Skip to main content

Geometrical Scene Analysis Using Co-motion Statistics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4678))

Abstract

Deriving the geometrical features of an observed scene is pivotal for better understanding and detection of events in recorded videos. In the paper methods are presented for the estimation of various geometrical scene characteristics. The estimated characteristics are: point correspondences in stereo views, mirror pole, light source and horizon line. The estimation is based on the analysis of dynamical scene properties by using co-motion statistics. Various experiments prove the feasibility of our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Aziz, Y.I., Karara, H.M.: Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-range Photogrammetry. In: Proc. ASP/UI Symp. Close-Range Photogrammetry, pp. 1–18 (1971)

    Google Scholar 

  2. Barnard, S.T., Thompson, W.B.: Disparity analysis of images. EEE Trans. PAMI 2, 333–340 (1980)

    Google Scholar 

  3. Benedek, C., Havasi, L., Szirányi, T., Szlávik, Z.: Motion-based Flexible Camera Registration. In: Proc. IEEE AVSS 2005, pp. 439–444. IEEE, Los Alamitos (2005)

    Google Scholar 

  4. Caspi, Y., Simakov, D., Irani, M.: Feature-based sequence-to-sequence matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, Springer, Heidelberg (2002)

    Google Scholar 

  5. Cucchiara, R., Grana, C., Neri, G., Piccardi, M., Prati, A.: The Sakbot System for Moving Object Detection and Tracking, Video-Based Surveillance Systems-Computer Vision and Distributed Processing, 145–157 (2001)

    Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. CACM 24(6), 381–395 (1981)

    Google Scholar 

  7. Havasi, L., Szirányi, T.: Estimation of Vanishing Point in Camera-Mirror Scenes Using Video, Optics Letters 1367–1566 (2006)

    Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  9. Khan, S., Shah, M.: Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View. IEEE Trans. PAMI 25(10), 1355–1360 (2003)

    Google Scholar 

  10. Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: establishing a common coordinate frame. IEEE Trans. PAMI, 22 (2000)

    Google Scholar 

  11. Nunziati, W., Alon, J., Sclaroff, S., Bimbo, A.D.: View registration using interesting segments on planar trajectories. In: Proc. of IEEE AVSS 2005, pp. 75–80. IEEE, Los Alamitos (2005)

    Google Scholar 

  12. Stauffer, C., Eric, W., Grimson, L.: Learning patterns of activity using real-time tracking. IEEE Trans. PAMI 22(8), 747–757 (2000)

    Google Scholar 

  13. Weng, J., Ahuja, N., Huang, T.S.: Matching two perspective views. IEEE Trans. PAMI 14, 806–825 (1992)

    Google Scholar 

  14. Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.-T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal 78, 87–119 (1995)

    Article  Google Scholar 

  15. Hu, B., Brown, C., Nelson, R.: Multiple-view 3-D reconstruction using a mirror, Technical Report (2005)

    Google Scholar 

  16. Zabrodsky, H., Weinshall, D.: Utilizing symmetry in the reconstruction of 3-dimensional shape from noisy images. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 403–419. Springer, Heidelberg (1994)

    Google Scholar 

  17. Lu, F., Zhao, T., Nevatia, R.: Self-Calibration of a camera from video of a walking human. In: Proc. of ICPR, pp. 1513–1518 (2000)

    Google Scholar 

  18. Criminisi, A., Reid, I., Zisserman, A.: Single view metrology. In: Proc. of ICCV, 434–442 (1999)

    Google Scholar 

  19. Cao, X., Foroosh, H.: Camera calibration and light source orientation from solar shadows. Computer Vision and Image Understanding 105(1), 60–72 (2007)

    Article  Google Scholar 

  20. Mitsumoto, H., Tamura, S.: 3-D reconstruction using mirror images based on a plane symmetry recovering method. IEEE Trans. PAMI, 941-946 (1992)

    Google Scholar 

  21. Penne, R.: Mirror Symmetry in Perspective. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 634–642. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Francois, A.R.J., Medioni, G.G., Waupotitsch, R.: Reconstructing mirror symmetric scenes from a single view using 2-view stereo geometry. In: Proc. of ICPR, pp. 12–16 (2002)

    Google Scholar 

  23. Szlávik, Z., Szirányi, T., Havasi, L.: Video camera registration using accumulated co-motion maps. ISPRS Journal of Photogrammetry and Remote Sensing 61(1), 298–306 (2007)

    Article  Google Scholar 

  24. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  25. Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A Comparison of Line Extraction Algorithms using 2D Laser Rangefinder for Indoor Mobile Robotics. In: Proc. of IROS, pp. 1929–1934 (2005)

    Google Scholar 

  26. Ji, Q., Xie, Y.: Randomised hough transform with error propagation for line and circle detection. Pattern Analysis and Applications 6, 55–64 (2003)

    Article  Google Scholar 

  27. Shafer, S.A.: Shadows and Silhouettes in Computer Vision. Kluwer Academic Publisher, Dordrecht (1985)

    Google Scholar 

  28. Szlávik, Z., Szirányi, T.: Stochastic view registration of overlapping cameras based on arbitrary motion. IEEE Transactions on Image Processing 16(3), 710–720 (2007)

    Article  Google Scholar 

  29. Havasi, L., Sziranyi, T., Rudzsky, M.: Adding geometrical terms to shadow detection process. In: EUSIPCO (14th European Signal Processing Conference), Florence (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Blanc-Talon Wilfried Philips Dan Popescu Paul Scheunders

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szlávik, Z., Havasi, L., Szirányi, T. (2007). Geometrical Scene Analysis Using Co-motion Statistics. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture Notes in Computer Science, vol 4678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74607-2_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74607-2_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74606-5

  • Online ISBN: 978-3-540-74607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics