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Abstract. We present three small universal Turing machines that hasmatgs and 7 symbols,
4 states and 5 symbols, and 2 states and 13 symbols, regheciiiese machines are semi-weakly
universal which means that on one side of the input they haviafaitely repeated word, and on
the other side there is the usual infinitely repeated blamibgy}. This work can be regarded as a
continuation of early work by Watanabe on semi-weak machi@me of our machines has only 17
transition rules, making it the smallest known semi-weakliversal Turing machine. Interestingly,
two of our machines are symmetric with Watanabe’s 7-stadeBasymbol, and 5-state and 4-symbol
machines, even though we use a different simulation tecieniq

1. Introduction

Shannon [27] was the first to discuss the problem of findingsthallest possible universal Turing ma-
chine, where size is the number of states and symbols. FremadHy sixties, Minsky and Watanabe
had a running competition to see who could come up with thdlestanachines [11, 12, 28, 29, 30].
In 1962, Minsky [12] found a small 7-state, 4-symbol uniatrsuring machine. Minsky’s machine
worked by simulating 2-tag systems, which where shown torieetsal by Cocke and Minsky [3].
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Figure 1. State-symbol plot of the smallest universal Tyirimachines to date. Our new semi-weak machines are
shown as solid diamonds and Watanabe’s are shown as hobmoaodids. Simulation time overheads are specified.
The non-universal curve shows standard machines that awerkio have a decidable halting problem.

Rogozhin [25] extended Minsky’s technique of 2-tag simolaiand found small machines with a num-
ber of state-symbol pairs. Subsequently, some of Rogazhmivdchines were reduced in size or im-
proved by Robinson [24], Rogozhin [26], Kudlek and RogoZfij) Baiocchi [2]. Recently, Neary and
Woods [13, 14, 15, 18] have found small machines that sirawdabther variant of tag systems called
bi-tag systems. All of the smallest known universal Turingamines, that obey the standard definition
(deterministic, one tape, one head), simulate either itdg-tag systems. They are plotted as circles
and triangles in Figure 1.

Interestingly, Watanabe [28, 29, 30] managed to find smatihimes (some were smaller than Min-
sky’s) by generalising the standard Turing machine dedinitiinstead of having an infinitely repeated
blank symbol to the left and right of the input, Watanabe'shiaes have an infinitely repeated word
to one side of the input and an infinitely repeated blank syriéhe other side. We call such ma-
chines semi-weak. Watanabe found the 7-state, 3-symbai5atate, 4-symbol semi-weakly universal
machines that are plotted as hollow diamonds in Figure 1.

A further generalisation are weak machines where we allowfimitely repeated word to the left
of the input and another to the right. Cook [4] and Wolfram][8iund very small weakly universal
machines (Cook’s paper includes a machine by Eppstein). &/e mproved [19] upon all of these
machines to give the weakly universal machines illustratedquares in Figure 1. These weak machines
simulate the cellular automaton Rule 110. Cook [4] provée iroof is also sketched in Wolfram [31])
that Rule 110 is universal by showing that it simulates cytdg systems, which in turn simulate 2-tag
systems.
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The non-universal curve in Figure 1 shows those standarth@unachines that are known to have
a decidable halting problem. The 1-symbol case is trivialj the 1-state case was shown by Shan-
non [27] and, via another method, Hermann [5]. Pavlotsk&@ §nd, via another method, Kudlek [6],
proved there are no universal 2-state, 2-symbol machinlesterone transition rule is reserved for halt-
ing. Pavlotskaya [21] proved there are no universal 3-sagymbol machines, and also claimed [20],
without giving a proof, that there are no universal 2-st&8eymbol machines. Both cases assume that
one transition rule is reserved for halting. It is not difficto generalise these results to (semi-)weak
machines with 1 state or 1 symbol. Lower bounds for semi-weakhines, with a one-way infinite
tape, were proven for a generalised Turing machine modeterdneoupled finite automaton fills out the
“blank” region of the tape as required. Margenstern and®skdya [9] have shown that all such ma-
chines with four instructions or less (in the Turing machpnegram), have a decidable halting problem,
and that five instructions are sufficient for universalitheir work also provides a proof of the 2-state,
2-symbol case, regardless of halting (but for one-way itdimachines). It is currently unknown if all
lower bounds in Figure 1 generalise to (semi-)weak machines

It is also known from the work of Margenstern [8], Michel [1@hd Baiocchi [1] that the region be-
tween the non-universal curve and the smallest standavdnsal machines contains (standard) machines
that simulate th&x + 1 problem and other related problems. Kudlek [6] has givenstate, 4-symbol
(standard) machine that accepts a context-sensitive daagul hese results, along with the weakly and
semi-weakly universal machines, lend weight to the idetfthding non-universal lower bounds in this
region is difficult. For results on other generalisationghaf Turing machine model see [9, 23, 32], for
example.

Figure 1 shows our three new semi-weak machines as solidodidsn These machines simulate
cyclic tag systems, which were used [4] to show that Rule $lfhiversal. It is interesting to note that
two of our machines are symmetric with those of Watanabeitdethe fact that we use a different sim-
ulation technique. Our 4-state, 5-symbol machine has onlydnsition rules, one less than Watanabe’s
5-state, 4-symbol machirfeThe time overhead for our machines is polynomial. More pedyj if M is
a single tape deterministic Turing machine that runs in tinteen M is simulated by each of our semi-
weak machines in timé)(t4 1og2 t). See [14, 16, 17, 33, 32] for further results and discussitated to
the time complexity of small universal Turing machines.

This work is an extended version of [34] and contains newltgsu

1.1. Notation

All of the Turing machines considered in this paper are deit@stic and have one tape. Our 3-state,
7-symbol universal Turing machine is denofégl;, our 4-state, 5-symbol machine is denotégs, and
our 2-state, 13-symbol machine is denotégd;;. We let(x) denote the encoding af. We writec; F ¢
when configuratiore, follows from¢; in 1 computation step, and ! ¢, whenc, follows frome; in ¢
steps.

!Note that there is a machine with 17 transistion rules by®sihya [22], that can also be considered as semi-weakbgrsal
(it uses “periodic extensions”), but this has 4-states asgriibols.
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2. Cyclic tag systems
We begin by defining cyclic tag systems [4].

Definition 2.1. (cyclic tag system)
A cyclic tag systenC' = «ayg, o, . . ., a1 IS @ list of binary wordsy,,, € {0,1}* called appendants.

A configurationof a cyclic tag system consists of (i)raarkerm € {0,1,...,p — 1} that points to a
single appendant,,, in C, and (ii) adatawordw = zgz;...z;-1 € {0,1}*. Intuitively the listC' is

a program with the marker pointing at instructiof,. At the initial configuration the marker points at
appendanty andw is the binary input word.

Definition 2.2. (computation step of a cyclic tag system)
A computation step is deterministic and acts on a configumdti one of two ways:

e If 29 = 0 thenx, is deleted and the marker moves to appendapt, 1) mod p-

o If xg = 1 thenx is deleted, the wordy,, is appended onto the right end ©f and the marker
moves to appendant,, ;1) mod p-

A cyclic tag system completes its computation if (i) the dated is the empty word (halting), or (ii)
it enters a repeating sequence of configurations. The cartplaeasures of time and space are defined
in the obvious way.

Example 2.1. (cyclic tag system computatiohpt C' = 00,1010, 10 be a cyclic tag system with input
word 0010010. Below we give the first four steps of the computation. In eeahfigurationC' is given
on the left with the marked appendant highlighted in bold.fon

00,1010,10 0010010 F 00,1010,10 010010
F 00,1010,10 10010 - 00,1010,10 001010
- 00,1010,10 01010 -

Cyclic tag systems were proved universal by their abilitgitaulate 2-tag systems [4]. Recently we
have shown that cyclic tag systems simulate Turing machimpslynomial time:

Theorem 2.1. ([16])
Let M be a single-tape deterministic Turing machine that congontémet. There is a cyclic tag system
Cy that simulates the computation df in time O(t3 log t).

Note that in order to calculate this upper bound we substispace bounds for time bounds whenever
possible in the analysis. The time bound is improve@{¢’ log ¢) in [14].

3. 3-state, 7-symbol machine

Us 7 simulates cyclic tag systems. The cyclic tag system bingpyti dataword is written directly to the
tape, no special encoding is required. The cyclic tag systishof appendants is reversed and encoded
to the left of the input. This encoded list is repeated indiyibften to the leftUs ; computes by erasing
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one encoded appendant for each 0 on the dataword. If the datasymbol 1 is read then the next
available (encoded) appendant to the left is appended wetiagvord, and the appendant is erased. Since
the appendants are repeated to the left, this process iaoterfmodp) through the list ofy appendants.
3.1. Uss

The table of behaviour fa/s 7 is given in Table 3.1.

(75} u9 us
0 | ALu; BRus BRug
1 | A\Luo  zRus zRug
A | bBRu; bRus bRus
0 | \Lu;y MLuz bRus
z | bBRu; 1Lus bRuy
b | A\Luy ALus bRug
B OLus  1Luo

Table 3.1. Table of behaviour féf; 7. The start state i8; and the blank symbol i8.

3.2. Encoding

For our 3-state, 7-symbol machine an appendaat{0, 1}* is encoded in the following manner. Firstly,
the order of the symbols inis reversed to give.z. Then the symbd) is encoded aéd, and1 is encoded
asbd. The encodedvy, is then prepended with the two symbals For example, ifx = 100 then this
appendant is encoded &as) = 200000b0. Finally, the order of appendants are also reversed sotthat t
list of appendants, a1, .. ., a1 are encoded a8y, _1)(a,—2) . .. (ap). This encoded list is repeated
infinitely often, to the left, on the tape &f; ;. The start state fols 7 is u, the blank symbol is3, and
the cyclic tag system input is written directly on the tapdgf;. Thus the initial configuration of the
cyclic tag system given in Example 2.1 is encoded as

uy, ...z00000 2000600000 00000 0010010 BBB ... (1)

where the underline denotes the tape head position, the émeoded appendants are repeated infinitely
to the left, and the extra whitespace is for human readglmilitposes only.
3.3. Simulation

To show howUs 7 computes we simulate the first three steps of the cyclic tagpatation from Exam-
ple 2.1.

Example 3.1. Beginning with the configuration given in Equation (L} 7 reads the leftmost O in the
input, in stateu;, and then indexes the second encoded appendant to thénbefging each symbol to
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until it reaches:, to give the following configuration after 6 steps
FO wy, ... 200000 2000600060 ZANIAX N010010 BBB . ..

These steps have the effect of reading and erasing the fingh@ idataword (input), and simulating the
incrementing of the marker to the next (second) appenddrd.h€ad then scans right, to read the second
dataword symbol.

FTowg, ... 200000 2000600060 bbbbbb b010010 BBB . ..
Again we read 0 in the dataword which causes us to index the aipipendant
HIT g, L 200060 2 A AN AN AN10010 BBB. ..
and then return to the third input symbol.
18y, ... 200060 bbbbbbbbbb bbbbbb bb10010 BBB.. ..

The input symbol 1 causéds; 7 to enter a ‘print cycle’ which iterates the following: we sckeft in
stateus, if we read®d then we scan right in state, and print0, if we readb® then we scan right in
stateus and printl. We exit the cycle if we readd. We move forward by 1 step, changing to state

FLoug, ... 200060 bbbbbbbbbb bbbbbb bbA0010 BBB.. ..
and then continue to the point where we are about to read adedt in the third appendant
19 g, L 20000N AN AN AAN0010 BBB. ..
This cause$/; 7 to scan right and appendléo right of the (temporarily mangled) dataword,
26 g, ... 2000bb bbbbbbbbbL bbbbbb bbbBBzB 1BBB.. ..
and return left to read the next encoded symbol in the thipeagant.
F20 g, L 200AAN AN AN AAN0010 1BBB.. ..
This causes @& to be printed to the right (using statg). Afterwards we return left

5T g, o 2OAMA AAAMAAAAN AAAAAN AAN0010 10BBB.. ..
FLo g, o 22000 AN AN AAN0010 10BBB. ..

where the string:d marks the end of the encoded appendant and cdlseso exit the print cycle and
return to stateu;; the index cycle.

25wy, ... 200000 2000600000 200000 bbbbbb bbbbbbbbbb bbbbbb bbb0010 10BBB . . .

The latter configuration shows the next set of encoded appgsndo the left. At this point we have
simulated the third computation step in Example 2.1.
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As can be seen in the preceding example, the computatibp ofs relatively straightforward, so we
refrain from giving a full proof of correctness.

Section 2 gives two conditions for a cyclic tag system comiqddts computation. The first condition
(empty dataword) is simulated I8y 7 in a very straightforward way: if the dataword is empty tiiéyy
reads a blank symbd? in stateu;, and immediately halts. The second condition (repeatiqgesece of
cyclic tag configurations) causés 7 to simulate this loop in an easily detectable way, where Sixed
sequence of appendants are repeatedly appended to thedhtaw

Let C be a cyclic tag system that runs in time After simulatingt steps ofC, machineUs 7 has
usedO(t) workspace. Therefore it simulates the computatiolah time O(¢?). By applying Theo-
rem 2.1 directly we find that given a single-tape determimiBiring maching\/ that computes in timg
then machineé/s ; andU, 5 both simulate)/ in time O(t8 log? t). We observe that in the simulation
from [16] the space used k¥ is only a constant times that used by. This observation, along with
an improvement to the time overhead [14], improve the timenloto O (t* log? t) for Us 7 simulating
Turing machines\/.

Using the same argument, we get the same time overhead forabkined; 13, andU, 5, that are
given in the following two sections.

4. 4-state, 5-symbol machine

U, 5 bears some similarities to the previous machine in thatiuates cyclic tag systems with the
appendants encoded to the left of the dataword. Howeveniitgpatation is somewhat more complicated
and we use a few extra tricks to keep the program size dowmvdmlifferent cyclesl/, 5 makes special
use of whether specific substrings on the tape are of odd orlength. Furthermord/, 5 simulates a
restricted cyclic tag system where the dataword does ndaitononsecutive 1 symbols. In particular,
we say that the dataword and all appendants are words{féoid }*.

To see that such cyclic tag systems are (efficiently) unalemne can directly use the simulation
from [16] as it is of the form just described. Alternativebye can use the following simple construction.
Given an arbitrary cyclic tag syste@ and inputw, we create a modified syste@f with input w’.
Each symboly € {0,1} in the appendants af' and in the inputw, is encoded ag0 in C’ and w'.
Furthermore, each appendany, in C is encoded as the pair of appendanjs, € in C’ (e is the empty
word). An inductive argument shows th@t simulates the computation @, with only a factor2
slowdown.

4.1. Uys

The table of behaviour fa/, 5 is given in Table 4.1.

4.2. Encoding

An appendantv € {0,10}* is encoded in the following manner. Firstly, the order of sgenbols in« is
reversed to giverr. Then the symbal is encoded a8\10, and1 is encoded aB0A1. The encoded

is then prepended with the symbal For example, ifa = 100 then this appendant is encoded as
(o) = AOATI00A1000A1. Finally, the order of appendants are also reversed softbdist of appendants
ag, a1, ..., ap—1 are encoded a8y, _1)(a,—2) ... (o). This encoded list is repeated infinitely often,
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U1 U9 U3 Uy
ALuy ALus BRusz BRuy
BRus 1Lus 1Rug 1Ruy
ORus ORwu; ORuy ORug
OLus OLus 1Lus
OLus ALusg

~ o> ~ o

Table 4.1. Table of behaviour féf, 5. The start state i8; and the blank symbol i8.

to the left, on the tape d¥, 5. The start state fot/, 5 is u;, the blank symbol i3, and the cyclic tag
system input, an element §8, 10}*, is written directly on the tape @f4 5. Thus the initial configuration
of the cyclic tag system given in Example 2.1 is encoded as

uy, ... ANOAI000AT AOATOOOATIOATIO00AT AOAT00A10 0010010 BBB... 2

where the underline denotes the tape head position, the émeoded appendants are repeated infinitely
to the left, and the extra whitespace is for human readglmilitposes only.

4.3. Simulation

In order to show how/, 5 computes, we simulate the first 4 steps of the cyclic tag coatipn from
Example 2.1. Example 4.1 shows 5 reading two0) symbols in the dataword and indexing appendants.
Example 4.2 show$#/, 5 reading al0 in the dataword, printing one appendant and indexing the. nex
Lemmata 4.1 and 4.2 build on these examples to give a proafrofctness.

Example 4.1. (U4 5; reading 0)
Beginning with the configuration given in Equation (), 5 reads the leftmost O in the input, in statg
and begins the process of indexing the second appendarm lefthusing states; andu,. After 3 steps:

3 g, ... AOAI000AT AOAI000AIOATI000AT AOAI00AOX A010010 BBB...
F uy, ...AOAIO00AT AOATOOOATIOATIO00AT AOAT0000A A010010 BBB...
4 g, L AOAO00A T AOAT000ATOAIO000AT AOAIAAAAA X010010 BBB.. ..

We continue like this, until we reakl (left hand side of the first appendant), to give:

5 wg, ... AOAIO00AT ANOAL000ATOAL000AT AMNAAAAAAN A010010 BBB. . .. (3)
Upon reading\ in stateu;, Uy 5 scans right, switching between statesandu,. There are an even
number of consecutiveé symbols, thus we exit the string afsymbols in state:;, ready to read the next

input symbol.

F1O 4y, ... AOAT000AT AOAT000A10AT000AT 000000000 0010010 BBB. ..
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It can be seen from the proceeding configurations, that wieeng 5 enters an encoded appendant from
the right and in state;, then the encoded appendant is erased. Assume, for the maimnevery
symbol in the dataword i8. Then for each erased appendant it is the case that exa&lgaiaword
symbol has also been erased. Encoded appendants are ohgtid [&herefore the string of consecu-
tive A symbols is always of even length immediately after erasimmg@pendant, e.g. in configurations of
the form given in Equation (3). Thus it can be seen that evenghU, 5 switches between two states,
uy andusg, While scanning right through the string dfsymbols, it always exits this string on the right to
read the next binary dataword symbol in state

We continue our simulation: the next dataword symbol (a@ais erased and the next appendant is
erased in 35 steps to give:

F35 g, .. AOATO00AT AMAAANAAANAAAN AAAAAAAAN AX10010 BBB.. ..

We then scan right through the (even length) string efymbols, switching between statesandus, to
read the next dataword symbol 28 steps later in stat@vith shorthand notation for consecutive 0s):

2wy, ... AOATI000AT 017 09 0010010 BBB. .. (4)

The example is complete.

The following example illustrates hol, 5 simulates the reading af) in the dataword. Specifically,
the10 is erased from the dataword, we append and erase the indepeddant, and finally we erase the
subsequent appendant.

Example 4.2. (U4 5; reading 10)
Recall that, forU, 5, any 1 in the dataword is immediately followed byla WhenU, s reads al in
the dataword it then (i) erases the pair, (ii) enters a print cycle (to simulate appending thdexed
appendant) and then enters (iii) an index cycle (to simulaereading of thé® and indexing the next
appendant).

We continue from configuration (4) above.

o ug, ...A\OA000AT 0'7 0° 00B0010 BBB. ..
F o ug, ...A\OA000AT 0'7 0° 00BA010 BBB...
F o ug, ...A\OANO000AT 0'7 0° 000A010 BBB...
F27 ug, ... AOAI000AT OA6 X2 AXOA010 BBB...

We now begin reading the encoded appendant, which endédes
F ug, ... AOAO00AL AT XY ANOXNO10 BBB...

This encoded appendant tells us that the symb@ncoded ag0\1), and then the symbdl (encoded
as0A10), should be appended to the dataword.

Foug, ... \OAL000AN A7 A2 ANONO10 BBB...

U5 now scans right, switching between staig and u4, eventually appending eithéror 1 to the
dataword. In the above configuration, if there are an odd murob\ symbols on, and to the right of, the
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tape head theh is appended, if there is an even number thénappended. Such a printing mechanism
uses a relatively small number of transition rules.

Fo ug, ... AOATO000A A7 AP ANONO10 BBB. ..
F o ug, ...AO0A00000 A6 AP AXONO10 BBB. ..
F30 ag, ... AOAN100000 0'7 0° 00B0010 BBB...

We now pass over the dataword and append a

3wy, ...A\OA100000 0'7 0° 00BOB1B BBBB...
F o g, ...AOA100000 0'7 0° 00BOB1B 1BBB...

We now scan left to find the next symbol to be appended

F37 g, .  AOAOAA AT A9 ANONO10 1BBB...
which is an encoded. We erase this encodéd

2 ag, . AOAAAA AT A? AN0N010 1BBB.. ..

Now we are ready to scan right, switching between stateandu,. There are an even number bf
symbols on, and to the right of, the tape head. This will tasuh 0 being appended to the dataword.

F4 ug, ... 200000000 07 0° 00BOB1B 1BBBB...
F o wg, ...A00000000 0'7 0° 00BOB1B 10BBB. ..

U, 5 now scans left, in statey, and since there are no more encodeat 1 symbols, it eventually reads
the ‘end of appendant’ marker.

F12 wg, o MMM AT A2 AN0N010 10BBB.. ..

Reading this\ in stateus sends us to the right in the index cycle (switching betweatest; andu);
however we enter the cycle in the ‘incorrect’ state(we usually enter this cycle in statg), but when
we read the leftmodi in the dataword

37w, ...000000000 017 09 000A010 10BBB...

this forces us to index another appendant (after which weeniler the next index cycle in statg;
the ‘correct’ state). This is the main reason why we insiat #achl in the dataword is immediately
followed by a0.

We now duplicate the configuration immediately above (shgwhe next two encoded appendants
to the left).

uy, ... AOAOOOAIOAI000AT AOAI00AL0 0° 07 0% 000A010 10BBB...
As already noted, we are forced to index (and erase) the peeraant:

9 g, .o AONLOOOALONLO00AL AAMMAMA X2 AT A2 AXAN010 10BBB.. ..
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We then scan right through the (even length) string afymbols, switching between statesandus to
read the next dataword read symbol in state

F8 g, ... AOAL000ATIOAT000AT 000000000 07 0'7 0% 0000010 10BBB. ..

The example is complete.

The conditions under whiclt/, 5 completes its computation are the same as thosé/fer if the
cyclic tag systems halts, thén, 5 reads a blank symbd® in statew; and halts, if the cyclic tag systems
enters a repeating sequence of configurations thensimulates this loop in an easily detectable way.

The previous two examples provide the main mechanics fowtitgings ofU, 5. The two lemmata
below generalise these examples, and cover the cases cynedblsO and1 respectively. We assume
that the cyclic tag dataword and appendants are om0 }*, as described at the beginning of Section 4.

Lemma4.1. Let ¢; be a configuration of cyclic tag syste@ with read symbob, and letc, be the
unique configuration that follows, usingC (i.e. ¢; ¢ c2). Given an encoding of’ andc;, thenUy s
computes the encoding of.

Proof:
In the encoding oy, Uy 5 is reading) in statew;. This causes the head to move left leaving a striny of
symbols. An encoded appendant is a word ovg[0), (1)(0)}*. Notice if we enter eithef0) = 0A10
or (1) = 001 from the right, in state:;, then we exit to the left, in the same state, leavidg\\ on the
tape. Eventually the entire appendant is erased (conviertied string ofA symbols), and/, 5 is reading
the leftmost) in the encoded appendant, in staie

From the encoding, the length of each encoded appendand .is~odthermore, the number of erased
appendants is equal to number of erased dataword symboilss, The sum of the number of erased
dataword symbols plus the number of symbols in the eraseeinalamts is even. We begin reading this
even length string ok symbols from the left in state,, alternating between states andu, as we scan
right. We exit the string of\ symbols in state.;. We have completed the index cycle and are reading
the the leftmost (next read) symbol from the dataword inestat From above, the next appendant is
indexed. Thus the tape encodes configuration O

Lemma 4.2. Let ¢; be a configuration of cyclic tag syste@ with read symboll, and letc, be the
unique configuration that follows, usingC (i.e. ¢; ¢ c2). Given an encoding of’ andc;, thenUy s
computes the encoding of.

Proof:
Recall that anyl in the dataword is immediately followed byla Thus our proof has two parts, a print
cycle followed by an index cycle.

In the encoding o, Uy 5 is readingl in stateu;. This1 is changed td3, the head moves right and
erases an extr@symbol, and then moves left. Thi$ is changed t@ (which is used to trigger an extra
index cycle below). The head then scans left in statéeaving a string o\ symbols until we read the
first (rightmost) non-erased encoded appendant. An encagleehdant is a word ovex (0), (1)(0)}*.

Notice that if we entef0) = 0A10 from the right in state.;, we then (i) exit to the right in state,.
However if we entef1) = 00A1 from the right in state., we then (i) exit to the right in states. In
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both cases we then scan to the right, readingdshnumber of\ symbols (a string of the form?0),

1 € N), while switching between stateg andu,. We pass to the right over the dataword, which does
not cause us to change state. Then in case (i) we apptnthe dataword and in case (ii) we appentd a
to the dataword.

We continue appending or 1 symbols until we reach the leftmost end of the (currentlyeet)
appendant by reading the symbblin stateus. We then scan right, through a string of the form
A%+10), 7 € N, switching between states andw,. After 2j + 1 steps we read in statew;, which
triggers an index cycle (Lemma 4.1). After the index cyclepass over the rightmost (which occu-
pies the location of the extra erasednentioned above) and we are reading the next encoded datawor
symbol in state:;. Thus the tape encodes configuratign O

5. 2-state, 13-symbol machine

Us,13 uses a similar algorithm t03 7. The cyclic tag system’s list of appendants is reversed andded

to the left of the input. This encoded list is repeated indiyibften to the left. As with the other machines,
Us,,13 computes by erasing one encoded appendant for each O ontétveoda If the symbol 1 is read
then the next available (encoded) appendant to the lefipsraged to the dataword, and the appendant is
erased. Since the appendants are repeated to the leftrabesp increments (mad through the list op
appendants. The machine halts using the same method astheusrtwo machines (i.e. after reading
the blank symboB in stateu;).

5.1. U2,13

The table of behaviour fa/; ;3 is given in Table 5.1.

5.2. Encoding

For our 2-state, 13-symbol machine an appendar¢ {0,1}* is encoded in the following manner.
Firstly, the order of the symbols i is reversed to giveeg. Then the symbd is encoded a#l, and1

is encoded a$l. The encodedy is then prepended with the two symbolé. For example, itx = 100

then this appendant is encoded(a$ = \0@10111. Finally, the order of appendants are also reversed so
that the list of appendantsy, a1, . .., a,—; are encoded a8y,_1)(a,—2) ... (ap). This encoded list is
repeated infinitely often, to the left, on the tape@f,3. The start state fol/; 13 is uq, the blank symbol

is B, and the cyclic tag system input is written directly on thgetafUs; ;3. Thus the initial configuration

of the cyclic tag system given in Example 2.1 is encoded as

up, ...\00111 \O01110111 \60101 0010010 BBB.... (5)

where the underline denotes the tape head position, the émeoded appendants are repeated infinitely
to the left, and the extra whitespace is for human readglmilitposes only.

5.3. Simulation

We simulate the first three steps of the cyclic tag compuidtiom Example 2.1.
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Ul u9
0 ALuy  0,Rus
1 bRus 1,Rus
B BgLus
B; | BLu; B,Lus
By, | 0.Rus 1,Rus

A bRu;  bRuo
b ALu;  ALusg
1] ALu;  bRwy
1 ALu;  bRus

0¢ | 0,Ru;  0,Ruo
1, | 1,Ru; 1,Rus
0, OLu;  OpLusg
1, 1Luy  1yLuso

Table 5.1. Table of behaviour féf; 15. The start state i8; and the blank symbol i8.

Example 5.1. Beginning with the configuration given in Equation (b} 13 reads the leftmost 0 in the
input, in stateu;, and then indexes the second encoded appendant to thénkefging each symbol t®
until it reaches the left hand side of the encoded appenttagiyve the following configuration 6 steps
later

FO wy, .. AOOT1T AOO1110111 AAMAN A010010 BBB. ..

These steps have the effect of reading and erasing the finsth@ idataword (input), and simulating the
incrementing of the marker to the next (second) appenddrd.h€ad then scans right, to read the second
dataword symbol.

FT oy, ... AOOT11 NOO1110111 bbbbbb 010010 BBB. . ..
Again we read 0 in the dataword which causes us to index the éipippendant
17wy, AOOTTT MMM AMAN AN10010 BBB.. ..
and then return to the third input symbol.
18wy, ... NOOT11 bbbbbbbbbb bbbbbb bb10010 BBB . ..

The input symbol 1 causéds; ;3 to scan right and enter a ‘print cycle’ which iterates thécfeing. In
stateuy we replace the leftmosB with B, which signifies that we are currently deciding whether or
not to append a symbol to the dataword. We then scan left,iif we readl then we scan right iny
and replaceB; with B,,, which signifies that we are committed to appending a sym¥d.then scan
left in us, if we find @ then we go right inu; and print an encode@, otherwise if we findl then we go
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right in uy and print an encodetl. We then iterate this procedure. If at any point we raédhen we
exit the cycle (and restore thg; symbol toB). We now contine our simulation to the point where we
have changed the blank symbol8y.

FO g, . ABOTTT ANAAANMNAN MMM AAN0,0,1,.0, B4BBB . ..
We move left inuy to begin reading the encoded third appendant.
2w, . ANOOTTL AN AN AAN0,0,1,0;, B4BBB...

An encoded appendant, that does not represent the empty alaays begins withl and this causes
Us,13 to scan right, chang8, to B,,,,

=2 ug, ... AOO11D bbbbbbbbbb bbbbbb bbb0,.0,1,0, B, BBB. ..
and then return left to read the encoded symbol.
F24 g, o AOOTIN MMM AN AAN0,0,1,0, B,BBB...

As before, reading & causes a scan right i, however this time we encouter®, which gets over-
written with 1,. (an encoded).

F26 g, ... AOO1bb bbbbbbbbbb bbbbbb bbb0,.0,1,0, 1,BBB . ..
We write a newB; symbol and scan left, to search for the next encoded symlibkiappendant.
F27 g, . AOOIAN MMM AN AAN0,0,1,0, 1,B;BBB.. ..

As before, reading & triggers a scan right. We commit to appending a symbol by gingnB,; to B,,,
and then return to read the encoded symbol to append.

F95 g, o  AOOAAN AMAAAAAAN AAAAAN AAN0,0,1,0, 1,B,BBB. ..

We are reading an encodédthis causes a scan rightdn. This is the first time we have used in the
print cycle, and readin@,, causes an encodédo be appended to the dataword.

2wy, ... A@bbbb bbbbbbbbbb bbbbbb bbb0,.0,1,.0, 1, B, BBB...
1 ug, ... \Obbbb bbbbbbbbbb bbbbbb bbb0,.0,.1,0, 1,0, BBB ...

We write a newB,; symbol and scan left, to search for the next encoded symhbkiappendant.
F30 g, oo AOADMAN ADNAAMAMAAN ANAAAN AAN0,0,1,0, 1,0,B4BBB.. ..

However, instead we read(a signifying the end of the appendant and this triggers a sgan inu .
At the end of this scan we meél;, and in this case we are not appending any more symbols, so we
overwrite with B.

F31 g, ... Abbbbb bbbbbbbbbb bbbbbb bbb0,.0,.1,.0, 1,0,BBBB...
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We then scan left imq, restoring the dataword.
F30 ag, o A AN AN AAN0010 10BBBB. ..
Reading) in u; sends us to the right, ready to begin the next index cycle.
F25 g, .. 00111 \O01110111 N60101 bbbbbb bbbbbbbbbb bbbbbb bbb0010 10BBBB . . .

The latter configuration shows the next set of encoded agmsido the left. At this point we have sim-
ulated the third computation step of the cyclic tag systeixample 2.1. This completes Example 5.1.

As can be seen in the preceding example, the computatiofh of is relatively straightforward, so
we refrain from giving a full proof of correctness.

Section 2 gives two conditions for a cyclic tag system comimudgits computation. The first condition
(empty dataword) is simulated 8% 13 in a very straightforward way: if the dataword is empty tiién 3
reads a blank symbdB in stateu;, and immediately halts. The second condition (repeatingesece
of cyclic tag configurations) causé5 ;3 to simulate this loop in an easily detectable way, where some
fixed sequence of appendants are repeatedly appended tataneocd.
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