P, Stud) | ¬cons(P, D1)) 29.0% 37.5% 31.6% 37.5% 37.5%
P (rank(P, Stud) | cons(P, D1) ∧ drinkT(D1, Tea)) 45.4% 50.0% 48.5% 50.0% 50.0%
P (drinkT(D1, Tea) | cons(P, D1) ∧ rank(P, Prof )) 51.8% 33.3% 51.8% 33.3% 33.3%
P (cons(P, D1) | drinkT(D1, Tea) ∧ rank(P, Prof )) 25.0% 25.0% 25.0% 25.0% 25.0%
P (rank(P, Stud) | cons(P, D1) ∧ cons(P, D2)) 33.5% 18.2% 18.2%

Table 1. Inference results: ground Markov networks and Bayesian networks compared.

since all the formulas are conjunctions as they would appear in an MLN trans-
lated from a model obtained via knowledge-based model construction (KBMC)
[8]. (Such an MLN contains a conjunction of literals for each entry of each con-
ditional probability table in the KBMC model — the conjunction capturing the
parent-child configuration that corresponds to the entry and the weight being
the logarithm of the probability value.) We still fail to find the set of weights that
will generalize in the intended way, because, as mentioned previously, parameter
learning is an ill-posed problem: There are infinitely many weight vectors that
represent the same probability distribution given a specific domain/set of ob-
jects, yet only a subset of these weight vectors generalizes in the intended way
to domains of variable size.

Notice that in an MLN derived from a KBMC model, the distributions over
attribute values for which unit clauses exist would be uniform distributions if
the unit clauses themselves were removed from the MLN; therefore, there is no
dependence on domain size. Starting with a weight vector obtained via conversion
from a KBMC model, we can, however, construct infinitely many weight vectors
such that the probability distribution remains unchanged for a concrete number
of objects but changes to varying degrees as we change the number of objects
with which the model is instantiated. The idea behind the construction is that if
the weight of any unit clause was to be modified, the weights of other formulas
within which the unit clause appears could be adjusted to compensate for the
modification of the unit clause in such a way that the probability distribution
remains unchanged for a specific number of objects. Yet clearly, any modification
of a unit clause’s weight prevents the remaining formulas from generating a
uniform distribution for an arbitrary number of objects. Hence size-dependence
results.



In an MLN L derived from a KBMC model, the set of formulas can be
partitioned into classes of mutually exclusive and exhaustive formulas, as for
each set of conjunctions representing a certain conditional distribution, there is
exactly one true grounding among all the groundings of the conjunctions with
the same variable bindings. Let C be the set of classes minus the classes that
contain only unit clauses. Now if the weight of a unit clause Fj (an atom that
makes a statement about an attribute of an object of some type T ) was to be
changed by adding an arbitrary ∆w in a modified MLN L′, we could choose an
arbitrary non-empty subset S ⊆ {Ci ∈ C | contains(Ci, Fj)} of the classes that
contain formulas that contain Fj and adjust certain formula weights to cancel
out the previous change. In particular, for a concrete domain D, we apply to
each (Fi, wi) ∈ Ck where Fi contains Fj and Ck ∈ S the following modification,

w′
i = wi −∆w · 1

nCi,D · 1
|DT |

· 1
|S|

(5)

where nCi,D is the number of groundings of each of the conjunctions in class Ci

for domain D and DT is the set of domain elements of type T in D.
We can easily show that the probability of any possible world x defined over

the domain D remains unchanged by our modification,

PML′,D (x) =
1

Z′ · exp

 X
i

w′
i · ni(x)

!

=
1

Z′ · exp

 X
i

wi · ni(x) + ∆w · nj(x)−

X
Ci∈S

∆w · 1

nCi,D · 1
|DT |

· 1

|S| ·
nCi,D

|DT | · nj(x)

1A
=

1

Z
· exp

 X
i

wi · ni(x)

!
= PML,D (x) (6)

as for each object O of the nj(x) objects for which the unit clause Fj is true,
there are nCi,D

|DT | combinations for grounding all the variables appearing in each
of the formulas in Ci except the one variable we assume to be bound to O, and
for each combination, there is exactly one true grounding of a formula with a
modified weight.

Therefore, provided that we instantiate ground Markov networks only for
domain D, L′ thus yields exactly the same probability distribution as L. So
when learning parameters using a training database over domain D, L and L′

are both optimal solutions, since the way in which the model should generalize
to other domains is not considered.

5 Extending Markov Logic

The problem described above essentially arises only because the learning process
has no knowledge of fixed marginal distributions or unconditionally independent



attributes. While we can modify the learning process to learn weights that are
equivalent to the weights we would obtain via a translation from a KBMC model
(simply by precomputing the probability distributions of attributes that are sub-
ject to a fixed marginal distribution from the training database, using the loga-
rithms of the probabilities as the initial weights of the corresponding unit clauses
during learning and ensuring that the weights remain constant throughout the
optimization process), this approach requires the MLN to contain only conjunc-
tions (or equivalent formulas) that are fully capable of describing an appropriate
factorization of the full-joint, which is a severe limitation.

We now propose an extension of the MLN language that allows us to ensure
fixed marginal distributions regardless of the set of formulas. It involves the spec-
ification of hard constraints on individual formula probabilities. In our example
on the consumption of drinks, we might, for example, specify a constraint such
as P (rank(p, Student)) = 0.3. When instantiating a ground Markov network,
the probability information can be used to dynamically modify the weight of
the corresponding unit clause F := rank(p, Student). If the probability that is
indicated by the model is originally q and the constraint requires it to be q′,
then with WF (see (2)) as the sum of exponentiated sums of weights for possible
worlds in which the formula holds (for an arbitrary binding of the variable p),
W¬F as the sum for the remaining worlds and q = WF

WF +W¬F
and q′ = WF ·λ

WF ·λ+W¬F
,

we obtain

λ =
q′

q
· 1− q

1− q′
(7)

i.e. we need to add log(λ) to the formula’s weight in order to obtain the desired
marginal probability.

If the underlying process dictates more than one such constraint on the
marginal distributions of certain attributes, we can proceed in a similar fash-
ion. However, specifying just a probability constraint for each corresponding
unit clause may not suffice, because the a priori independence of the attributes
may need to be modelled explicitly. For example, if the marginal distribution
over drink types, too, was to be fixed in all domains, adding a constraint such
as P (drinkType(d, Tea)) = 0.5 would not render ranks and drink types indepen-
dent. Therefore, if independence is to be modelled, we instead propose to add to
the MLN all conjunctions of value statements for all independent attributes6 in
order to indirectly represent the independence by including the corresponding
part of the full-joint. In our example, we would add the constraints

P (rank(p, Student) ∧ drinkType(d, Tea)) = q1 = qS · qT

P (rank(p, Student) ∧ drinkType(d, Coffee)) = q2 = qS · qC

P (rank(p, Professor) ∧ drinkType(d, Tea)) = q3 = qP · qT

P (rank(p, Professor) ∧ drinkType(d, Coffee)) = q4 = qP · qC

where
∑

i qi = 1.0 (in our above example, qS = 1
3 , qP = 2

3 , qT = qC = 0.5).7
Naturally, the actual inclusion of these constraints could be handled by the
6 For conjunctions not already present, we initially assume a zero weight.
7 One of the four constraints is redundant and may be left out.



learner, and the user would need to specify only which marginal distributions
are to remain fixed. All the necessary probabilities can then automatically be
computed from the training database.

In general, if m attributes are to have a fixed marginal distribution and
the domain of the j-th attribute contains dj elements, then there are n :=∏m

j=1 dj conjunctions for which probability constraints must be specified (we
denote these conjunctions by Ci with i ∈ {1, . . . , n}). Because these conjunctions
are atomic (sub-)events (for a particular binding of the variables), they partition
the set of possible worlds XD for a concrete domain D, for which the MLN is
instantiated, into n corresponding parts, i.e. XD =

⊎n
i=1(XD)Ci . Let the sum

of exponentiated sums of weights of possible worlds in the i-th partition be
Wi := WCi

; the normalizing constant in (1) is thus ZD =
∑n

i=1 Wi. If q is the
vector of conjunction probabilities, then we obtain the scaling factors λi with
which the weights of the n conjunctions need to be corrected by solving the
following linear equation system:

Wkλk∑n
i=1 Wiλi

= qk for k ∈ {1, . . . , n}

⇒ (Wk − qkWk)λk −
n∑

i=1,i 6=k

qkWiλi = 0 for k ∈ {1, . . . , n} (8)

If the probabilities that are specified in vector q are not contradictory (which the
learning process can guarantee), then the solution to the above equation system
is unique and well-defined, and we obtain the desired marginals by adding log(λi)
to the weight of the i-th conjunction Ci.

Since the part of the joint probability distribution that consists exclusively of
marginals is fully determined by the above calculations, any existing MLN formu-
las that contain only atoms that are subject to constraints on marginals cannot
provide additional information as far as the probability distribution is concerned.
Therefore, they can be removed prior to the above calculations, and the formulas
we explicitly require (i.e. the conjunctions Ci), along with their weights (log(λi)),
can be added automatically when instantiating a ground Markov network.

All in all, we can apparently model arbitrary marginal distributions and
independencies. Together with a set of conditional distributions, we can thus
describe a wide range of probability distributions in relational domains.

In general, we can show that probabilities conditioned on all marginals are
unaffected by the dynamic weight modifications described above. Let R be the
set of ground atoms for which the marginal distribution is explicitly modelled
in an extension to a Markov logic network L, and let L̄ be the Markov logic
network we obtain from L by applying the constraints for a concrete domain/set
of constants C, i.e. by adding the formulas FR=r with weights wr for r ∈ B|R|.
We thus need to show that P (F1 | F2, R = r, ML̄,C) = P (F1 | F2, R = r, ML,C):

P (F1 | F2, R = r, ML̄,C) =
P (F1 ∧ F2 ∧R = r | ML̄,C)

P (F2 ∧R = r | ML̄,C)



=

∑
x∈XF1∩XF2∩XR=r

exp (
∑

i wi · ni(x) + wr)∑
x∈XF2∩XR=r

exp (
∑

i wi · ni(x) + wr)

=
WF1∧F2∧R=r · expwr

WF2∧R=r · expwr
= P (F1 | F2, R = r, ML,C) (9)

Returning to our example from Chap. 4.2, we now apply dynamic modifi-
cations (8) to the MLN that was learned, enforcing a fixed marginal on rank
and drinkType by introducing the corresponding constraints but leaving the
MLN unchanged otherwise. Looking at Table 2, we observe that the genera-
tive stochastic process which we assumed can now clearly be described in the
intended way.

ML̄,D1,1
BD1,1 ML̄,D1,3

BD1,3

P (drinkT(D1, Tea)) 50.0% 50.0% 50.0% 50.0%
P (rank(P, Stud)) 33.3% 33.3% 33.3% 33.3%
P (rank(P, Stud) | cons(P, D1)) 25.0% 25.0% 25.0% 25.0%
P (rank(P, Stud) | ¬cons(P, D1)) 37.5% 37.5% 37.5% 37.5%
P (rank(P, Stud) | cons(P, D1) ∧ drinkT(D1, Tea)) 50.0% 50.0% 50.0% 50.0%
P (drinkT(D1, Tea) | cons(P, D1) ∧ rank(P, Prof )) 33.3% 33.3% 33.3% 33.3%
P (cons(P, D1) | drinkT(D1, Tea) ∧ rank(P, Prof )) 25.0% 25.0% 25.0% 25.0%
P (rank(P, Stud) | cons(P, D1) ∧ cons(P, D2)) 18.2% 18.2%

Table 2. Inference results: ground Markov networks (with dynamic modifications ap-
plied) and Bayesian networks compared.

6 Conclusion

We have shown that Markov logic networks that are learned using standard pa-
rameter learning may require additional language constructs if they are to be
applicable to arbitrary domains — and not just the single domain that was used
for learning — whenever the attributes of related objects are a priori not to
be affected by the probability with which they are potentially related to other
objects, i.e. whenever there are constraints on marginal probabilities of attribute
values. This is in fact a quite common case, for the processes that we intuitively
imagine generate worlds sequentially, i.e. there is a certain order in which objects
and relations are created (which could be akin to a causal structure). If objects
and the attributes that belong to them are created simultaneously, then there is
usually some attribute whose values are subject to a fixed marginal. A typical
example of such a case is an attribute such as a person’s gender or rank in our
above example. Our extension to the MLN language solves this problem by in-
troducing hard constraints on formula probabilities that are used to dynamically
modify the weights of the respective formulas whenever a model is instantiated
for a concrete domain.

The concrete constraints that are necessary to handle domain shifts need
not be specified by a user but can instead be learned from a training database,
given that information on unconditional independencies is provided. If we learn
with more than one training database, then we can even attempt to deduce these



independencies and alleviate the user from specifying any additional information
at all.

Nevertheless, there are further problems that may still prevent MLNs from
being practically applicable if the goal is to model probability distributions in
relational domains. The use of exact parameter learning algorithms based on
log-likelihood is intractable, and we found the approximate learning methods
involving pseudo-likelihood to be too inexact to be acceptable — at least for some
domains. Solving the problems that remain in this regard will be the subject of
our future investigations.
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