
Inductive Synthesis of Recursive Functional Programs
A Comparison of Three Systems

Martin Hofmann, Andreas Hirschberger, Emanuel Kitzelmannn, and Ute Schmid
Faculty of Information Systems and Applied Computer Science University of Bamberg

{martin.hofmann, andreas.hirschberger}@stud.uni-bamberg.de, {emanuel.kitzelmann, ute.schmid}@wiai.uni-bamberg.de

Introduction

• Inductive Synthesis of Recursive Programs[1, 4, 5]

- challenging subfield of machine learning

- still little researched niche

•Automated Program Construction

- from incomplete specifications (I/O examples)

[A] → A

〉[A, B] → B

[A, B, C] → C

Last([X]) → X

Last([X|Xs]) → Last([Xs])

•Potential Applications

- end-user programming

- assist professional programmers (Systems Engineering)

- automatically invent new and efficient algorithms

The Systems

• Adate [6]
(Automatic Design of Algorithms Through Evolution)

- utilising evolutionary computation

- induces functional programs in a subset of ML

- user provided initial program is evolved

• Atre [2]
(Apprendimento di Teorie Ricorsive da Esempi)

- search space are definite clauses

- general-to-specific parallel beam search

- specialized to learning multiple recursive concepts

• Dialogs-II [3]
(Dialogue-based Inductive and Abductive LOGic program Synthesiser)

- inductive and abductive

- schema-guided

- queries interactively for evidence

Problem Classes
I. Single recursive call, no predicate invention:

solvable with a single recursive call in the body of the
predicate definition; no predicate or variable invention is
required.

II. Single recursive call with predicate invention:
at least the invention of an auxiliary predicate is required.

III. + IV. Multiple recursive call:
at least a second recursive call is necessary (either of an-
other recursive predicate or of the target predicate itself)

V. + III. Miscellaneous:
emphasises the individual strengths of a certain system.

Classes III. and VI. were combined, since Dialogs-II is not capable of multiple recursive calls and an Atre specification for such a problem would result

in an extensive enumeration of input/output pairs.

Conclusion

• combine Dialogs-II’s search bias with Adate’s unrestricted search

space

• exploit expressional power of functional languages

• adopt Atre’s k-beam search strategy

→ learn mutually dependent recursive target functions

• our system Igor [5] formalises functional program synthesis in

the term-rewriting framework

→ functional programs as constructor term rewriting systems

Description of Problems

(1.) Single Recursive Call without Predicate Invention

evenpos(X,Y) holds iff list Y contains all elements of list X at an even position in
unchanged order.

insert(X,Y,Z) holds iff X is a list with its elements in a not decreasing order, and Z is
X with Y inserted on the right place.

inslast(X,Y,Z) holds iff Z is the list X with Y inserted at the end.

last(X,Y) holds iff Y is the last element of the list X .

length(X,Y) holds iff Y is the length of the list X .

member(X,Y) holds iff X is a list containing the element Y .

switch(X,Y) holds iff list Y can be obtained from list X were all elements on an odd
position changed place with their right neighbour.

unpack(X,Y) holds iff Y is a list of lists, each containing one element of X in unchanged
order.

(2.) Single Recursive Call with Predicate Invention

i-sort(X,Y) holds iff the list Y is a permutation of list X with elements in a non de-
creasing order.

multlast(X,Y) holds iff the list Y contains nothing but the last element of list X as
many times as the number of elements in X .

reverse(X,Y) holds iff the list Y is the reverse of list X .

shift(X,Y) holds iff list Y could be derived from list X by shifting the first element to
the end.

swap(X,Y) holds iff list Y could be derived from list X by swapping the first and the
last element.

(3.) Multiple Recursive Call with(out) Predicate Invention

lasts(X,Y) holds iff X is a list of lists, and Y contains the last elements of each list in
X in the correct order.

flatten(X,Y) holds iff Y is the flattened version of the list of lists X .

(4.) Miscellaneous Problems

mergelists(X,Y,Z) holds iff the list Z could be derived from the lists X and Y such that
Z = [x1, y1, x2, y2, . . .] where each xn and yn is the nth of the list X and Y , respectively.

odd(X)/even(X) holds iff X is an odd, respectively even number, and each predicate
is defined in terms of zero(X) and the other.

Results of the Test Setting

(1.) (2.) (3.) (4.)

m
em

be
r/

2

u
n

pa
ck

/2

le
n

gt
h/

2

la
st

/2

in
sl

as
t/

3

sw
it

ch
/2

ev
en

po
s/

2

in
se

rt
/3

re
ve

rs
e/

2

i-
so

rt
/2

sw
ap

/2

sh
if

t/
2

m
u

lt
la

st
/2

fl
at

te
n

/2

la
st

s/
2

od
d/

1
ev

en
/1

m
er

ge
li

st
s/

3

Adate 2.0 1.5 1.2 0.2 2.7 2.8 1.6 16 78 70 232 15 4.3 110 822 — 80
Atre 91.6 × 17.9 6.4 × 1983 156⊥ — — — — — — — — 0.05 —
Dialogs-II 0.03⊥ 0.05 0.04 0.03⊥ 0.03 0.19 × 0.06 0.07 0.09⊥ 0.15 0.11 0.13⊥ × × — —

all times in seconds (— not tested × failed ⊥ wrong)

References

[1] A. W. Biermann, G. Guiho, and Y. Kodratoff, editors. Automatic Program Construction
Techniques. Macmillan, New York, 1984.

[2] M. Berardi D. Malerba, A. Varalro. Learning recursive theories with the separate-and-
parallel conquer strategy. In Proceedings of the Workshop on Advances in Inductive
Rule Learning in conjunction with ECML/PKDD, pages 179–193, 2004.

[3] P. Flener. Inductive logic program synthesis with Dialogs. In S. Muggleton, editor,
Proceedings of the 6th International Workshop on Inductive Logic Programming,
pages 28–51. Stockholm University, Royal Institute of Technology, 1996.

[4] Pierre Flener and Serap Yilmaz. Inductive synthesis of recursive logic programs: Achieve-
ments and prospects. J. Log. Program., 41(2-3):141–195, 1999.

[5] E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs: An explanation
based generalization approach. Journal of Machine Learning Research, 7(Feb):429–454,
2006.

[6] J. R. Olsson. Inductive functional programming using incremental program transforma-
tion. Artificial Intelligence, 74(1):55–83, 1995.


