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Abstract

Disjunctivefinitary programsare a class of logic programs admitting function symbols lagice
infinite domains. They have very good computational proggrfor example ground queries are de-
cidable while in the general case the stable model semasfits-hard. In this paper we prove that
a larger class of programs, calléditely recursive programsreserves most of the good properties
of finitary programs under the stable model semantics, nartigfinitely recursive programs enjoy
a compactness property; (ii) inconsistency checking aegtital reasoning are semidecidable; (iii)
skeptical resolution is complete for normal finitely reduesprograms. Moreover, we show how to
check inconsistency and answer skeptical queries usirtg nbsets of the ground program instan-
tiation. We achieve this by extending the splitting seqeetieorem by Lifschitz and Turner: We
prove that if the input progran® is finitely recursive, then the partial stable models deteech by
any smooth splitting,-sequence converge to a stable modePof

KEYWORDSAnNswer set programming with infinite domains, Infinite $éatmodels, Finitary pro-
grams, Compactness, Skeptical resolution.

1 Introduction

Answer Set Programming (ASF) (Marek and Truszczynski L®88mela 1999) is one
of the most interesting achievements in the area of LogigRmming and Nonmono-
tonic Reasoning. It is a declarative problem solving payadimainly centered around
some well-engineered implementations of the stable maatahstics of logic programs

(Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991)¢ck as $10DELS (Niemela and Simons 1997)

and DLV (Eiter et al. 1997).

The most popular ASP languages are extensions of Datalowglgafunction-free, pos-
sibly disjunctive logic programs with negation as failuféne lack of function symbols
has several drawbacks, related to expressiveness andiegatde (Bonatti 2004). In
order to overcome such limitations and reduce the memonyirements of current im-
plementations, a class of logic programs calfandtary programshas been introduced
(Bonatti 2004).

In finitary programs function symbols (hence infinite donsdiand recursion are al-
lowed. However, recursion is restricted by requiring eaclugd atom to depend on finitely
many ground atoms; such programs are cdlieiely recursive Moreover, only finitely

* This paper extends and refings (Baselice et al. 2007)
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many ground atoms must occuraald-cycles—that is, cycles of recursive calls involving
an odd number of negative subgoals—which means that thetddshe only finitely many
potential sources of inconsistencies. These two restristbring a number of nice seman-
tical and computational properties (Bonatti 2004). In gahdunction symbols make the
stable model semantics highly undecidable (Marek and Rér2@@d). On the contrary,
if the given program is finitary, then consistency checkigmgund credulous queries, and
ground skeptical queries are decidable. Nonground quegesproved to be r.e.-complete.
Moreover, a form of compactness holds: an inconsistenafynjpprogram has always a fi-
nite unstable kerneli.e. a finite subset of the ground instantiation of the paogwwith no
stable models. All of these properties are quite unusua fusnmonotonic logic.

As function symbols are being integrated in state-of-ther@asoners such as DLV
(Calimeri et al. 2008), it is interesting to extend thesedypooperties to larger program
classes. This goal requires a better understanding of te@f@ach restriction in the def-
inition of finitary programs. It has already been noted (Btr#804) that by dropping the
first condition (i.e., if the program is not finitely recurspone obtains a superclass of strat-
ified programs, whose complexity is then far beyond complittalhin the same paper, it is
argued that the second restriction (on odd-cycles) is riefatehe decidability of ground
gueries. However, if a program is only finitely recursivedanfinitely many odd-cycles
are allowed), then the results of (Bonatti 2004) do not attar&ze the exact complexity of
reasoning and say nothing about compactness, nor aboutri@eteness of the skeptical
resolution calculus (Bonatti 2001 b).

In this paper we extend and refine those results, and provedhearal important proper-
ties of finitary programs carry over to all disjunctive fitjteecursive programs. We prove
that for all such programs the compactness property stlidiaand that inconsistency
checking and skeptical reasoning are semidecidable. Merewe extend the complete-
ness of skeptical resolution (Bonatti 2001b; Bonatti 20@4all normal finitely recursive
programs. Our results clarify the role that each of the twairigtions defining normal
finitary programs has in ensuring their properties.

In order to prove these results we use program splittingschitz and Turner 1994),
but the focus is shifted from splitting sequences (whoseelds are sublanguages) to the
corresponding sequences of subprograms, that enjoy ma@eant properties and may be
regarded as a sort of normal form for splitting sequencesttis purpose we introduce
the notion ofmodule sequencdt turns out that disjunctive finitely recursive programs
are exactly those disjunctive programs whose module segsaonsist of finite elements.
Moreover a disjunctive finitely recursive progrdtrhas a stable model whenever each ele-
mentP; of the sequence has a stable model, a condition which is tidtimaeneral for all
disjunctive programs with negation. This result provide#erative characterization of the
stable models oP. Module sequences and this theorem constitute a powerfuldictool
that may facilitate the proof of new consistency resultsl provide a uniform framework
for comparing different approaches to decidable reasonitiginfinite domains.

The paper is organized as follows. The next section is demot@reliminaries. In Sec-
tion[3, we define module sequences and study their propdrii&ectiori 4, we prove that
every finitely recursive program with a consistent modulgussce is consistent, and use
this result to extend the compactness property of finitaogams to all finitely recursive
programs. Complexity results and two simple sound and cetagllgorithms for incon-
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sistency checking and skeptical reasoning can be founddtid®é3. Then, for a better,
goal-directed calculus, the completeness theorem fottislatpesolution is extended to all
finitely recursive programs in Sectibh 6. Sectidn 7 relateisely recursive programs and
our iterative approach to previous approaches to decidehlsoning with infinite stable
models, and makes a first step towards a unified picture basedrdramework. Finally,
Sectiorl 8 concludes the paper with a summary and a briefsligmuof our results, as well
as some interesting directions for future research.

2 Preliminaries

We assume the reader to be familiar with the classical thefdogic programming (Lloyd 1984).
Disjunctive logic programsare sets of (disjunctive) rules

AiVA YV ..V A, + L,....L, (m>0,n20),

where eactd; (j = 1,...,m) is a logical atom and each; (i = 1, ...,n) is aliteral, that
is, either a logical atom or a negated atomot A.

If r is a rule with the above structure, then letad(r) = {41, As,..., A} and
body(r) = {Lq,..., L,}. Moreover, lethody™ (r) (respectivelybody~(r)) be the set of
all atomsA such thatA (respectivelynot A) belongs tdhody(r).

Normal logic programare disjunctive logic programs whose rutekave one atom in
their head, that ighead(r)| = 1.

The ground instantiation of a prografhis denoted byround(P), and the set of atoms
occurring inGround(P) is denoted byatom(P). Similarly, atom(r) denotes the set of
atoms occurring in a ground rule

A Herbrand modelM of P is astable modebf P iff M € Im(PM), wherelm(X) de-
notes the set of least models of a positive (possibly disjuecprogramX, andPM is the
Gelfond-Lifschitz transformatiof@Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991)
of P, obtained fronGround(P) by

i) removing all rules such thabody~(r) N M # (), and
ii) removing all negative literals from the body of the remiag rules.

Disjunctive and normal programs may have one, none, or pteltable models. We
say that a program isonsistentf it has at least one stable model; otherwise the program
is inconsistentA skepticalconsequence of a prografis any closed first order formula
satisfied by all the stable models Bf A credulousconsequence aP is any closed first
order formula satisfied by at least one stable modét of

Thedependency graph of a prograiis a labelled directed graph, denotedbg(P),
whose vertices are the ground atomdX¥ language. Moreover,

i) there exists an edge labelled ‘+’ (called positive edgeif A to B iff for some rule
r € Ground(P), A € head(r) andB € body(r);
i) there exists an edge labelled *-’ (called negative edgeh A to B iff for some rule
r € Ground(P), A € head(r) andnot B € body(r);
iii) there exists an unlabelled edge fromto B iff for some ruler € Ground(P),
A € head(r) andB € head(r).
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An atom A depends positivelfrespectivelynegatively on B if there is a directed path
from A to B in the dependency graph with an even (respectively odd) enwiinegative
edges. Moreover, each atom depends positively on itdetfependon B if A depends
positively or negatively orB.

An odd-cycleis a cycle in the dependency graph with an odd number of negetiges.
A ground atom imdd-cyclicif it occurs in an odd-cycle. Note that there exists an oddey
iff some ground atom depends negatively on itself.

The class of programs on which this paper is focussed can aadefined very concisely.

Definition 2.1
A disjunctive programP is finitely recursiveiff each ground atomd depends on finitely
many ground atoms iﬁ)G(P.

For example, most standard list manipulation programstfer, append, remove etc.)
are finitely recursive. The reader can find numerous exaropfestely recursive programs
in (Bonatti 2004). In general, checking whether a prografimigely recursive is undecid-
able [Bonatti 2004). However, in (Bonatti 2001a; Bonat®4)a large decidable subclass
has been implicitly characterized via static analysistéphes. Another expressive, decid-
able class of finitely recursive programs can be foundin kigrand Eiter 2007).

We will also mention frequently an important subclass otéilyi recursive programs:

Definition 2.2(Finitary program$
We say that a disjunctive programis finitary if the following conditions hold:

1. Pis finitely recursive.
2. There are finitely many odd-cyclic atoms in the dependegnaghDG (P).

Finitary programs have very good computational prope(fmsexample ground infer-
ences are decidable). Many interesting programs, howaxefinitely recursive but not
finitary, due to integrity constraints that apply to infiljtenany individuals.

Example 2.3
Typical programs for reasoning about actions and chandgeéesy. Fig. 4 of (Bonatti 2004)
illustrates one of them, modelling a blocks world. That peog defines—among others—
two predicatedolds(fluent, time) anddo(action, time). The simplest way to add a con-
straint that forbids any parallel execution of two inconiiplatactionsa; andas is includ-
ing a rule

f < not f7 do(a’la T)7 do(a2a T)
in that program, wherg is a fresh propositional symbol (often such rules are edgnly
expressed adenialslike < do(a1,T'),do(az2,T)). This program is not finitary (because

f depends on infinitely many atoms sinfehas an infinite range of values) but it can be
reformulated as a finitely recursive program by replacirggehove rule with

f(T) + not f(T),do(a1,T),do(as, T) .

1 This definition differs from the one adopted [n_(Bonatti 2P@2cause it is based on a different notion of
dependency. Here the dependency graph contains edgeshedteens occurring in the same head, while in
(Bonatti 2002) such dependencies are dealt with in a thirtition in the definition of finitary programs.
Further comparison with (Bonatti 2002) can be found in Se¢i.
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Note that the new program is finitely recursive but not finitédecause the new rule intro-
duces infinitely many odd cycles (one for each instancg(@)).

Our results on finitely recursive programs depend orsgiitting theorenthat allows to
construct stable models in stages. In turn, this theorerased on the notion afplitting
set

Definition 2.4(Splitting set and bottom prograrm (Baral 2003; Lifschitz dananer 1994)

A splitting setof a disjunctive logic progran® is any setU of ground atoms such that, for
all rulesr € Ground(P), if head(r) NU # 0 thenatom(r) C U. If U is a splitting set for
P, we also say thdl’ splits P. The set of rules € Ground(P) such thatead(r)NU # 0

is called thebottomof P relative to the splitting sel/ and is denoted byot; (P). The
subprogranGround(P) \ boty (P) is called thetop of P relative toU.

The bottom program characterizes the restriction of th@etamodels ofP to the language
determined by the splitting set. The top program determtimesest of each stable model;
for this purpose it should be partially evaluated with respe the stable models of the
bottom.

Definition 2.5(Partial evaluation|(Baral 2003; Lifschitz and Turner 1994)
The partial evaluationof a disjunctive logic progran® with splitting setU with respect
to a set of ground atomX is the prograney (Ground(P), X ) defined as follows:

ey (Ground(P), X) ={r" | there exists' € Ground(P) s.t.(body™ (r) NU) C X
and(body~ (r) NU) N X = 0, andhead(r') = head(r),
body™ (r') = body™ (r) \ U, body~ (") = body ™~ (r) \ U }.

We are finally ready to formulate the splitting theorem (aadde the modular construction
of stable models based on the top and bottom programs) ireldenms.

Theorem 2.§Splitting theorem (Lifschitz and Turner 1994)
Let U be a splitting set for a disjunctive logic progra An interpretation\/ is a stable
model of P iff M = I U J, where

1. I is a stable model dfot; (P), and
2. J is a stable model ofy; (Ground(P) \ boty (P),I).

The splitting theorem has been extendetldasfinite sequencés (Lifschitz and Turner 1994).
A (transfinite) sequence is a family whose index set is anainegment of ordinals,
{a : a < p}. The ordinalu is thelengthof the sequence.

A sequencél, )., of sets ismonotonef U, C U wheneverr < 3, andcontinuous
if, for each limit ordinale < i, U, = U U,.

v<a
Definition 2.7(Lifschitz-Turner,|(Lifschitz and Turner 1994)

A splitting sequencéor a disjunctive progranP is a monotone, continuous sequence

(Ua)a<p of splitting sets for” such that J,, ., Un = atom(Ground(P)).

Lifschitz and Turner generalize the splitting theorem tlittépg sequences.
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Theorem 2.§Splitting sequence theorem (Lifschitz and Turner 1994)
Let P be a disjunctive program.M is a stable model of iff there exists a splitting
sequenceU,)q <, such that

1. My is a stable model dfoty, (P),

2. for all successor ordinals < u, M, is a stable model oty , (boty, (P) \
bOtUafl (P)7 Uﬁ<a Mﬂ)’

3. for all limit ordinals\ < u, My = 0,

4. M = Ua<# Ua.

3 Module sequences and a normal form for splitting sequences

In this section we replace the sequences of program dliges (P) \ boty,, _, (P) adopted
by Lifschitz and Turner with slightly different and simplprogram module sequences.
Then we prove some properties of module sequences that eviliseful in proving our
main results.

Definition 3.1(GH, Module sequenge
Let P be a disjunctive program and let the set ofgteund head atomise

GH ={p | p € head(r), r € Ground(P) }.

Themodule sequenck,, P, ..., P,, ... induced by an enumeratiqn, po, ..., pp, ... Of
G H is defined as follows:

Py = {r € Ground(P) | p; depends on somé € head(r) }
Py = P,U{r € Ground(P) | p;+1 depends onsomé € head(r)} (i > 1).

Of course, we are particularly interested in those propemif module sequences that
are independent from the enumeration of GH. We say that angreubprogramP’ C
Ground(P) is downward closedif for each atomA occurring inatom(P’), the subpro-
gram P’ contains all the rules € Ground(P) such thatd € head(r).

Proposition 3.2
Let P be a disjunctive program. For all module sequenegd, ..., for P:

1. U;>, Pi = Ground(P),

2. foreach > 1andj > i, atom(P;) is a splitting set of;, andP; = bot atom(py) (Pj),
3. foreachi > 1, atom(F;) is a splitting set of?, andP; = bot 4som(p,)(P),

4. foreach > 1, P; is downward closed.

This proposition follows easily from the definitions. It st®that each module sequence
for P consists of the bottom programs corresponding to a paaticeplitting sequence
(atom(P;));<. that depends on the underlying enumeratiozéf. Roughly speaking,
such sequences (whose length is limitedd)yconstitute anormal formfor splitting se-
guences and enjoy useful properties that are invariantnehect to the enumeration.

2 The splitting sequence theorem holds for disjunctive Iggagrams extended with so-callsttong negation
that, however, is essentially syntactic sugar. Thereforehe sake of simplicity, we ignore it here.
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Definition 3.3(Smoothnegs
A transfinite sequence of setX ). <, is smoothiff X, is finite and for each non-limit
ordinala + 1 < p, the differenceX,, 11 \ X, is finite.

Note that wheru = w (as in module sequences), smoothness implies that &acim
the sequence is finite. Finitely recursive programs are ¢etely characterized by smooth
module sequences:

Theorem 3.4
For all disjunctive logic programB, the following are equivalent:

1. Pis finitely recursive;
2. P has a smooth module sequence (where d3ds finite);
3. all module sequences fér are smooth.

Proof
(@ =[B) Let P be a finitely recursive program and let= p;,ps,... be any enumer-
ation of GH. If S = Py, P,,... is the module sequence induced by the enumera-

tion e then S is smooth because, for each atgmin e, the set{ » € Ground(P) |
p; depends on some A € head(r) } is finite, asP is finitely recursive. Since this holds
for an arbitrary enumeratiof) all module sequences fét are smooth.

(B =12) Trivial.

(2=[1) LetS = Py, P»,..., be asmooth module sequence foand letp be an atom in
Ground(P). By Proposition 3.2[{1), there is a progrdmin .S such thap € atom(F;).
Moreover,P; is downward closed by definition of module sequence and initefbe-
causeS is smooth. Thep depends only on finitely many ground atoms. Sint&s been
arbitrarily chosen, the same holds for all ground atomsgfioee P is finitely recursive.

O

Smooth module sequences clearly correspond to smoottirgpkequences of length
w. In particular, for each smooth module sequefBg; <., , (atom(P;));<. iS @ smooth
splitting sequence. Conversely, given a smooth splittexguenceU, ), ., and an arbitrary
enumerationpy, po, . . ., p;, the resulting module sequence must necessarily be smooth.
Suppose not; then some must depend on infinitely many atoms. Consequently, all the
setsU; containingp; should be infinite as well (a contradiction). Note that in grh a
smooth splitting sequence does not strictly corresponadiodule sequence. For example,
the difference between two consecutive elements of aisglifequence may contain two
atoms that do not depend on each other, while this is implessibnodule sequences by
construction.

Using the above relationships between smooth module segeemd smooth splitting
sequences of length, the characterization of finitely recursive programs caodrapleted
as follows, in terms of standard splitting sequences:

Corollary 3.5
For all disjunctive programg, the following are equivalent:

1. Pis finitely recursive;
2. P has a smooth splitting sequence of lengtk w.
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Proof
A straightforward consequence of Theorem 3.4 and the quoretence between smooth
module sequences and smooth splitting sequences of lengtly. [

Note the asymmetry between Corolléry]3.5 and Thedrein 3artbe explained by
the generality of splitting sequences: even if the undegyirogram is finitely recursive,
splitting sequences are not forced to be all smooth. For plgnthe finitely recursive
program

even(0)
even(s(s(X))) <+ even(X)

odd(s(0))
odd(s(s(X))) <« odd(X)

has a non-smooth splitting sequer{¢even(s™ (X)) | n ever}, {odd(s™(X)) | n odd}) .

Next we illustrate how module sequences provide an incréstheharacterization of the
stable models of disjunctive logic programs.

Roughly speaking, the following theorem rephrases thetisyglisequence theorem of
(Lifschitz and Turner 1994) in terms of module sequences.dryginal splitting sequence
theorem applies to sequences of disjoint program “slicesiile our theorem applies to
monotonically increasing program sequences. Since natdm®of of the splitting se-
guence theorem was ever published (only the proof of a manergéresult for default
logic was published (Turner 1996)), here we give a direcbpod our result.

Theorem 3.§Module sequence theorgm
Let P be a disjunctive program ane, P, ... be a module sequence fér. ThenM is a

stable model of? iff there exists a sequendd;, M, ... such that :

1. for eachi > 1, M; is a stable model of;,
2. foreach > 1, M; = M, 1 N atom(F;),
3. M =J;s, M.

Proof

Let M be a stable model oP. Since Py, P, ... is a module sequence fd? then for
eachi > 1, atom(F;) is a splitting set of? and P; = bot 4o (p,)(P). Consider the
sequence of model3/; = M N atom(FP;), (1 < i < w). By the splitting theorem
(Lifschitz and Turner 1994), for each> 1, M; is a stable model of;. Second, since
P,y1 O P, we haveM; = M N atom(P;)) = (M N atom(P;11)) N atom(P;) =
M1 N atom(P;) . Finally, by Propositiof 3]Z.{1) we hayg, M; = M. Then for each
stable modelM/ of P there exists a sequence of finite sets of ground atoms thisfiest
propertie§ I 2 and 3.

Conversely, let? be a disjunctive logic program. For the sake of readabiligyassume
without loss of generality tha? is ground. Suppose that there exists a sequéhcél, ...
that satisfies properti€$[l, 2 dnd 3. We have to prove thaethe s=  J,.., M; is a stable
model of P; equivalently, -

U M € Im(P™).

i>1



On Finitely Recursive Programs 9

Propertie§ 2 and 3 imply that for all> 1, (M N atom(P;)) = M;; consequently?M =
PM: and by Proposition 312X1),
M
pM={Jr| =UPr"=UPr"™ (1)
i>1 i>1 i>1

First we prove thad/ is a model ofPY, that is for each rule in PM, if body(r) C M
thenhead(r) N M # (). Letr be any rule inP™ such thabody(r) C M. By equation[(LL),
there is an integer> 1 such that € PiMi. Moreover, it is not hard to prove that properties
2,13 andbody(r) € M imply body(r) C M;. Now, sinceM; is a stable model of; and
body(r) C M;, we havehead(r) N M; # 0. It follows immediately thabead(r) N M # .
Since this holds for any € PM, we conclude thad/ is a model ofPM .

We are left to show that/ is a minimal model fo®™ . Suppose thaP? has a model
M’ C M.Letp € (M \ M') and leti be an integer such that € atom(F;). Since
PM = pPMi is a bottom program foP thenM’ N atom(P;) is a model forP," and it is
strictly contained in\/;, but this is a contradiction because by hypothégjds a minimal
model of M. O

The module sequence theorem (respectively, the splittiogience theorem) suggests
a relationship between the consistency of a progfaeind the consistency of each step
in P's module sequences (respectively, the sequence of proglieaes induced by’s
splitting sequences). To clarify this point we introducetier invariant property of module
sequences.

Definition 3.7
A module sequencé = Py, P, ... for a disjunctive progran® is inconsistentf for some
1 < w, P; is inconsistent; otherwis§ is consistent

Proposition 3.8
If a disjunctive progranP has an inconsistent module sequence tRés inconsistent.

Proof

Suppose thaP has an inconsistent module sequeger, ..., that is, someP; in the
sequence is inconsistent. It follows thathas an inconsistent bottom program and hence
P is inconsistent by the splitting theorem [

Theorem 3.9
LetS = Py, P, ... be a module sequence for a disjunctive progranif S is inconsistent
then each module sequence fois inconsistent.

Proof

LetS = P, P, ... be an inconsistent module sequencefdanduced by the enumeration
p1, D2, ... of GH and leti be the least index such thBt is inconsistent. Le$” = P;, PJ, ...
be any module sequence fBrinduced by the enumeratign, p5, ... of GH. Sincei is fi-
nite, there exists a finite such that{pi, po, ..., pi } < {p},p5, ..., P} }. SO, by construction,
P, C P and thenatom(P;) C atom(P}). Moreover, by definition,P; is downward
closed, therefor®; = bot ,;om(p,)(F}.). Sincep; is inconsistentp;, is inconsistent (by the
splitting theorem) and henc¥ is inconsistent, too. [
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In other words, for a given program, either all module sequences are inconsistent, or
they are all consistent. In particular,if is consistent, then every memb@rof any mod-

ule sequence foP must be consistent. The converse property would allow tandedi
procedure for enumerating the stable model$’afas shown in the following sections).
Unfortunately, even if each step in a module sequence isstens, the entire prograi?

is not necessarily consistent, as shown by the followingrgte.

Example 3.10
As a preliminary step, consider the following progrétn(due to Fages (Fages 1994)):

q(X) < q(f(X)).
q(X) ¢ not g(f(X)).
0

r

—~
~—

The third rule is only needed to introduce the constainto the program’s language.
This program is inconsistent. To see this, note that — roqughéaking — the first two
rules inP; are classically equivalent to

q(X) = q(f(X)) Voot q(f(X)).

Since the body is a tautology and the stable models of a pmogra also classical models
of the program (ifnot is interpreted as ), we have that every stable model8f should
satisfy all ground instances gf X ). However, the Gelfond-Lifschitz transformation with
respect to such a model would contain only the first and thid giriogram rules, and hence
the least model of the transformation would contain no imsgsofq(X ). It follows that Py

is inconsistent (it has no stable models). Now considerdheviing extensionP of Py:

© g A~ wwDNeE
g~

¢(X) < not ¢(X),not p(X).

The programP is inconsistent, too. To verify it, suppose thet is a stable model oP.
By rules[4 and[b, for all ground instancesX®f exactly one op(X) andp’(X) is true in
M. However, ifp(X) is false, then rulEl6 produces an inconsistency due to thecpdé
involving ¢(X). It follows that all ground instances @f X)) must be true in\/. But then
rules[1,[2 andlI3 become equivalent to progr&mand prevent\/ from being a stable
model, as explained above. $vis inconsistent.

Next, consider the enumeratien= r(0), ¢(0), p(0), p’(0), ¢(0), q(f(0)), p(f(0)),
' (f(0)), ¢(f(0)), ..., of the setGH. This enumeration induces the following module
sequence foP (where the expressidiX /¢] denotes the substitution mappifigontot):
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Py = {r(0)}

P =R UUp { aX) < a(f(X)),p(X),
q(X) « not g(f(X)), p(X),
p(X) ¢ not p'(X),

p'(X) + not p(X) } [X/f*(0)]
Piy1 =P, U{c(X) + note(X),not p(X)} [X/F71(0)] (i>1).

Note thatM, = {r(0)} is a stable model of, and for each > 1 andk > i — 2

M = {r(0), p(£°(0)), p(£1(0)), p(£*(0)), ..., p(f*(0)),
P 0)), 9 (F (0 )),---,p’(f’”’(o)),---
a(f°(0)), a(f(0)), a(f2(0)), ..., a(f*(0))}

is a stable model of;. Therefore, eaclP; is consistent whild J, P; = Ground(P)
is inconsistent. This happens because for each stable mddefl P, there exists &P
( > 1) such thatM is not the bottom part of any stable model Bf. Intuitively, M
has been “eliminated” at stejp In this exampleP; has infinitely many stable models, and
it turns out that no finite step eliminates them all. ConsetijyeeachP; in the module
sequence is consistent, but the entire program is not.

Note thatP is not finitely recursive because, for each grounding stiligin o, ¢(X)o
depends on the infinite set of ground atofrg (X))o, ¢(f(f(X)))o, ...} (due to rules
(@) and(2)). In the following section we are going to provattfinitely recursive programs
are not affected by the problemiillustrated in Exaniple3ti4# is, they enjoy the converse
of Theoreni 3.0. This property will be used to design an eiffe@numeration procedure
for their stable models.

4 Compactness property of disjunctive finitely recursive ppgrams

Here we prove that the compactness theorem proved in (Basalal. 2007) for normal
finitely recursive programs actually holds for all disjumetfinitely recursive programs.
The first step is to prove the converse of Theorerh 3.9 for atefinrecursive programs.

Theorem 4.1
For all disjunctive finitely recursive progranty if some module sequence fé¥is con-
sistent, therP is consistent.

Proof
Let S be any module sequence fér. If S is consistent, then each modufein S has a
nonempty set of stable models. It suffices to prove that theists a sequence;, Mo, ...
of stable models ofP;, P, ..., respectively, that satisfy the properties of Theofen 3.6,
because this implies thaf = [ J, M; is a stable model oP.

We call a stable modél/; of P; “bad” if there exists & > 7 such that no stable model
M, of P, extendsl/;, “good” otherwise. We say thatl;, extends\f; if MiNatom(P;) =
Mi.
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Claim 1 EachP; must have at least origood” stable model.

To prove the claim, suppose that there exists anch that all stable models &f are
“bad” . SinceP; is a finite program, it has a finite numbgf; ;, ..., M, ,. of stable models.
By assumption, for eachy; ; there is a progrank;,; none of whose stable models extends
M, ;. Letk = max{ki, ..., k- }; clearly, no stable model P, extends any stable model
of P;, and this is a contradiction becauBg, by hypotheses, has at least one stable model
M, and by the splitting theorend/;, must extend a stable model Bf. This proves Claim
1.

Claim 2 Each“good” stable model; of P; is extended by sonfgood” stable model
M1 of Py,

Suppose not. Then, none of the stable modé|s; 1,. .., M;4+1,, of P, that extend
the good stable modél/; of P; is good. This implies (by analogy with the proof of Claim
1) that there exists a modul®, (£ > ¢ + 1) none of whose stable models extends any of
Miyia,..., My, It follows that none ofP;’s stable models can extend;, and this
contradicts the hypothesis thaf; is good.

From the two claims it follows immediately that there exiatsinfinite sequenca/,
My, ... that satisfies propertié$ 1 dnd 2 of Theofen 3.6 and hencentbe & = | J; M; is
a stable model oP. [

Note that in Example_3.10, modulg is infinite and has infinitely many stable models, all
of which are “bad”. Each of them is eliminated at some stepnbufinite step eliminates
them all, which is why that module sequence is consistehbatih the entire prograrf
is not.

Theoreni 4l can be extended to all smooth splitting seqsanitle lengthw:

Corollary 4.2
Let (U,)a<w be a smooth splitting sequence for a disjunctive progfarithenP is con-
sistent iff for alla < w, boty, (P) is consistent.

Proof
A straightforward consequence of the correspondence ketwedule and splitting se-
quences. O

The restriction to sequences with lengthis essential to derive the above corollary,
which is not valid otherwise, as shown by the following exdnp

Example 4.3
Let P be the following program, where rdl¢ 1 has the role of cregdin infinite Herbrand
domain:

r(f(0).

. p(X) < not ¢(X).

. ¢(X) + not p(X).

. some_q <+ q(X).

. f < not f, not some_q.
. ¢(X) + not¢(X), ¢(X).

o U1l WN P
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This program is inconsistent for the following reasons: Rlbrground instances ok,

rules[2 and B force exactly one pfX) and¢(X) to be true. If no instance of(X)

is true, then ruleBl4 arid 5 create a contradiction by “adtigathe odd-cycle involving

f. However, if some instance af( X) is true, then rul¢l6 generates a contradiction by

“activating” the odd-cycle involving(X). It follows that P has no stable models.
However,P has a smooth splitting sequence with lengithwhose bottom programs are

all consistent:

Uo = {p(0), q(0), r(0) }

Ui = Ui U{p(f*(0)), a(f*(0)), r(f*(0)) } (0<i<w)

Uw:UUi

i<w
Uw+1 =U,U {some_q, f7 C(O) }
Uyt = Unss ULe(9(0)) } (0<j<w).

In particular,

i) boty, (P) has infinitely many stable models, one for each choice betwe¥) and
q(X), for all instances ofX;

i) boty,.,(P) keeps all the stable models where at least one instangeXofis true;

i) boty, (P) keeps only those stable models where the first true instangeXo

wtj+1

is q(f*(0)) with & > ;.

Now we are ready to extend the compactness property of fymtamal programs to all
disjunctive finitely recursive programs.

Definition 4.4

An unstable kernéfor a disjunctive progran® is a setX’ C Ground(P) with the following
properties:

1. K is downward closed.
2. K has no stable model.

Theorem 4.§Compactnegs

A disjunctive finitely recursive progra® has no stable model iff it has a finite unstable
kernel.

Proof

By Proposition 3.8 and Theorelm 4.P, has no stable model iff it has an inconsistent
module sequence. So, I8, P, ..., P,, ... be an inconsistent module sequencefoand
choose an index > 1 such thatP; is inconsistent. By Propositidn 3.2; C Ground(P);
moreover,P; is downward closed. Thef; is an unstable kernel faP. Moreover, by
Theoreni3UP; is finite. [
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5 Reasoning with disjunctive finitely recursive programs

By taking an effective enumeration of the €¢ff of ground head atoms, one can effec-
tively compute each element of the corresponding moduleesezg. Let us calcon-
STRUCT(P, i) an effective procedure that, given a finitely recursive proyP and an
indexi, returns the ground prograf, and letSM (P;) be an algorithm that computes the
finite set of the finite stable models &:

Theorem 5.1
Let P be a disjunctive finitely recursive program. Deciding wlegtR is inconsistent is
semidecidable.

Proof
Given a module sequend@,, P, ..., P,, ... for the programP, consider the algorithm
CONSISTENT(P).

Algorithm CONSISTENT(P)

1: ¢ =0;
answer = TRUE;
repeat

1 =141,

P, =CONSTRUCT(P, i);

if SM(P;) =0 then

answer = FALSE;

until —answer OR P; = Ground(P)
return answer:;

© X N TR DD

By Propositior 3.B and Theorem #4.R, is inconsistent iff there exists an> 1 such
that P; is inconsistent (note that we can always check the consigi@inP; because; is
finite). Then, the algorithm returdALSE iff P is inconsistent.

Note that if Ground(P) is infinite then any module sequence Bris infinite and the
algorithmcoNsISTENT(P) terminates iffP is not consistent. [

Next we deal with skeptical inference. Recall that a closesl érder formulal’ is a
skeptical consequence &fiff F' is satisfied (according to classical semantics) by all the
stable models oP.

Theorem 5.2

Let P be a disjunctive finitely recursive program afd P, ... be a module sequence for
P. A ground formulaF' in the language oP is a skeptical consequence®fff there exists
afinitek > 1 such thatF is a skeptical consequenceBf andatom(F) C atom(Py).

Proof

Let h be the least integer such thatom(F) C atom(Fy) (note that there always exists
such ami becauseitom (F) is finite). Suppose that there exist& a> h such thatF is a
skeptical consequence 8%. SinceP;, is a bottom program foP, then each stable model
M of P extends a stable modé¥; of P, and then satisfies' (here the assumption that
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atom(F) C atom(Py) is essential to conclude thaf and M, agree on the truth of’).
So, F'is a skeptical consequenceBf This proves the “if” part.

Now suppose that, for eaéh> h, F'is not a skeptical consequencefRf. This implies
that eachP; is consistent (hencP is consistent) and, moreover, the Setf all the stable
models ofP;, that falsify F' is not empty.

Note thatS is finite becausé’; is finite (asP is finitely recursive). So, if all the models
in S are ‘bad’ (cf. the proof of Theorerh 4]1), then there exists a finiteg#r; > k such
that no model of?; contains any model of. Consequently}” is a skeptical consequence
of P,—a contradiction.

Therefore at least one of these model musgbed Then there must be a model of
P that contains thisgood’ model of Py, and hencé" is not a skeptical consequence of
pP. O

The next theorem follows easily.

Theorem 5.3
Let P be a disjunctive finitely recursive program. For all grouachfiulasF, the problem
of deciding whetheF' is a skeptical consequenceBfis semidecidable.

Proof
Given a module sequend@, P, ..., P,, ... for the programP, consider the algorithm
SKEPTICAL (P, F).

Algorithm SKEPTICAL(P, F)
1: answer = FALSE;

2:1=0;

3: repeat

4: =13+ 1;

5. P, =CONSTRUCT(P, i);

6: until atom(F) C atom(F;)
7: repeat

8 if SM(P;) = ) OR P; skeptically entailg” then
9: answer = TRUE;

10: else

11: 1=1+1;

12 P, =CONSTRUCT(P, );
13: until answer ORP; = P

=
N

: return answer;

For eachP; such thatatom (F) C atom(P;), the algorithmskePTICAL (P, F') checks
if F'is a skeptical consequence Bf. SinceP; is finite, we can always decide i is a
skeptical consequence &f. So, by Theorem 512, the algorithm returARUE iff F' is a
skeptical consequence 6%

Note that if Ground(P) is infinite then any module sequence fBris infinite and the
algorithmskePTICAL (P, F) teminates iffF’ is a skeptical consequence®f [
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For a complete characterization of the complexity of groguadries and inconsistency
checking, we are only left to prove that the above upper bsward tight. Actually, we
prove slightly stronger lower bounds, that hold evemformalfinitely recursive programs.

Theorem 5.4
Deciding whether a normal finitely recursive progréhis inconsistent is r.e.-hard.

Proof
The proof is by reduction of the problem of skeptical inferenf a quantified formula over
a finitary normal program (proved to be r.e.-complete in @&Gr2004, Corollary 23)) to
the problem of inconsistency checking over a normal finitelyursive program.

Let P be a finitary program andF' be a closed existentially quantified formula. Let
((111V Lig V . )A (I21V a2 V ...) A ...) be the conjunctive normal form efF. Then3F is
a skeptical consequence Bfiff the programP U C'is inconsistent, where

p1(21) < notli1,not lya,...,not p1(27)
O = { p2(@2) < notlai,notlyy, ...,not pa(a3)

p1, P2, --- @re new atom symbols not occurringfror F', andz; is the vector of all variables
occurring in(l;1V l;2 V ...). Note thatP U C'is a normal finitely recursive program.

The constraints ir" add no model taP, but they only discard those models Bfthat
satisfy F’'0 (for some substitutiofl). So, letSM (P) be the set of stable models Bf Then
each model i M (P U C) satisfiesy—F. SM (P UC) = 0 (thatisP U C is inconsistent)
iff either SM (P) = 0 or all stable models of satisfy3dF. ThenSM (P U C) = 0 iff IF
is a skeptical consequenceBf [

Theorem 5.5
Deciding whether a normal finitely recursive progrétskeptically entails a ground for-
mulaF isr.e.-hard.

Proof

The proofis by reduction of inconsistency checking for nakfmitely recursive programs
to the problem of skeptical inference of a ground formulafr@anormal finitely recursive
program.

Let P be a normal finitely recursive program agpde a new ground atom that doesn’t
occur inP. Then,P is inconsistent iff; is a skeptical consequenceBf Sinceq occurs in
the head of no rule aP, ¢ cannot occur in a model dP. So, P skeptically entailg; iff P
has no stable model. ]

Corollary 5.6
Deciding whether a disjunctive finitely recursive progréheredulously entails a ground
formula F is co-r.e. complete.

Proof

The proof follows immediately from Theoremsb.3 and 5.5 andifthe fact that a ground

formula F' is a credulous consequenceBfiff —F" is not a skeptical consequence iBf
U
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6 Skeptical resolution for finitely recursive normal programs

In this section we extend the work in_(Bonatti 2001b; Bon2@®4) by proving that skep-
tical resolution (a top-down calculus which is known to benpdete for Datalog and nor-
mal finitary programs under the skeptical stable model s¢ingris complete also for
the class of finitely recursive normal programs. Skeptieabtution has several interesting
properties. For example, it does not require the input g to be instantiated before
reasoning (unlike the major state-of-the-art stable mogatoners), and it can produce
nonground (i.e., universally quantified) answer substing. The goal-directed nature of
skeptical resolution makes it more interesting than theenalgorithms illustrated in Sec-
tion[5.

We are not describing all the formal details of the calcukieh-the reader is referred to
(Bonatti 2001b). Skeptical resolution is basedymals with hypothesds-goalsfor short)
which are pairgG | H) whereH andG are finite sequences of literals. Roughly speaking,
the answer to a quelly~ | H) should beyesif G holds in all the stable models that satisfy
H. Hence(G | H) has the same meaning in answer set semantics as the implicati
(A G < A\ H). Finally, askeptical goal(s-goalfor short) is a finite sequence of h-goals.

The calculus consists of five inference rules:

Resolution. This rule may take two forms; a literal can be unified with eita program
rule or a hypothesis. First suppose thais an atomA < By, ..., By is a standardized
apart variant of a rule of?, and@ is themguof L; and A. Then the following is an
instance of the rule.

I'(Ly...Li—1, Li, Lisy ... Ly | H) A
T (Li...Li_1, Bi,-.., By, Lis1.. . L, | H)A]6

Next, letL; be a (possibly negative) literal, & be a hypothesis, and létbe themgu
of L; andL’. Then the following is an instance of the rule.

P'(Ly...Li—1, Ly Ligq ... Ly | H/L') A

O (Li...Li_y, Lig1... L, | HL)A]O

Contradiction. This rule tries to provéG | H) “vacuously”, by showing that the hy-
pothesedd cannot be satisfied by any stable modePofHereafter = not A if L is
an atom4, andL = A if L = not A.

(G| H,L)A
I'(L|H/ LA
Split. Essentially, this rule is needed to compute floating comehssand discover contra-
dictions. It splits the search space by introducing two reamplementary hypotheses.
Let Gy be therestart goal(i.e. the left-hand side of the first h-goal of the derivajidn
be an arbitrary literal and be the composition of theagus previously computed during
the derivation; the Split rule is:

T (G|H)A
T (G| H,L) (Goo | H,L) A’

Success.This is a structural rule that removes h-goals once they baea successfully
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proved. As usuall denotes the empty goal.

r@|H)A
rA '

We are left to illustrate the last rule of the calculus, thatdels negation as failure. In
order to abstract away the details of the computation ofdaflicts, the rule is expressed
in terms of so-calledounter-supportghat in turn are derived from the standard notion of
support Recall that a support for a ground atotris a set of negative literals obtained by
applying SLD resolution to! with respect to the given prografuntil no positive literal
is left in the current goal (the final, negative goal of the Sddbivation is a support fad).

Definition 6.1((Bonatti 2001h)
Let A be a ground atom. ground counter-suppofor A in a programP is a set of atoms
K with the following properties:

1. For each suppoH for A, there existaiot B € S such thatB € K.
2. For eachB € K, there exists a suppastfor A such thahot B € S.

In other words, the first property says thatcontradicts all possible ways of proving
while the second property is a sort of relevance properfgrinally speaking, the failure
rule of skeptical resolution says that if all atoms in a cewsupport are true, then all
attempts to provel fail, and hencerot A can be concluded.

Of course, in general, counter-supports are not computatilenay be infinite (while
skeptical derivations and their goals should be finite).

In (Bonatti 2001b) the notion of counter-support is gerizea to non ground atoms in
the following way:

Definition 6.2

A (generalizedcounter-supporfor a ground atomA is a pair (K, 6) whereK is a set
of atoms and a substitution, such that for all grounding substitutieng{¢ is a ground
counter-support fodfdo.

The actual mechanism for computing counter-supports caabbtracted by means of
a suitable functionCounterSupp, mapping each (possibly nonground) atotonto a
set offinite generalized counter-supports far The underlying intuition is that function
CounterSupp captures all the negative inferences that can actually bgpated by the
chosen implementation. Now negation-as-failure can bemaatized as follows:

Failure. Suppose thakt; = not A, and{{Bj, ..., By},0) € CounterSupp(A). Then the
following is an instance of the Failure rule.
P'(Ly...Li—1, Ly Lizq ... Ly | H) A
[C(Li...Li_1, B1,...,Bi, Liz1... L, | H)A]O°
To achieve completeness for the nonground skeptical résplaalculus, we need the
negation-as-failure mechanism to be complete in the fotigwense.

Definition 6.3

The functionCounterSupp is completdff for each atomA, for all of its ground instances
A~, and for all ground counter-suppoisfor A, there exist K’ 0) € CounterSupp(A)
and a substitutior such thatdfo = Ay andK'c = K.
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A skeptical derivation from P an@ounterSupp with restart goalGy is a (possibly
infinite) sequence of s-godly,I'1,..., where each’; . is obtained fronT; through one of
the five rewrite rules of the calculus. A skeptical derivatissuccessfuf its last s-goal is
empty; in this case we say that the first s-goal has a suct¢eksfutical derivation fron.

Example 6.4
Let P be

1. p(X) < not¢(X)
2. ¢(X) < notp(X)
3. r(f(X)) + not p(X)

4. r(f(X)) + notq(X)

For all ground terms, the literalnot p(¢) is the unique support af(t). Therefore, we can
setCounterSupp(¢(X)) = {(p(X),e)} (Wheree denotes the empty substitution), since
the truth ofp(X) suffices to block all derivations @f X ), for all possible values ok (the
issue of how to computéounterSupp will be briefly discussed at the end of this section).
The following is a successful derivation 6f(Y') | @) from P with answer substitution
[Y/ f(X)], showing that for allX, »(f(X)) is a skeptical consequence Bf

(r(¥) 1 0)
(notp(X) | 0) by resolution withB; it bind§” to f(X);
(not p(X) | not p(X)) (r(f(X)) | p(X)) by the splitting rule;
(O | not p(X)) (r(f(X)) | p(X)) by resolution with the hypothesis;
(r(f(X)) | p(X)) by the success rule;
(not q(X) | p(X)) by resolution with#;
(p(X) | p(X)) by the failure rule usingp(X), €);
(O | p(X)) by resolution with the hypothesis;

O by the success rule.

Skeptical resolution is sound fal normal programs and counter-support calculation
mechanisms, as stated in the following theorem.

Theorem 6.§Soundness, (Bonatti 200)b)

Suppose that as-goal (G | H) has a successful skeptical derivation from a normal pro-
gram P and CounterSupp with restart goalG and answer substitutiof. Then, for all
grounding substitutiow, all the stable models aP satisfy (A G0 + A HO)o (equiva-
lently, V(A GO < A\ HO) is skeptically entailed by).

However, skeptical resolution is not always complete. Cletepess analysis is founded
on ground skeptical derivations, that require a groundieersf CounterSupp.

Definition 6.6
For all ground atoms4, let CounterSupp?(A) be the least set such that {f,6) €
CounterSupp(A’) and for some grounding, A = A’6c, then

(Ko,€) € CounterSupp?(A),
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wheree is the empty substitution.

Theorem 6.{Finite Ground Completeness, (Bonatti 200)1b)

If some ground implicatiof\ G < A H is skeptically entailed by finite ground program
P andCounterSupp is complete with respect t8, then(G | H) has a successful skeptical
derivation fromP andCounterSupp? with restart goal=. In particular, ifG is skeptically
entailed byP, then(G | §) has such a derivation.

This basic theorem and the following standard lifting lematiaw to prove complete-
ness for all finitely recursive normal programs.

Lemma 6.§Lifting, (Bonatti 2001)

Let CounterSupp be complete. For all skeptical derivatiofsfrom a normal program
P and CounterSupp? with restart goalGy, there exists a substitution and a skeptical
derivationD’ from P and CounterSupp with restart goalG{, and answer substitutiofy
such thatD = D’fo andGy = Gfo.

Theorem 6.94Completeness for finitely recursive normal programs

Let P be a finitely recursive normal program. SuppdseinterSupp is complete with
respect toP and that for some grounding substitution(A G + A H)~ holds in all
the stable models aP. Then(G | H) has a successful skeptical derivation frétrand
CounterSupp with restart goalz and some answer substituti@more general thag.

Proof

By TheoremE314 arid 8.2, there exists a smooth module segtmrie with finite elements
Py, Py, ..., and a finitek such that A G < A H)~ holds in all the stable models &%;.
Since eachP; is downward closed, the ground supports of any givere atom(FPy)
with respect to progran®, coincide with the ground supports df with respect to the
entire programP. Consequently, also ground counter-supports and (génedakcounter-
supports, respectively, coincide i, and P. Therefore CounterSupp is complete with
respect toPy, too. As a consequence, sinég is a ground, finite program, the ground
completeness theorem can be applied to concludé@hat )y has a successful skeptical
derivation fromP, andCounterSupp? with restart goaliy. The same derivation is also a
derivation fromP (as P; C Ground(P)) andCounterSupp?. Then, by the Lifting lemma
(note thatP is supposed to be normal)7 | H) has a successful skeptical derivation
from P and CounterSupp, with restart goalz and some answer substituti@nsuch that
(G | H)yis aninstance ofG | H)é. It follows thatd is more general than. [J

An important question is whether any computable, completetionCounterSupp ex-
ists. Take any module sequengg, P, ..., P;, ... based on any effective enumeration
of GH. Note that for all ground atomd one can effectively find & € N such that
A € atom(Py). Now, if the given progran® is finitely recursive, then the ground sup-
ports of A can be computed by building all the acyclic SLD-derivatiémis A using the
finitely many ground rules oP;.. Consequently, the ground counter-supportgicre fi-
nite and finitely many, too, and can be easily computed froengitound supports ofl.
Now consider a nonground atorh Let CounterSupp(A) be the set of pairéK, v) such
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that~y is a grounding substitution fot and K is a ground counter-support fdry. Clearly,
for any givenA such pairs can be recursively enumerated by enumeratingytiumd in-
stances ofd, and computing for each of them the corresponding groundtestsupports
as explained above. Clearly, this counter-support funéicomplete by construction. This
proves that:

Theorem 6.10
If P is normal and finitely recursive, then there exists a comefletinterSupp function
such that for all atomsl, CounterSupp(A) is recursively enumerable.

This property allows to recursively enumerate all skepiiaivations fromP. There-
fore, skeptical resolution provides an alternative prbat skeptical inference from finitely
recursive normal programsisin r.e.

7 Finitary programs and other decidable fragments

The inherent complexity of finitely recursive programssédir further restrictions to make
deduction decidable.

One of such additional restrictions is based on the follgwidea: Suppose that there
exists a module sequenég, P, ..., P;, ... and an index such that for all interpreta-
tionsI C atom(Py), the “top” prograne ;o p,)(Ground(P) \ P, I) is consistent. Then
the splitting theorem guarantees that every stable mode} ebn be extended to a stable
model of P and, conversely, every stable model@fextends a stable model é%,. As
a consequence, given a ground g6afbe it credulous or skeptical) whose atoms are in-
cluded inatom(Py), the answer t@7 can be computed by inspecting only the stable models
Mg, ..., My, of P, (whichis afinite ground program is finitely recursive). The “up-
per” part of the stable models &1, that is, the stable models ©f; o, (Px)(Ground(P) \

Pi, M ;) (1 < i <n), need not be computed at all—we only need to know that thisg ex
to be confident that/y, 1, . .., My ,, are sufficient to answe¥.

This is the idea underlyindinitary programs(Bonatti 2004). For normal programs,
the consistency of the top program is guaranteed by meangl@aaem due to Fages
(Fages 1994), stating thatder consistenhormal programs are always consistent. A nor-
mal program is order consistent if there exists no infinigussce of (possibly repeated)
atoms(A;);<,, such that4d; depends both positively and negatively 4n.; for all i < w.

For example, all positive programs are trivially order detet, while Fage’s program

q(X) < q(f(X))
q(X) < not ¢(f(X))

exploited in Example3.10 is not, as well as any normal pnogrdnose dependency graph
contains some odd-cycle. The above program shows that agmogay fail to be order
consistent even if the program is acyclic. Howeveifs normal and finitely recursive,
then it can be shown tha? is order consistent iffP is odd-cycle free[(Bonatti 2004).
This observation justifies the definition of finitary progma(®efinition2.2): By requiring
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finitary programs to have finitely many odd-cycles, it is polesto confine all odd-cycles
into a single, finite program modulg, and ensure that the “top” programs are odd-cycle
free and hence consistent.

As proved in [(Bonatti 2004), the extra condition on odd-egcsuffices to make both
credulous and skeptical ground queries decidable. Howav¢Bonatti 2004) the state-
ment erroneously fails to include the set of odd-cyclicréte among the inputs of the
algorithm. Here is the correct statement and a slightlyed#iit proof based on module
sequences:

Theorem 7.1

Given a finitary normal prograrm® and a finite seC” containing (at least) all of the odd-
cyclic atoms ofP’s Herbrand base,

i) deciding whether a ground formul@is a credulous consequencefis decidable;
i) deciding whether a ground formu is a skeptical consequenceBfis decidable.

Proof

(Sketch) LetPy, Ps, ..., P;, ... be any (recursive) module sequence induced by a re-
cursive enumeration oP’s Herbrand base, and lét be the minimal index such that
C U atom(G) C atom(Py). Clearly, such & exists and is effectively computable. More-
over, P is ground and finite (becaugeis finitely recursive), therefore the set of its stable
modelsMy 1, ..., My, », can be effectively computed as well, it is finite, and cossiétfi-

nite models. Now, by construction, the “top” programs, ., p,)(Ground(P) \ Py, M ;)

(1 <4 < n)are all odd-cycle free—and hence consistent, by Fagesdne. It follows by

the splitting theorem that for all= 1, ..., n, the progranP has a stable modéll such
thatM N atom(Py) = M, ;. As a consequence, @ is true (resp. false) in a stable model
of P, thenG must be true (resp. false) in a stable modePofConversely, by the splitting
theorem, ifG is true (resp. false) in a stable model®fthenG must be true (resp. false) in

a stable model oP;, (becauseaitom (Py) splits P). It follows easily that7 is a credulous
(resp. skeptical) consequenceBfiff G is a credulous (resp. skeptical) consequence of
Py. Of course, since the set of stable modeldpfis finite, recursive, and contains only
finite models, both the credulous and the skeptical consespseofP;, are decidable. [

Extending this result to disjunctive programs is not a étitask because, unfortunately,
Fage’s theorem does not scale to disjunctive programs irobapus way. Consider the
possible natural generalization of atom dependenciestinernolass of normal programs to
the class of disjunctive programs:

1. First assume that the unlabelled edge®¢f( P) are ignored, that is, lett depend
on B iff there is a path fromA to B in DG(P) with no unlabelled edges. This
is equivalent to adopting a dependency graph similar to réwditional graphs for
normal programs, with no head-to-head edges. Using thdtiresnotion of atom
dependencies, one can find programs that are order condistehave no stable
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models. One of them is

p1V D2

q1V g2
p1 < notqq
g1 < notps
P2 < not g

g2 < notp;p.

2. Next, suppose that unlabelled edges are regarded aispesities, that isd depends
positively (resp. negatively) o iff there is a path fromd to B in DG(P) with an
even (resp. odd) number of negative edges. The above irtensprogram is still
order consistent under this new notion of dependency.

3. Finally, assume that unlabelled edges are regarded ativesgdges. This is a natural
assumption given the minimization-based nature of digjuastable models: For
instance ifP = {p V ¢}, then the falsity ofp implies the truth of; and viceversa
(indeedP is equivalent to{p < not g, ¢ < notp}). A major problem is that with
this form of dependency, too many interesting disjunctivegpams arenot order
consistent:

e every rule with at least three atoms in the head generateddoyale through
those atoms, therefore the program would not be order densis

o for every cycleC containing a head-to-body edg4, +, B) originated by a
“proper” disjunctive rule (i.e., a rule with two or more atenn the head)
there exists an odd-cycle (possildlytself, or the cycle obtained by extending
C with a negative edge frord to another atom in the same head). This means
that disjunctive rules could never be applied in any recursi

Similar problems (preconditions that are difficult to eresim practical cases) affect
Turner’s approach to consistency (Turner 1994). slgned programgeneralize order
consistent normal programs as follows: It should be posdiblpartition the Herbrand
base into two set&l; and H, such that:

1. negative edges always cross the two partitions; postiges never do;
2. each rule head is entirely contained in a single partition
3. the set of rules whose head is containedinis a normal program.

Unfortunately, to the best of our knowledge no applicatiomdins naturally require pro-
grams satisfying the third condition (that roughly spegkimakes the program “half nor-
mal”).

A more recent paper (Bonatti 2002) ensures consistencydifirthe theory of program
shifting (Bonatti 1993). A shifting ofP is a modified version of? where some atoms
are moved from heads to bodies and enclosed in the scope afadiore symbol. This
transformation preserves the classical semantics of thgr@m but not its stable models.
However, every stable model of a shifted program is also lalestmodel of the original
program, so the consistency of the former implies the ctersiy of the latter. Then the
approach ofi(Bonatti 2002) consists in adding more comnutio the definition of finitary
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programs to ensure that at least one “full” shifting@®#transformingP into a normal
program—is finitary, so that the original consistency tleeohy Fages can be applied.
The main drawback of this approach is that the extra condittequired are clumsy and—
again—difficult to use in practice.

Avery interesting and novel recent approach by Eiter ank8#iSimkus and Eiter 2007)
consists in replacing the consistency property with othieperties enjoyed by some de-
cidable fragments of first-order logic such as descriptimids and the guarded fragment.
In these fragments, consistent theories always have bottita fhodel and a tree model
which is the “unwinding” of the finite model, i.e., a regulagé. Syntactic restrictions on
predicate arity and on the occurrences of function symbuotedglled around the skolem-
ization of guarded formulae) have been exploited to proeeditcidability of a new class
of finitely recursive programs called FDNC programs. In eanfework, this idea roughly
corresponds to having regular module sequences wheresaftee steps the new rules
contained inP; \ P;_; are isomorphic to some previous program sli¢e\ P, _; (j < 1).
Therefore in order to find a stable model®fone needs only to find a stable modélfor
some finite module’;, as a model for the upper part can then be constructed byngjoni
M or submodels thereof. FDNC programs can be applied to ermutdéngies expressed
in description logics, and are suitable to model a wide atdigganning problems. An in-
teresting open question is whether this approach can beajaeel to wider interesting
classes of programs by studying regular module sequences.

8 Conclusions

In this paper we have extensively studied the propertiesadfls model reasoning with
disjunctive, finitely recursive programs—a very expressarmalism for answer set pro-
gramming. Finitely recursive programs extend the classnitbfiy programs by dropping
the restrictions on odd-cycles, that is, on the number o§ibtes sources of inconsisten-
cies. We extended to finitely recursive programs many of tbe properties of finitary
programs: (i) a compactness property (Thedrem 4.5); @Y.#.-completeness of inconsis-
tency checking and skeptical inference (Theokem 5.4);tlie completeness of skeptical
resolution (Theorerin 6.9); note that this result appliesaomal programs only, unlike (i)
and (ii).

Unfortunately, some of the nice properties of finitary pags donot carry over to
finitely recursive programs: (i) ground queries are not dalle (Theorer 515 and Corol-
lary[5.8); (ii) nonground credulous queries are not seniitidate (Corollary 5.6).

We proved our results by extending the splitting sequersartim that, in general, guar-
antees only that each consistent progrhas a consistent module sequencefoie
proved that in general the converse does not hold (Examp®,dunlessP is finitely re-
cursive: In that case, the stable models of a consistent lnadguence always converge
to a model ofP (Theoreni 4.11).

As a side benefit, our techniques introduce a normal form ffiittisg sequences and
their bottom programs, where sequence length is limited tand—if the program is
finitely recursive—the sequence is smooth (i.e., the “d&kdween each non-limit element
and its predecessor is finite). Such properties constituitarnative characterization of
finitely recursive programs. The theory of module sequeiscapowerful tool for working
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on decidable inference with infinite stable models, as iviges a constructive, iterative
characterization of the stable models of a large class ajraros with infinite domains.
In Section ¥ we carried out a first attempt at relating différ@proaches using module
sequences as a unifying framework. However such an an@ysti#l very preliminary and
partially informal; its development constitutes an instireg subject for future work, and it
may contribute to recent areas such as research on FDNCaonsgr

Another interesting open problem is extending to disjugciprograms Fage’s con-
sistency result (an important ingredient in several ddilita results). The existing ap-
proaches are based on rather restrictive assumptionsathédgremore flexible solutions.

Finally, an interesting theoretical question is whetherpdical resolution can be ex-
tended to disjunctive programs. A related challenge is fig@i satisfactory goal-directed
calculus for the positive fragment, which is based on a mahimodel semantics.
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