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Abstract. We present three small universal Turing machines that have 3states and 7 symbols,
4 states and 5 symbols, and 2 states and 13 symbols, respectively. These machines are semi-weakly
universal which means that on one side of the input they have an infinitely repeated word, and on
the other side there is the usual infinitely repeated blank symbol. This work can be regarded as a
continuation of early work by Watanabe on semi-weak machines. One of our machines has only 17
transition rules, making it the smallest known semi-weaklyuniversal Turing machine. Interestingly,
two of our machines are symmetric with Watanabe’s 7-state and 3-symbol, and 5-state and 4-symbol
machines, even though we use a different simulation technique.

1. Introduction

Shannon [27] was the first to discuss the problem of finding thesmallest possible universal Turing ma-
chine, where size is the number of states and symbols. From the early sixties, Minsky and Watanabe
had a running competition to see who could come up with the smallest machines [11, 12, 28, 29, 30].
In 1962, Minsky [12] found a small 7-state, 4-symbol universal Turing machine. Minsky’s machine
worked by simulating 2-tag systems, which where shown to be universal by Cocke and Minsky [3].
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u : universal, bi-tag simulation,O(t6)
ld : semi-weakly universal, direct simulation,O(t2)
l : semi-weakly universal, cyclic-tag simulation,O(t4 log2

t)
r : weakly universal, Rule 110 simulation,O(t4 log2

t)

bc : universal, 2-tag simulation,O(t4 log2
t)
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Figure 1. State-symbol plot of the smallest universal Turing machines to date. Our new semi-weak machines are
shown as solid diamonds and Watanabe’s are shown as hollow diamonds. Simulation time overheads are specified.
The non-universal curve shows standard machines that are known to have a decidable halting problem.

Rogozhin [25] extended Minsky’s technique of 2-tag simulation and found small machines with a num-
ber of state-symbol pairs. Subsequently, some of Rogozhin’s machines were reduced in size or im-
proved by Robinson [24], Rogozhin [26], Kudlek and Rogozhin[7], Baiocchi [2]. Recently, Neary and
Woods [13, 14, 15, 18] have found small machines that simulate another variant of tag systems called
bi-tag systems. All of the smallest known universal Turing machines, that obey the standard definition
(deterministic, one tape, one head), simulate either 2-tagor bi-tag systems. They are plotted as circles
and triangles in Figure 1.

Interestingly, Watanabe [28, 29, 30] managed to find small machines (some were smaller than Min-
sky’s) by generalising the standard Turing machine definition. Instead of having an infinitely repeated
blank symbol to the left and right of the input, Watanabe’s machines have an infinitely repeated word
to one side of the input and an infinitely repeated blank symbol to the other side. We call such ma-
chines semi-weak. Watanabe found the 7-state, 3-symbol, and 5-state, 4-symbol semi-weakly universal
machines that are plotted as hollow diamonds in Figure 1.

A further generalisation are weak machines where we allow aninfinitely repeated word to the left
of the input and another to the right. Cook [4] and Wolfram [31] found very small weakly universal
machines (Cook’s paper includes a machine by Eppstein). We have improved [19] upon all of these
machines to give the weakly universal machines illustratedas squares in Figure 1. These weak machines
simulate the cellular automaton Rule 110. Cook [4] proved (the proof is also sketched in Wolfram [31])
that Rule 110 is universal by showing that it simulates cyclic tag systems, which in turn simulate 2-tag
systems.
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The non-universal curve in Figure 1 shows those standard Turing machines that are known to have
a decidable halting problem. The 1-symbol case is trivial, and the 1-state case was shown by Shan-
non [27] and, via another method, Hermann [5]. Pavlotskaya [20] and, via another method, Kudlek [6],
proved there are no universal 2-state, 2-symbol machines, where one transition rule is reserved for halt-
ing. Pavlotskaya [21] proved there are no universal 3-state, 2-symbol machines, and also claimed [20],
without giving a proof, that there are no universal 2-state,3-symbol machines. Both cases assume that
one transition rule is reserved for halting. It is not difficult to generalise these results to (semi-)weak
machines with 1 state or 1 symbol. Lower bounds for semi-weakmachines, with a one-way infinite
tape, were proven for a generalised Turing machine model where a coupled finite automaton fills out the
“blank” region of the tape as required. Margenstern and Pavlotskaya [9] have shown that all such ma-
chines with four instructions or less (in the Turing machineprogram), have a decidable halting problem,
and that five instructions are sufficient for universality. Their work also provides a proof of the 2-state,
2-symbol case, regardless of halting (but for one-way infinite machines). It is currently unknown if all
lower bounds in Figure 1 generalise to (semi-)weak machines.

It is also known from the work of Margenstern [8], Michel [10], and Baiocchi [1] that the region be-
tween the non-universal curve and the smallest standard universal machines contains (standard) machines
that simulate the3x + 1 problem and other related problems. Kudlek [6] has given a 4-state, 4-symbol
(standard) machine that accepts a context-sensitive language. These results, along with the weakly and
semi-weakly universal machines, lend weight to the idea that finding non-universal lower bounds in this
region is difficult. For results on other generalisations ofthe Turing machine model see [9, 23, 32], for
example.

Figure 1 shows our three new semi-weak machines as solid diamonds. These machines simulate
cyclic tag systems, which were used [4] to show that Rule 110 is universal. It is interesting to note that
two of our machines are symmetric with those of Watanabe, despite the fact that we use a different sim-
ulation technique. Our 4-state, 5-symbol machine has only 17 transition rules, one less than Watanabe’s
5-state, 4-symbol machine.1 The time overhead for our machines is polynomial. More precisely, if M is
a single tape deterministic Turing machine that runs in timet, thenM is simulated by each of our semi-
weak machines in timeO(t4 log2 t). See [14, 16, 17, 33, 32] for further results and discussion related to
the time complexity of small universal Turing machines.

This work is an extended version of [34] and contains new results.

1.1. Notation

All of the Turing machines considered in this paper are deterministic and have one tape. Our 3-state,
7-symbol universal Turing machine is denotedU3,7, our 4-state, 5-symbol machine is denotedU4,5, and
our 2-state, 13-symbol machine is denotedU2,13. We let〈x〉 denote the encoding ofx. We writec1 ⊢ c2

when configurationc2 follows from c1 in 1 computation step, andc1 ⊢t c2 whenc2 follows from c1 in t

steps.

1Note that there is a machine with 17 transistion rules by Pavlotskaya [22], that can also be considered as semi-weakly universal
(it uses “periodic extensions”), but this has 4-states and 7-symbols.
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2. Cyclic tag systems

We begin by defining cyclic tag systems [4].

Definition 2.1. (cyclic tag system)
A cyclic tag systemC = α0, α1, . . . , αp−1 is a list of binary wordsαm ∈ {0, 1}∗ called appendants.

A configurationof a cyclic tag system consists of (i) amarkerm ∈ {0, 1, . . . , p − 1} that points to a
single appendantαm in C, and (ii) adatawordw = x0x1 . . . xl−1 ∈ {0, 1}∗. Intuitively the listC is
a program with the marker pointing at instructionαm. At the initial configuration the marker points at
appendantα0 andw is the binary input word.

Definition 2.2. (computation step of a cyclic tag system)
A computation step is deterministic and acts on a configuration in one of two ways:

• If x0 = 0 thenx0 is deleted and the marker moves to appendantα(m+1) mod p.

• If x0 = 1 thenx0 is deleted, the wordαm is appended onto the right end ofw, and the marker
moves to appendantα(m+1) mod p.

A cyclic tag system completes its computation if (i) the dataword is the empty word (halting), or (ii)
it enters a repeating sequence of configurations. The complexity measures of time and space are defined
in the obvious way.

Example 2.1. (cyclic tag system computation)Let C = 00, 1010, 10 be a cyclic tag system with input
word 0010010. Below we give the first four steps of the computation. In eachconfigurationC is given
on the left with the marked appendant highlighted in bold font.

000000, 1010, 10 0010010 ⊢ 00,101010101010, 10 010010

⊢ 00, 1010,101010 10010 ⊢ 000000, 1010, 10 001010

⊢ 00,101010101010, 10 01010 ⊢ . . .

Cyclic tag systems were proved universal by their ability tosimulate 2-tag systems [4]. Recently we
have shown that cyclic tag systems simulate Turing machinesin polynomial time:

Theorem 2.1. ([16])
LetM be a single-tape deterministic Turing machine that computes in timet. There is a cyclic tag system
CM that simulates the computation ofM in timeO(t3 log t).

Note that in order to calculate this upper bound we substitute space bounds for time bounds whenever
possible in the analysis. The time bound is improved toO(t2 log t) in [14].

3. 3-state, 7-symbol machine

U3,7 simulates cyclic tag systems. The cyclic tag system binary input dataword is written directly to the
tape, no special encoding is required. The cyclic tag system’s list of appendants is reversed and encoded
to the left of the input. This encoded list is repeated infinitely often to the left.U3,7 computes by erasing
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one encoded appendant for each 0 on the dataword. If the dataword symbol 1 is read then the next
available (encoded) appendant to the left is appended to thedataword, and the appendant is erased. Since
the appendants are repeated to the left, this process increments (modp) through the list ofp appendants.

3.1. U3,7

The table of behaviour forU3,7 is given in Table 3.1.

u1 u2 u3

0 λLu1 BRu2 BRu3

1 λLu2 zRu2 zRu3

λ bRu1 bRu2 bRu3

0/ λLu1 λLu3 bRu2

z bRu1 1Lu2 bRu1

b λLu1 λLu2 bRu3

B 0Lu2 1Lu2

Table 3.1. Table of behaviour forU3,7. The start state isu1 and the blank symbol isB.

3.2. Encoding

For our 3-state, 7-symbol machine an appendantα ∈ {0, 1}∗ is encoded in the following manner. Firstly,
the order of the symbols inα is reversed to giveαR. Then the symbol0 is encoded as0/0/ , and1 is encoded
asb0/ . The encodedαR is then prepended with the two symbolsz0/ . For example, ifα = 100 then this
appendant is encoded as〈α〉 = z0/0/0/0/0/b0/ . Finally, the order of appendants are also reversed so that the
list of appendantsα0, α1, . . . , αp−1 are encoded as〈αp−1〉〈αp−2〉 . . . 〈α0〉. This encoded list is repeated
infinitely often, to the left, on the tape ofU3,7. The start state forU3,7 is u1, the blank symbol isB, and
the cyclic tag system input is written directly on the tape ofU3,7. Thus the initial configuration of the
cyclic tag system given in Example 2.1 is encoded as

u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ z0/0/0/0/0/ 0010010 BBB . . . (1)

where the underline denotes the tape head position, the three encoded appendants are repeated infinitely
to the left, and the extra whitespace is for human readability purposes only.

3.3. Simulation

To show howU3,7 computes we simulate the first three steps of the cyclic tag computation from Exam-
ple 2.1.

Example 3.1. Beginning with the configuration given in Equation (1),U3,7 reads the leftmost 0 in the
input, in stateu1, and then indexes the second encoded appendant to the left, changing each symbol toλ



166 D. Woods and T. Neary / Small Semi-Weakly Universal Turing Machines

until it reachesz, to give the following configuration after 6 steps

⊢6 u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ zλλλλλ λ010010 BBB . . .

These steps have the effect of reading and erasing the first 0 in the dataword (input), and simulating the
incrementing of the marker to the next (second) appendant. The head then scans right, to read the second
dataword symbol.

⊢7 u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ bbbbbb b010010 BBB . . .

Again we read 0 in the dataword which causes us to index the third appendant

⊢17 u1u1u1, . . . z0/0/0/b0/ zλλλλλλλλλ λλλλλλ λλ10010 BBB . . .

and then return to the third input symbol.

⊢18 u1u1u1, . . . z0/0/0/b0/ bbbbbbbbbb bbbbbb bb10010 BBB . . .

The input symbol 1 causesU3,7 to enter a ‘print cycle’ which iterates the following: we scan left in
stateu2, if we read0/0/ then we scan right in stateu2 and print0, if we readb0/ then we scan right in
stateu3 and print1. We exit the cycle if we readz0/ . We move forward by 1 step, changing to stateu2

⊢1 u2u2u2, . . . z0/0/0/b0/ bbbbbbbbbb bbbbbb bbλ0010 BBB . . .

and then continue to the point where we are about to read an encoded1 in the third appendant

⊢19 u3u3u3, . . . z0/0/0/bλ λλλλλλλλλλ λλλλλλ λλλ0010 BBB . . .

This causesU3,7 to scan right and append a1 to right of the (temporarily mangled) dataword,

⊢26 u2u2u2, . . . z0/0/0/bb bbbbbbbbbb bbbbbb bbbBBzB 1BBB . . .

and return left to read the next encoded symbol in the third appendant.

⊢26 u3u3u3, . . . z0/0/λλλ λλλλλλλλλλ λλλλλλ λλλ0010 1BBB . . .

This causes a0 to be printed to the right (using stateu2). Afterwards we return left

⊢57 u2u2u2, . . . z0/λλλλ λλλλλλλλλλ λλλλλλ λλλ0010 10BBB . . .

⊢1 u3u3u3, . . . zλλλλλ λλλλλλλλλλ λλλλλλ λλλ0010 10BBB . . .

where the stringz0/ marks the end of the encoded appendant and causesU3,7 to exit the print cycle and
return to stateu1; the index cycle.

⊢25 u1u1u1, . . . z0/0/0/b0/ z0/0/0/b0/0/0/b0/ z0/0/0/0/0/ bbbbbb bbbbbbbbbb bbbbbb bbb0010 10BBB . . .

The latter configuration shows the next set of encoded appendants to the left. At this point we have
simulated the third computation step in Example 2.1.
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As can be seen in the preceding example, the computation ofU3,7 is relatively straightforward, so we
refrain from giving a full proof of correctness.

Section 2 gives two conditions for a cyclic tag system completing its computation. The first condition
(empty dataword) is simulated byU3,7 in a very straightforward way: if the dataword is empty thenU3,7

reads a blank symbolB in stateu1, and immediately halts. The second condition (repeating sequence of
cyclic tag configurations) causesU3,7 to simulate this loop in an easily detectable way, where somefixed
sequence of appendants are repeatedly appended to the dataword.

Let C be a cyclic tag system that runs in timet. After simulatingt steps ofC, machineU3,7 has
usedO(t) workspace. Therefore it simulates the computation ofC in time O(t2). By applying Theo-
rem 2.1 directly we find that given a single-tape deterministic Turing machineM that computes in timet,
then machinesU3,7 andU4,5 both simulateM in time O(t6 log2 t). We observe that in the simulation
from [16] the space used byC is only a constant times that used byM . This observation, along with
an improvement to the time overhead [14], improve the time bound toO(t4 log2 t) for U3,7 simulating
Turing machinesM .

Using the same argument, we get the same time overhead for themachinesU2,13, andU4,5, that are
given in the following two sections.

4. 4-state, 5-symbol machine

U4,5 bears some similarities to the previous machine in that it simulates cyclic tag systems with the
appendants encoded to the left of the dataword. However its computation is somewhat more complicated
and we use a few extra tricks to keep the program size down. In two different cycles,U4,5 makes special
use of whether specific substrings on the tape are of odd or even length. Furthermore,U4,5 simulates a
restricted cyclic tag system where the dataword does not contain consecutive 1 symbols. In particular,
we say that the dataword and all appendants are words from{0, 10}∗ .

To see that such cyclic tag systems are (efficiently) universal, one can directly use the simulation
from [16] as it is of the form just described. Alternatively,one can use the following simple construction.
Given an arbitrary cyclic tag systemC and inputw, we create a modified systemC ′ with input w′.
Each symboly ∈ {0, 1} in the appendants ofC and in the inputw, is encoded asy0 in C ′ andw′.
Furthermore, each appendantαm in C is encoded as the pair of appendantsαm, ǫ in C ′ (ǫ is the empty
word). An inductive argument shows thatC ′ simulates the computation ofC, with only a factor2
slowdown.

4.1. U4,5

The table of behaviour forU4,5 is given in Table 4.1.

4.2. Encoding

An appendantα ∈ {0, 10}∗ is encoded in the following manner. Firstly, the order of thesymbols inα is
reversed to giveαR. Then the symbol0 is encoded as0λ1/0, and1 is encoded as00λ1/ . The encodedαR

is then prepended with the symbolλ. For example, ifα = 100 then this appendant is encoded as
〈α〉 = λ0λ1/00λ1/000λ1/ . Finally, the order of appendants are also reversed so that the list of appendants
α0, α1, . . . , αp−1 are encoded as〈αp−1〉〈αp−2〉 . . . 〈α0〉. This encoded list is repeated infinitely often,
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u1 u2 u3 u4

0 λLu1 λLu2 BRu3 BRu4

1 BRu2 1Lu2 1Ru3 1Ru4

λ 0Ru2 0Ru1 0Ru4 0Ru3

B 0Lu2 0Lu2 1Lu2

1/ 0Lu2 λLu3

Table 4.1. Table of behaviour forU4,5. The start state isu1 and the blank symbol isB.

to the left, on the tape ofU4,5. The start state forU4,5 is u1, the blank symbol isB, and the cyclic tag
system input, an element of{0, 10}∗, is written directly on the tape ofU4,5. Thus the initial configuration
of the cyclic tag system given in Example 2.1 is encoded as

u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ1/0 0010010 BBB . . . (2)

where the underline denotes the tape head position, the three encoded appendants are repeated infinitely
to the left, and the extra whitespace is for human readability purposes only.

4.3. Simulation

In order to show howU4,5 computes, we simulate the first 4 steps of the cyclic tag computation from
Example 2.1. Example 4.1 showsU4,5 reading two0 symbols in the dataword and indexing appendants.
Example 4.2 showsU4,5 reading a10 in the dataword, printing one appendant and indexing the next.
Lemmata 4.1 and 4.2 build on these examples to give a proof of correctness.

Example 4.1. (U4,5; reading 0)
Beginning with the configuration given in Equation (2),U4,5 reads the leftmost 0 in the input, in stateu1,
and begins the process of indexing the second appendant to the left, using statesu1 andu2. After 3 steps:

⊢3 u2u2u2, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ0λ λ010010 BBB . . .

⊢ u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/0000λ λ010010 BBB . . .

⊢4 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/λλλλλ λ010010 BBB . . .

We continue like this, until we readλ0 (left hand side of the first appendant), to give:

⊢5 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ λλλλλλλλλ λ010010 BBB . . . (3)

Upon readingλ in stateu1, U4,5 scans right, switching between statesu1 andu2. There are an even
number of consecutiveλ symbols, thus we exit the string ofλ symbols in stateu1, ready to read the next
input symbol.

⊢10 u1u1u1, . . . λ0λ1/000λ1/ λ0λ1/000λ1/0λ1/000λ1/ 000000000 0010010 BBB . . .
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It can be seen from the proceeding configurations, that wheneverU4,5 enters an encoded appendant from
the right and in stateu1, then the encoded appendant is erased. Assume, for the moment, that every
symbol in the dataword is0. Then for each erased appendant it is the case that exactly one dataword
symbol has also been erased. Encoded appendants are of odd length. Therefore the string of consecu-
tive λ symbols is always of even length immediately after erasing an appendant, e.g. in configurations of
the form given in Equation (3). Thus it can be seen that even thoughU4,5 switches between two states,
u1 andu2, while scanning right through the string ofλ symbols, it always exits this string on the right to
read the next binary dataword symbol in stateu1.

We continue our simulation: the next dataword symbol (again0) is erased and the next appendant is
erased in 35 steps to give:

⊢35 u1u1u1, . . . λ0λ1/000λ1/ λλλλλλλλλλλλλλλλλ λλλλλλλλλ λλ10010 BBB . . .

We then scan right through the (even length) string ofλ symbols, switching between statesu1 andu2, to
read the next dataword symbol 28 steps later in stateu1 (with shorthand notation for consecutive 0s):

⊢28 u1u1u1, . . . λ0λ1/000λ1/ 017 09 0010010 BBB . . . (4)

The example is complete.

The following example illustrates howU4,5 simulates the reading of10 in the dataword. Specifically,
the10 is erased from the dataword, we append and erase the indexed appendant, and finally we erase the
subsequent appendant.

Example 4.2. (U4,5; reading 10)
Recall that, forU4,5, any 1 in the dataword is immediately followed by a0. WhenU4,5 reads a1 in
the dataword it then (i) erases the10 pair, (ii) enters a print cycle (to simulate appending the indexed
appendant) and then enters (iii) an index cycle (to simulatethe reading of the0 and indexing the next
appendant).

We continue from configuration (4) above.

⊢ u2u2u2, . . . λ0λ1/000λ1/ 017 09 00B0010 BBB . . .

⊢ u2u2u2, . . . λ0λ1/000λ1/ 017 09 00Bλ010 BBB . . .

⊢ u2u2u2, . . . λ0λ1/000λ1/ 017 09 000λ010 BBB . . .

⊢27 u2u2u2, . . . λ0λ1/000λ1/ 0λ16 λ9 λλ0λ010 BBB . . .

We now begin reading the encoded appendant, which encodes10.

⊢ u2u2u2, . . . λ0λ1/000λ1/ λ17 λ9 λλ0λ010 BBB . . .

This encoded appendant tells us that the symbol1 (encoded as00λ1/ ), and then the symbol0 (encoded
as0λ1/0), should be appended to the dataword.

⊢ u3u3u3, . . . λ0λ1/000λλ λ17 λ9 λλ0λ010 BBB . . .

U4,5 now scans right, switching between stateu3 and u4, eventually appending either0 or 1 to the
dataword. In the above configuration, if there are an odd number ofλ symbols on, and to the right of, the
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tape head then1 is appended, if there is an even number then0 is appended. Such a printing mechanism
uses a relatively small number of transition rules.

⊢ u4u4u4, . . . λ0λ1/0000λ λ17 λ9 λλ0λ010 BBB . . .

⊢ u3u3u3, . . . λ0λ1/00000 λλ16 λ9 λλ0λ010 BBB . . .

⊢30 u4u4u4, . . . λ0λ1/00000 017 09 00B0010 BBB . . .

We now pass over the dataword and append a1.

⊢3 u4u4u4, . . . λ0λ1/00000 017 09 00B0B1B BBBB . . .

⊢ u2u2u2, . . . λ0λ1/00000 017 09 00B0B1B 1BBB . . .

We now scan left to find the next symbol to be appended

⊢37 u2u2u2, . . . λ0λ1/0λλλλ λ17 λ9 λλ0λ010 1BBB . . .

which is an encoded0. We erase this encoded0:

⊢2 u3u3u3, . . . λ0λλλλλλλ λ17 λ9 λλ0λ010 1BBB . . .

Now we are ready to scan right, switching between statesu3 andu4. There are an even number ofλ

symbols on, and to the right of, the tape head. This will result in a0 being appended to the dataword.

⊢41 u3u3u3, . . . λ00000000 017 09 00B0B1B 1BBBB . . .

⊢ u2u2u2, . . . λ00000000 017 09 00B0B1B 10BBB . . .

U4,5 now scans left, in stateu2, and since there are no more encoded0 or 1 symbols, it eventually reads
the ‘end of appendant’ markerλ.

⊢42 u2u2u2, . . . λλλλλλλλλ λ17 λ9 λλ0λ010 10BBB . . .

Reading thisλ in stateu2 sends us to the right in the index cycle (switching between statesu2 andu1);
however we enter the cycle in the ‘incorrect’ stateu2 (we usually enter this cycle in stateu1), but when
we read the leftmost0 in the dataword

⊢37 u1u1u1, . . . 000000000 017 09 000λ010 10BBB . . .

this forces us to index another appendant (after which we will enter the next index cycle in stateu1;
the ‘correct’ state). This is the main reason why we insist that each1 in the dataword is immediately
followed by a0.

We now duplicate the configuration immediately above (showing the next two encoded appendants
to the left).

u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ λ0λ1/00λ1/0 09 017 09 000λ010 10BBB . . .

As already noted, we are forced to index (and erase) the next appendant:

⊢50 u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ λλλλλλλλλ λ9 λ17 λ9 λλλλ010 10BBB . . .
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We then scan right through the (even length) string ofλ symbols, switching between statesu1 andu2 to
read the next dataword read symbol in stateu1:

⊢48 u1u1u1, . . . λ0λ1/000λ1/0λ1/000λ1/ 000000000 09 017 09 0000010 10BBB . . .

The example is complete.

The conditions under whichU4,5 completes its computation are the same as those forU3,7; if the
cyclic tag systems halts, thenU4,5 reads a blank symbolB in stateu1 and halts, if the cyclic tag systems
enters a repeating sequence of configurations thenU4,5 simulates this loop in an easily detectable way.

The previous two examples provide the main mechanics for theworkings ofU4,5. The two lemmata
below generalise these examples, and cover the cases of readsymbols0 and1 respectively. We assume
that the cyclic tag dataword and appendants are from{0, 10}∗, as described at the beginning of Section 4.

Lemma 4.1. Let c1 be a configuration of cyclic tag systemC with read symbol0, and letc2 be the
unique configuration that followsc1 usingC (i.e. c1 ⊢C c2). Given an encoding ofC andc1, thenU4,5

computes the encoding ofc2.

Proof:
In the encoding ofc1, U4,5 is reading0 in stateu1. This causes the head to move left leaving a string ofλ

symbols. An encoded appendant is a word overλ{〈0〉, 〈1〉〈0〉}∗ . Notice if we enter either〈0〉 = 0λ1/0
or 〈1〉 = 00λ1/ from the right, in stateu1, then we exit to the left, in the same state, leavingλλλλ on the
tape. Eventually the entire appendant is erased (convertedinto a string ofλ symbols), andU4,5 is reading
the leftmostλ in the encoded appendant, in stateu1.

From the encoding, the length of each encoded appendant is odd. Furthermore, the number of erased
appendants is equal to number of erased dataword symbols. Thus, the sum of the number of erased
dataword symbols plus the number of symbols in the erased appendants is even. We begin reading this
even length string ofλ symbols from the left in stateu1, alternating between statesu1 andu2 as we scan
right. We exit the string ofλ symbols in stateu1. We have completed the index cycle and are reading
the the leftmost (next read) symbol from the dataword in state u1. From above, the next appendant is
indexed. Thus the tape encodes configurationc2. ⊓⊔

Lemma 4.2. Let c1 be a configuration of cyclic tag systemC with read symbol1, and letc2 be the
unique configuration that followsc1 usingC (i.e. c1 ⊢C c2). Given an encoding ofC andc1, thenU4,5

computes the encoding ofc2.

Proof:
Recall that any1 in the dataword is immediately followed by a0. Thus our proof has two parts, a print
cycle followed by an index cycle.

In the encoding ofc1, U4,5 is reading1 in stateu1. This1 is changed toB, the head moves right and
erases an extra0 symbol, and then moves left. ThisB is changed to0 (which is used to trigger an extra
index cycle below). The head then scans left in stateu2 leaving a string ofλ symbols until we read the
first (rightmost) non-erased encoded appendant. An encodedappendant is a word overλ{〈0〉, 〈1〉〈0〉}∗ .

Notice that if we enter〈0〉 = 0λ1/0 from the right in stateu2, we then (i) exit to the right in stateu4.
However if we enter〈1〉 = 00λ1/ from the right in stateu2 we then (ii) exit to the right in stateu3. In
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both cases we then scan to the right, reading anoddnumber ofλ symbols (a string of the formλ2i0λ,
i ∈ N), while switching between statesu3 andu4. We pass to the right over the dataword, which does
not cause us to change state. Then in case (i) we append0 to the dataword and in case (ii) we append a1
to the dataword.

We continue appending0 or 1 symbols until we reach the leftmost end of the (currently indexed)
appendant by reading the symbolλ in stateu2. We then scan right, through a string of the form
λ2j+10λ, j ∈ N, switching between statesu2 andu1. After 2j + 1 steps we read0 in stateu1, which
triggers an index cycle (Lemma 4.1). After the index cycle wepass over the rightmostλ (which occu-
pies the location of the extra erased0 mentioned above) and we are reading the next encoded dataword
symbol in stateu1. Thus the tape encodes configurationc2. ⊓⊔

5. 2-state, 13-symbol machine

U2,13 uses a similar algorithm toU3,7. The cyclic tag system’s list of appendants is reversed and encoded
to the left of the input. This encoded list is repeated infinitely often to the left. As with the other machines,
U2,13 computes by erasing one encoded appendant for each 0 on the dataword. If the symbol 1 is read
then the next available (encoded) appendant to the left is appended to the dataword, and the appendant is
erased. Since the appendants are repeated to the left, this process increments (modp) through the list ofp
appendants. The machine halts using the same method as the previous two machines (i.e. after reading
the blank symbolB in stateu1).

5.1. U2,13

The table of behaviour forU2,13 is given in Table 5.1.

5.2. Encoding

For our 2-state, 13-symbol machine an appendantα ∈ {0, 1}∗ is encoded in the following manner.
Firstly, the order of the symbols inα is reversed to giveαR. Then the symbol0 is encoded as0/1/ , and1
is encoded as1/1/ . The encodedαR is then prepended with the two symbolsλ0/ . For example, ifα = 100
then this appendant is encoded as〈α〉 = λ0/0/1/0/1/1/1/ . Finally, the order of appendants are also reversed so
that the list of appendantsα0, α1, . . . , αp−1 are encoded as〈αp−1〉〈αp−2〉 . . . 〈α0〉. This encoded list is
repeated infinitely often, to the left, on the tape ofU2,13. The start state forU2,13 is u1, the blank symbol
is B, and the cyclic tag system input is written directly on the tape ofU2,13. Thus the initial configuration
of the cyclic tag system given in Example 2.1 is encoded as

u1u1u1, . . . λ0/0/1/1/1/ λ0/0/1/1/1/0/1/1/1/ λ0/0/1/0/1/ 0010010 BBB . . . (5)

where the underline denotes the tape head position, the three encoded appendants are repeated infinitely
to the left, and the extra whitespace is for human readability purposes only.

5.3. Simulation

We simulate the first three steps of the cyclic tag computation from Example 2.1.
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u1 u2

0 λLu1 0rRu2

1 bRu2 1rRu2

B BdLu2

Bd BLu1 BwLu2

Bw 0rRu2 1rRu2

λ bRu1 bRu2

b λLu1 λLu2

0/ λLu1 bRu1

1/ λLu1 bRu2

0ℓ 0rRu1 0rRu2

1ℓ 1rRu1 1rRu2

0r 0Lu1 0ℓLu2

1r 1Lu1 1ℓLu2

Table 5.1. Table of behaviour forU2,13. The start state isu1 and the blank symbol isB.

Example 5.1. Beginning with the configuration given in Equation (5),U2,13 reads the leftmost 0 in the
input, in stateu1, and then indexes the second encoded appendant to the left, changing each symbol toλ
until it reaches the left hand side of the encoded appendant,to give the following configuration 6 steps
later

⊢6 u1u1u1, . . . λ0/0/1/1/1/ λ0/0/1/1/1/0/1/1/1/ λλλλλλ λ010010 BBB . . .

These steps have the effect of reading and erasing the first 0 in the dataword (input), and simulating the
incrementing of the marker to the next (second) appendant. The head then scans right, to read the second
dataword symbol.

⊢7 u1u1u1, . . . λ0/0/1/1/1/ λ0/0/1/1/1/0/1/1/1/ bbbbbb b010010 BBB . . .

Again we read 0 in the dataword which causes us to index the third appendant

⊢17 u1u1u1, . . . λ0/0/1/1/1/ λλλλλλλλλλ λλλλλλ λλ10010 BBB . . .

and then return to the third input symbol.

⊢18 u1u1u1, . . . λ0/0/1/1/1/ bbbbbbbbbb bbbbbb bb10010 BBB . . .

The input symbol 1 causesU2,13 to scan right and enter a ‘print cycle’ which iterates the following. In
stateu2 we replace the leftmostB with Bd, which signifies that we are currently deciding whether or
not to append a symbol to the dataword. We then scan left inu2, if we read1/ then we scan right inu2

and replaceBd with Bw, which signifies that we are committed to appending a symbol.We then scan
left in u2, if we find 0/ then we go right inu1 and print an encoded0, otherwise if we find1/ then we go
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right in u2 and print an encoded1. We then iterate this procedure. If at any point we readλ0/ then we
exit the cycle (and restore theBd symbol toB). We now contine our simulation to the point where we
have changed the blank symbol toBd.

⊢6 u2u2u2, . . . λ0/0/1/1/1/ λλλλλλλλλλ λλλλλλ λλλ0r0r1r0r BdBBB . . .

We move left inu2 to begin reading the encoded third appendant.

⊢23 u2u2u2, . . . λ0/0/1/1/1/ λλλλλλλλλλ λλλλλλ λλλ0ℓ0ℓ1ℓ0ℓ BdBBB . . .

An encoded appendant, that does not represent the empty word, always begins with1/ and this causes
U2,13 to scan right, changeBd to Bw,

⊢25 u2u2u2, . . . λ0/0/1/1/b bbbbbbbbbb bbbbbb bbb0r0r1r0r BwBBB . . .

and then return left to read the encoded symbol.

⊢24 u2u2u2, . . . λ0/0/1/1/λ λλλλλλλλλλ λλλλλλ λλλ0ℓ0ℓ1ℓ0ℓ BwBBB . . .

As before, reading a1/ causes a scan right inu2, however this time we encouter aBw which gets over-
written with1r (an encoded1).

⊢26 u2u2u2, . . . λ0/0/1/bb bbbbbbbbbb bbbbbb bbb0r0r1r0r 1rBBB . . .

We write a newBd symbol and scan left, to search for the next encoded symbol inthe appendant.

⊢27 u2u2u2, . . . λ0/0/1/λλ λλλλλλλλλλ λλλλλλ λλλ0ℓ0ℓ1ℓ0ℓ 1ℓBdBBB . . .

As before, reading a1/ triggers a scan right. We commit to appending a symbol by changing Bd to Bw,
and then return to read the encoded symbol to append.

⊢55 u2u2u2, . . . λ0/0/λλλ λλλλλλλλλλ λλλλλλ λλλ0ℓ0ℓ1ℓ0ℓ 1ℓBwBBB . . .

We are reading an encoded0, this causes a scan right inu1. This is the first time we have usedu1 in the
print cycle, and readingBw causes an encoded0 to be appended to the dataword.

⊢28 u1u1u1, . . . λ0/bbbb bbbbbbbbbb bbbbbb bbb0r0r1r0r 1rBwBBB . . .

⊢1 u2u2u2, . . . λ0/bbbb bbbbbbbbbb bbbbbb bbb0r0r1r0r 1r0rBBB . . .

We write a newBd symbol and scan left, to search for the next encoded symbol inthe appendant.

⊢30 u2u2u2, . . . λ0/λλλλ λλλλλλλλλλ λλλλλλ λλλ0ℓ0ℓ1ℓ0ℓ 1ℓ0ℓBdBBB . . .

However, instead we read a0/ , signifying the end of the appendant and this triggers a right scan inu1.
At the end of this scan we meetBd, and in this case we are not appending any more symbols, so we
overwrite withB.

⊢31 u1u1u1, . . . λbbbbb bbbbbbbbbb bbbbbb bbb0r0r1r0r 1r0rBBBB . . .
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We then scan left inu1, restoring the dataword.

⊢30 u1u1u1, . . . λλλλλλ λλλλλλλλλλ λλλλλλ λλλ0010 10BBBB . . .

Readingλ in u1 sends us to the right, ready to begin the next index cycle.

⊢25 u1u1u1, . . . λ0/0/1/1/1/ λ0/0/1/1/1/0/1/1/1/ λ0/0/1/0/1/ bbbbbb bbbbbbbbbb bbbbbb bbb0010 10BBBB . . .

The latter configuration shows the next set of encoded appendants to the left. At this point we have sim-
ulated the third computation step of the cyclic tag system inExample 2.1. This completes Example 5.1.

As can be seen in the preceding example, the computation ofU2,13 is relatively straightforward, so
we refrain from giving a full proof of correctness.

Section 2 gives two conditions for a cyclic tag system completing its computation. The first condition
(empty dataword) is simulated byU2,13 in a very straightforward way: if the dataword is empty thenU2,13

reads a blank symbolB in stateu1, and immediately halts. The second condition (repeating sequence
of cyclic tag configurations) causesU2,13 to simulate this loop in an easily detectable way, where some
fixed sequence of appendants are repeatedly appended to the dataword.
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