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Introduction

• Inductive Synthesis of Recursive Programs[1, 4, 5]

- challenging subfield of machine learning

- still little researched niche

•Automated Program Construction

- from incomplete specifications (I/O examples)

[A] → A

〉[A, B] → B

[A, B, C] → C

Last([X]) → X

Last([X|Xs]) → Last([Xs])

•Potential Applications

- end-user programming

- assist professional programmers (Systems Engineering)

- automatically invent new and efficient algorithms

The Systems

• Adate [6]
(Automatic Design of Algorithms Through Evolution)

- utilising evolutionary computation

- induces functional programs in a subset of ML

- user provided initial program is evolved

• Atre [2]
(Apprendimento di Teorie Ricorsive da Esempi)

- search space are definite clauses

- general-to-specific parallel beam search

- specialized to learning multiple recursive concepts

• Dialogs-II [3]
(Dialogue-based Inductive and Abductive LOGic program Synthesiser)

- inductive and abductive

- schema-guided

- queries interactively for evidence

Problem Classes
I. Single recursive call, no predicate invention:

solvable with a single recursive call in the body of the
predicate definition; no predicate or variable invention is
required.

II. Single recursive call with predicate invention:
at least the invention of an auxiliary predicate is required.

III. + IV. Multiple recursive call:
at least a second recursive call is necessary (either of an-
other recursive predicate or of the target predicate itself)

V. + III. Miscellaneous:
emphasises the individual strengths of a certain system.

Classes III. and VI. were combined, since Dialogs-II is not capable of multiple recursive calls and an Atre specification for such a problem would result

in an extensive enumeration of input/output pairs.

Conclusion

• combine Dialogs-II’s search bias with Adate’s unrestricted search

space

• exploit expressional power of functional languages

• adopt Atre’s k-beam search strategy

→ learn mutually dependent recursive target functions

• our system Igor [5] formalises functional program synthesis in

the term-rewriting framework

→ functional programs as constructor term rewriting systems

Description of Problems

(1.) Single Recursive Call without Predicate Invention

evenpos(X,Y) holds iff list Y contains all elements of list X at an even position in
unchanged order.

insert(X,Y,Z) holds iff X is a list with its elements in a not decreasing order, and Z is
X with Y inserted on the right place.

inslast(X,Y,Z) holds iff Z is the list X with Y inserted at the end.

last(X,Y) holds iff Y is the last element of the list X .

length(X,Y) holds iff Y is the length of the list X .

member(X,Y) holds iff X is a list containing the element Y .

switch(X,Y) holds iff list Y can be obtained from list X were all elements on an odd
position changed place with their right neighbour.

unpack(X,Y) holds iff Y is a list of lists, each containing one element of X in unchanged
order.

(2.) Single Recursive Call with Predicate Invention

i-sort(X,Y) holds iff the list Y is a permutation of list X with elements in a non de-
creasing order.

multlast(X,Y) holds iff the list Y contains nothing but the last element of list X as
many times as the number of elements in X .

reverse(X,Y) holds iff the list Y is the reverse of list X .

shift(X,Y) holds iff list Y could be derived from list X by shifting the first element to
the end.

swap(X,Y) holds iff list Y could be derived from list X by swapping the first and the
last element.

(3.) Multiple Recursive Call with(out) Predicate Invention

lasts(X,Y) holds iff X is a list of lists, and Y contains the last elements of each list in
X in the correct order.

flatten(X,Y) holds iff Y is the flattened version of the list of lists X .

(4.) Miscellaneous Problems

mergelists(X,Y,Z) holds iff the list Z could be derived from the lists X and Y such that
Z = [x1, y1, x2, y2, . . .] where each xn and yn is the nth of the list X and Y , respectively.

odd(X)/even(X) holds iff X is an odd, respectively even number, and each predicate
is defined in terms of zero(X) and the other.

Results of the Test Setting

(1.) (2.) (3.) (4.)
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Adate 2.0 1.5 1.2 0.2 2.7 2.8 1.6 16 78 70 232 15 4.3 110 822 — 80
Atre 91.6 × 17.9 6.4 × 1983 156⊥ — — — — — — — — 0.05 —
Dialogs-II 0.03⊥ 0.05 0.04 0.03⊥ 0.03 0.19 × 0.06 0.07 0.09⊥ 0.15 0.11 0.13⊥ × × — —

all times in seconds (— not tested × failed ⊥ wrong)
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