
ar
X

iv
:0

90
1.

28
50

v1
 [

cs
.A

I]
 1

9
Ja

n
20

09

To appear in Theory and Practice of Logic Programming (TPLP) 1

On Finitely Recursive Programs∗

Sabrina Baselice, Piero A. Bonatti, Giovanni Criscuolo
Università di Napoli “Federico II”, Italy

submitted 7 April 2008; revised 30 December 2008; accepted 16 January 2009

Abstract

Disjunctivefinitary programsare a class of logic programs admitting function symbols andhence
infinite domains. They have very good computational properties, for example ground queries are de-
cidable while in the general case the stable model semanticsis Π

1

1-hard. In this paper we prove that
a larger class of programs, calledfinitely recursive programs, preserves most of the good properties
of finitary programs under the stable model semantics, namely: (i) finitely recursive programs enjoy
a compactness property; (ii) inconsistency checking and skeptical reasoning are semidecidable; (iii)
skeptical resolution is complete for normal finitely recursive programs. Moreover, we show how to
check inconsistency and answer skeptical queries using finite subsets of the ground program instan-
tiation. We achieve this by extending the splitting sequence theorem by Lifschitz and Turner: We
prove that if the input programP is finitely recursive, then the partial stable models determined by
any smooth splittingω-sequence converge to a stable model ofP .

KEYWORDS: Answer set programming with infinite domains, Infinite stable models, Finitary pro-
grams, Compactness, Skeptical resolution.

1 Introduction

Answer Set Programming (ASP) (Marek and Truszczynski 1998;Niemelä 1999) is one
of the most interesting achievements in the area of Logic Programming and Nonmono-
tonic Reasoning. It is a declarative problem solving paradigm, mainly centered around
some well-engineered implementations of the stable model semantics of logic programs
(Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991), such as SMODELS (Niemelä and Simons 1997)
and DLV (Eiter et al. 1997).

The most popular ASP languages are extensions of Datalog, namely, function-free, pos-
sibly disjunctive logic programs with negation as failure.The lack of function symbols
has several drawbacks, related to expressiveness and encoding style (Bonatti 2004). In
order to overcome such limitations and reduce the memory requirements of current im-
plementations, a class of logic programs calledfinitary programshas been introduced
(Bonatti 2004).

In finitary programs function symbols (hence infinite domains) and recursion are al-
lowed. However, recursion is restricted by requiring each ground atom to depend on finitely
many ground atoms; such programs are calledfinitely recursive. Moreover, only finitely

∗ This paper extends and refines (Baselice et al. 2007)

http://arxiv.org/abs/0901.2850v1

2 S. Baselice, P.A. Bonatti, G. Criscuolo

many ground atoms must occur inodd-cycles—that is, cycles of recursive calls involving
an odd number of negative subgoals—which means that there should be only finitely many
potential sources of inconsistencies. These two restrictions bring a number of nice seman-
tical and computational properties (Bonatti 2004). In general, function symbols make the
stable model semantics highly undecidable (Marek and Remmel 2001). On the contrary,
if the given program is finitary, then consistency checking,ground credulous queries, and
ground skeptical queries are decidable. Nonground querieswere proved to be r.e.-complete.
Moreover, a form of compactness holds: an inconsistent finitary program has always a fi-
nite unstable kernel, i.e. a finite subset of the ground instantiation of the program with no
stable models. All of these properties are quite unusual fora nonmonotonic logic.

As function symbols are being integrated in state-of-the-art reasoners such as DLV
(Calimeri et al. 2008), it is interesting to extend these good properties to larger program
classes. This goal requires a better understanding of the role of each restriction in the def-
inition of finitary programs. It has already been noted (Bonatti 2004) that by dropping the
first condition (i.e., if the program is not finitely recursive) one obtains a superclass of strat-
ified programs, whose complexity is then far beyond computability. In the same paper, it is
argued that the second restriction (on odd-cycles) is needed for the decidability of ground
queries. However, if a program is only finitely recursive (and infinitely many odd-cycles
are allowed), then the results of (Bonatti 2004) do not characterize the exact complexity of
reasoning and say nothing about compactness, nor about the completeness of the skeptical
resolution calculus (Bonatti 2001b).

In this paper we extend and refine those results, and prove that several important proper-
ties of finitary programs carry over to all disjunctive finitely recursive programs. We prove
that for all such programs the compactness property still holds, and that inconsistency
checking and skeptical reasoning are semidecidable. Moreover, we extend the complete-
ness of skeptical resolution (Bonatti 2001b; Bonatti 2004)to all normal finitely recursive
programs. Our results clarify the role that each of the two restrictions defining normal
finitary programs has in ensuring their properties.

In order to prove these results we use program splittings (Lifschitz and Turner 1994),
but the focus is shifted from splitting sequences (whose elements are sublanguages) to the
corresponding sequences of subprograms, that enjoy more invariant properties and may be
regarded as a sort of normal form for splitting sequences. For this purpose we introduce
the notion ofmodule sequence. It turns out that disjunctive finitely recursive programs
are exactly those disjunctive programs whose module sequences consist of finite elements.
Moreover a disjunctive finitely recursive programP has a stable model whenever each ele-
mentPi of the sequence has a stable model, a condition which is not valid in general for all
disjunctive programs with negation. This result provides an iterative characterization of the
stable models ofP . Module sequences and this theorem constitute a powerful formal tool
that may facilitate the proof of new consistency results, and provide a uniform framework
for comparing different approaches to decidable reasoningwith infinite domains.

The paper is organized as follows. The next section is devoted to preliminaries. In Sec-
tion 3, we define module sequences and study their properties. In Section 4, we prove that
every finitely recursive program with a consistent module sequence is consistent, and use
this result to extend the compactness property of finitary programs to all finitely recursive
programs. Complexity results and two simple sound and complete algorithms for incon-

On Finitely Recursive Programs 3

sistency checking and skeptical reasoning can be found in Section 5. Then, for a better,
goal-directed calculus, the completeness theorem for skeptical resolution is extended to all
finitely recursive programs in Section 6. Section 7 relates finitely recursive programs and
our iterative approach to previous approaches to decidablereasoning with infinite stable
models, and makes a first step towards a unified picture based on our framework. Finally,
Section 8 concludes the paper with a summary and a brief discussion of our results, as well
as some interesting directions for future research.

2 Preliminaries

We assume the reader to be familiar with the classical theoryof logic programming (Lloyd 1984).
Disjunctive logic programsare sets of (disjunctive) rules

A1 ∨ A2 ∨ ... ∨ Am ← L1, ..., Ln (m > 0, n ≥ 0),

where eachAj (j = 1, ...,m) is a logical atom and eachLi (i = 1, ..., n) is a literal, that
is, either a logical atomA or a negated atomnotA.

If r is a rule with the above structure, then lethead(r) = {A1, A2, ..., Am} and
body(r) = {L1, ..., Ln}. Moreover, letbody+(r) (respectivelybody−(r)) be the set of
all atomsA such thatA (respectivelynotA) belongs tobody(r).

Normal logic programsare disjunctive logic programs whose rulesr have one atom in
their head, that is,|head(r)| = 1.

The ground instantiation of a programP is denoted byGround(P), and the set of atoms
occurring inGround(P) is denoted byatom(P). Similarly, atom(r) denotes the set of
atoms occurring in a ground ruler.

A Herbrand modelM of P is astable modelof P iff M ∈ lm(PM), wherelm(X) de-
notes the set of least models of a positive (possibly disjunctive) programX , andPM is the
Gelfond-Lifschitz transformation(Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991)
of P , obtained fromGround(P) by

i) removing all rulesr such thatbody−(r) ∩M 6= ∅, and
ii) removing all negative literals from the body of the remaining rules.

Disjunctive and normal programs may have one, none, or multiple stable models. We
say that a program isconsistentif it has at least one stable model; otherwise the program
is inconsistent. A skepticalconsequence of a programP is any closed first order formula
satisfied by all the stable models ofP . A credulousconsequence ofP is any closed first
order formula satisfied by at least one stable model ofP .

Thedependency graph of a programP is a labelled directed graph, denoted byDG(P),
whose vertices are the ground atoms ofP ’s language. Moreover,

i) there exists an edge labelled ‘+’ (called positive edge) fromA toB iff for some rule
r ∈ Ground(P), A ∈ head(r) andB ∈ body(r);

ii) there exists an edge labelled ‘-’ (called negative edge)fromA toB iff for some rule
r ∈ Ground(P), A ∈ head(r) andnotB ∈ body(r);

iii) there exists an unlabelled edge fromA to B iff for some ruler ∈ Ground(P),
A ∈ head(r) andB ∈ head(r).

4 S. Baselice, P.A. Bonatti, G. Criscuolo

An atomA depends positively(respectivelynegatively) onB if there is a directed path
fromA to B in the dependency graph with an even (respectively odd) number of negative
edges. Moreover, each atom depends positively on itself.A dependson B if A depends
positively or negatively onB.

An odd-cycleis a cycle in the dependency graph with an odd number of negative edges.
A ground atom isodd-cyclicif it occurs in an odd-cycle. Note that there exists an odd-cycle
iff some ground atomA depends negatively on itself.

The class of programs on which this paper is focussed can now be defined very concisely.

Definition 2.1
A disjunctive programP is finitely recursiveiff each ground atomA depends on finitely
many ground atoms inDG(P)1.

For example, most standard list manipulation programs (member, append, remove etc.)
are finitely recursive. The reader can find numerous examplesof finitely recursive programs
in (Bonatti 2004). In general, checking whether a program isfinitely recursive is undecid-
able (Bonatti 2004). However, in (Bonatti 2001a; Bonatti 2004) a large decidable subclass
has been implicitly characterized via static analysis techniques. Another expressive, decid-
able class of finitely recursive programs can be found in (Simkus and Eiter 2007).

We will also mention frequently an important subclass of finitely recursive programs:

Definition 2.2(Finitary programs)
We say that a disjunctive programP is finitary if the following conditions hold:

1. P is finitely recursive.
2. There are finitely many odd-cyclic atoms in the dependencygraphDG(P).

Finitary programs have very good computational properties(for example ground infer-
ences are decidable). Many interesting programs, however,are finitely recursive but not
finitary, due to integrity constraints that apply to infinitely many individuals.

Example 2.3
Typical programs for reasoning about actions and change arefinitary. Fig. 4 of (Bonatti 2004)
illustrates one of them, modelling a blocks world. That program defines—among others—
two predicatesholds(fluent , time) anddo(action, time). The simplest way to add a con-
straint that forbids any parallel execution of two incompatible actionsa1 anda2 is includ-
ing a rule

f ← not f, do(a1, T), do(a2, T)

in that program, wheref is a fresh propositional symbol (often such rules are equivalently
expressed asdenialslike ← do(a1, T), do(a2, T)). This program is not finitary (because
f depends on infinitely many atoms sinceT has an infinite range of values) but it can be
reformulated as a finitely recursive program by replacing the above rule with

f(T)← not f(T), do(a1, T), do(a2, T) .

1 This definition differs from the one adopted in (Bonatti 2002) because it is based on a different notion of
dependency. Here the dependency graph contains edges between atoms occurring in the same head, while in
(Bonatti 2002) such dependencies are dealt with in a third condition in the definition of finitary programs.
Further comparison with (Bonatti 2002) can be found in Section 7.

On Finitely Recursive Programs 5

Note that the new program is finitely recursive but not finitary, because the new rule intro-
duces infinitely many odd cycles (one for each instance off(T)).

Our results on finitely recursive programs depend on thesplitting theoremthat allows to
construct stable models in stages. In turn, this theorem is based on the notion ofsplitting
set.

Definition 2.4(Splitting set and bottom program (Baral 2003; Lifschitz andTurner 1994))

A splitting setof a disjunctive logic programP is any setU of ground atoms such that, for
all rulesr ∈ Ground(P), if head(r) ∩U 6= ∅ thenatom(r) ⊆ U . If U is a splitting set for
P , we also say thatU splitsP . The set of rulesr ∈ Ground(P) such thathead(r)∩U 6= ∅
is called thebottomof P relative to the splitting setU and is denoted bybotU (P). The
subprogramGround(P) \ botU (P) is called thetopof P relative toU .

The bottom program characterizes the restriction of the stable models ofP to the language
determined by the splitting set. The top program determinesthe rest of each stable model;
for this purpose it should be partially evaluated with respect to the stable models of the
bottom.

Definition 2.5(Partial evaluation (Baral 2003; Lifschitz and Turner 1994))
Thepartial evaluationof a disjunctive logic programP with splitting setU with respect
to a set of ground atomsX is the programeU (Ground(P), X) defined as follows:

eU (Ground(P), X) ={r′ | there existsr ∈ Ground(P) s.t.(body+(r) ∩ U) ⊆ X

and(body−(r) ∩ U) ∩X = ∅, andhead(r′) = head(r),

body+(r′) = body+(r) \ U, body−(r′) = body−(r) \ U } .

We are finally ready to formulate the splitting theorem (and hence the modular construction
of stable models based on the top and bottom programs) in formal terms.

Theorem 2.6(Splitting theorem (Lifschitz and Turner 1994))
Let U be a splitting set for a disjunctive logic programP . An interpretationM is a stable
model ofP iff M = I ∪ J , where

1. I is a stable model ofbotU (P), and
2. J is a stable model ofeU (Ground(P) \ botU (P), I).

The splitting theorem has been extended totransfinite sequencesin (Lifschitz and Turner 1994).
A (transfinite) sequence is a family whose index set is an initial segment of ordinals,
{α : α < µ}. The ordinalµ is thelengthof the sequence.

A sequence〈Uα〉α<µ of sets ismonotoneif Uα ⊆ Uβ wheneverα < β, andcontinuous
if, for each limit ordinalα < µ, Uα =

⋃

ν<α Uν .

Definition 2.7(Lifschitz-Turner, (Lifschitz and Turner 1994))
A splitting sequencefor a disjunctive programP is a monotone, continuous sequence
〈Uα〉α<µ of splitting sets forP such that

⋃

α<µ Uα = atom(Ground(P)) .

Lifschitz and Turner generalize the splitting theorem to splitting sequences.

6 S. Baselice, P.A. Bonatti, G. Criscuolo

Theorem 2.8(Splitting sequence theorem (Lifschitz and Turner 1994))
Let P be a disjunctive program.2 M is a stable model ofP iff there exists a splitting
sequence〈Uα〉α<µ such that

1. M0 is a stable model ofbotU0
(P),

2. for all successor ordinalsα < µ, Mα is a stable model ofeUα−1
(botUα

(P) \

botUα−1
(P),

⋃

β<α Mβ),
3. for all limit ordinalsλ < µ, Mλ = ∅,
4. M =

⋃

α<µ Uα.

3 Module sequences and a normal form for splitting sequences

In this section we replace the sequences of program slicesbotUα
(P)\botUα−1

(P) adopted
by Lifschitz and Turner with slightly different and simplerprogram module sequences.
Then we prove some properties of module sequences that will be useful in proving our
main results.

Definition 3.1(GH, Module sequence)
LetP be a disjunctive program and let the set of itsground head atomsbe

GH = { p | p ∈ head(r), r ∈ Ground(P) }.

Themodule sequenceP1, P2, ..., Pn, ... induced by an enumerationp1, p2, ..., pn, ... of
GH is defined as follows:

P1 = { r ∈ Ground(P) | p1 depends on someA ∈ head(r) }

Pi+1 = Pi ∪ { r ∈ Ground(P) | pi+1 depends on someA ∈ head(r) } (i ≥ 1).

Of course, we are particularly interested in those properties of module sequences that
are independent from the enumeration of GH. We say that a ground subprogramP ′ ⊆

Ground(P) is downward closed, if for each atomA occurring inatom(P ′), the subpro-
gramP ′ contains all the rulesr ∈ Ground(P) such thatA ∈ head(r).

Proposition 3.2
LetP be a disjunctive program. For all module sequencesP1, P2, ..., for P :

1.
⋃

i≥1 Pi = Ground(P),
2. for eachi ≥ 1 andj ≥ i, atom(Pi) is a splitting set ofPj , andPi = botatom(Pi)(Pj),
3. for eachi ≥ 1, atom(Pi) is a splitting set ofP , andPi = botatom(Pi)(P),
4. for eachi ≥ 1, Pi is downward closed.

This proposition follows easily from the definitions. It shows that each module sequence
for P consists of the bottom programs corresponding to a particular splitting sequence
〈atom(Pi)〉i<ω that depends on the underlying enumeration ofGH . Roughly speaking,
such sequences (whose length is limited byω) constitute anormal formfor splitting se-
quences and enjoy useful properties that are invariant withrespect to the enumeration.

2 The splitting sequence theorem holds for disjunctive logicprograms extended with so-calledstrong negation
that, however, is essentially syntactic sugar. Therefore,for the sake of simplicity, we ignore it here.

On Finitely Recursive Programs 7

Definition 3.3(Smoothness)
A transfinite sequence of sets〈Xα〉α<µ is smoothiff X0 is finite and for each non-limit
ordinalα+ 1 < µ, the differenceXα+1 \Xα is finite.

Note that whenµ = ω (as in module sequences), smoothness implies that eachXα in
the sequence is finite. Finitely recursive programs are completely characterized by smooth
module sequences:

Theorem 3.4
For all disjunctive logic programsP , the following are equivalent:

1. P is finitely recursive;
2. P has a smooth module sequence (where eachPi is finite);
3. all module sequences forP are smooth.

Proof
(1⇒ 3) Let P be a finitely recursive program and lete = p1, p2, . . . be any enumer-

ation of GH . If S = P1, P2, . . . is the module sequence induced by the enumera-
tion e thenS is smooth because, for each atompi in e, the set{ r ∈ Ground(P) |

pi depends on some A ∈ head(r) } is finite, asP is finitely recursive. Since this holds
for an arbitrary enumeratione, all module sequences forP are smooth.

(3⇒ 2) Trivial.
(2⇒ 1) LetS = P1, P2, . . . , be a smooth module sequence forP and letp be an atom in
Ground(P). By Proposition 3.2.(1), there is a programPi in S such thatp ∈ atom(Pi).
Moreover,Pi is downward closed by definition of module sequence and it is finite be-
causeS is smooth. Thenp depends only on finitely many ground atoms. Sincep has been
arbitrarily chosen, the same holds for all ground atoms, thereforeP is finitely recursive.

Smooth module sequences clearly correspond to smooth splitting sequences of length
ω. In particular, for each smooth module sequence〈Pi〉i<ω , 〈atom(Pi)〉i<ω is a smooth
splitting sequence. Conversely, given a smooth splitting sequence〈Ui〉i<ω and an arbitrary
enumerationp1, p2, . . . , pi, the resulting module sequence must necessarily be smooth.
Suppose not; then somepi must depend on infinitely many atoms. Consequently, all the
setsUj containingpi should be infinite as well (a contradiction). Note that in general a
smooth splitting sequence does not strictly correspond to amodule sequence. For example,
the difference between two consecutive elements of a splitting sequence may contain two
atoms that do not depend on each other, while this is impossible in module sequences by
construction.

Using the above relationships between smooth module sequences and smooth splitting
sequences of lengthω, the characterization of finitely recursive programs can becompleted
as follows, in terms of standard splitting sequences:

Corollary 3.5
For all disjunctive programsP , the following are equivalent:

1. P is finitely recursive;
2. P has a smooth splitting sequence of lengthµ ≤ ω.

8 S. Baselice, P.A. Bonatti, G. Criscuolo

Proof
A straightforward consequence of Theorem 3.4 and the correspondence between smooth
module sequences and smooth splitting sequences of lengthµ ≤ ω.

Note the asymmetry between Corollary 3.5 and Theorem 3.4. Itcan be explained by
the generality of splitting sequences: even if the underlying program is finitely recursive,
splitting sequences are not forced to be all smooth. For example, the finitely recursive
program

even(0)

even(s(s(X))) ← even(X)

odd(s(0))

odd(s(s(X))) ← odd(X)

has a non-smooth splitting sequence〈{even(sn(X)) | n even}, {odd(sn(X)) | n odd}〉 .
Next we illustrate how module sequences provide an incremental characterization of the

stable models of disjunctive logic programs.
Roughly speaking, the following theorem rephrases the splitting sequence theorem of

(Lifschitz and Turner 1994) in terms of module sequences. The original splitting sequence
theorem applies to sequences of disjoint program “slices”,while our theorem applies to
monotonically increasing program sequences. Since no direct proof of the splitting se-
quence theorem was ever published (only the proof of a more general result for default
logic was published (Turner 1996)), here we give a direct proof of our result.

Theorem 3.6(Module sequence theorem)
Let P be a disjunctive program andP1, P2, ... be a module sequence forP . ThenM is a
stable model ofP iff there exists a sequenceM1,M2, ... such that :

1. for eachi ≥ 1, Mi is a stable model ofPi,
2. for eachi ≥ 1, Mi = Mi+1 ∩ atom(Pi),
3. M =

⋃

i≥1 Mi.

Proof
Let M be a stable model ofP . SinceP1, P2, ... is a module sequence forP then for
eachi ≥ 1, atom(Pi) is a splitting set ofP andPi = botatom(Pi)(P). Consider the
sequence of modelsMi = M ∩ atom(Pi) , (1 ≤ i < ω). By the splitting theorem
(Lifschitz and Turner 1994), for eachi ≥ 1, Mi is a stable model ofPi. Second, since
Pi+1 ⊇ Pi, we haveMi = M ∩ atom(Pi) = (M ∩ atom(Pi+1)) ∩ atom(Pi) =

Mi+1 ∩ atom(Pi) . Finally, by Proposition 3.2.(1) we have
⋃

iMi = M . Then for each
stable modelM of P there exists a sequence of finite sets of ground atoms that satisfies
properties 1, 2 and 3.

Conversely, letP be a disjunctive logic program. For the sake of readability,we assume
without loss of generality thatP is ground. Suppose that there exists a sequenceM1,M2, ...

that satisfies properties 1, 2 and 3. We have to prove that the setM =
⋃

i≥1 Mi is a stable
model ofP ; equivalently,

⋃

i≥1

Mi ∈ lm(PM).

On Finitely Recursive Programs 9

Properties 2 and 3 imply that for alli ≥ 1, (M ∩ atom(Pi)) = Mi; consequentlyPM
i =

PMi

i and by Proposition 3.2.(1),

PM =





⋃

i≥1

Pi





M

=
⋃

i≥1

PM
i =

⋃

i≥1

PMi

i . (1)

First we prove thatM is a model ofPM , that is for each ruler in PM , if body(r) ⊆M

thenhead(r)∩M 6= ∅. Let r be any rule inPM such thatbody(r) ⊆M . By equation (1),
there is an integeri ≥ 1 such thatr ∈ PMi

i . Moreover, it is not hard to prove that properties
2, 3 andbody(r) ⊆ M imply body(r) ⊆ Mi. Now, sinceMi is a stable model ofPi and
body(r) ⊆Mi, we havehead(r)∩Mi 6= ∅. It follows immediately thathead(r)∩M 6= ∅.
Since this holds for anyr ∈ PM , we conclude thatM is a model ofPM .

We are left to show thatM is a minimal model forPM . Suppose thatPM has a model
M ′ ⊂ M . Let p ∈ (M \ M ′) and leti be an integer such thatp ∈ atom(Pi). Since
PM
i = PMi

i is a bottom program forPM thenM ′∩atom(Pi) is a model forPMi

i and it is
strictly contained inMi, but this is a contradiction because by hypothesisMi is a minimal
model ofPMi

i .

The module sequence theorem (respectively, the splitting sequence theorem) suggests
a relationship between the consistency of a programP and the consistency of each step
in P ’s module sequences (respectively, the sequence of programslices induced byP ’s
splitting sequences). To clarify this point we introduce another invariant property of module
sequences.

Definition 3.7
A module sequenceS = P1, P2, ... for a disjunctive programP is inconsistentif for some
i < ω, Pi is inconsistent; otherwiseS is consistent.

Proposition 3.8
If a disjunctive programP has an inconsistent module sequence thenP is inconsistent.

Proof
Suppose thatP has an inconsistent module sequenceP1, P2, ..., that is, somePi in the
sequence is inconsistent. It follows thatP has an inconsistent bottom program and hence
P is inconsistent by the splitting theorem.

Theorem 3.9
LetS = P1, P2, ... be a module sequence for a disjunctive programP . If S is inconsistent
then each module sequence forP is inconsistent.

Proof
Let S = P1, P2, ... be an inconsistent module sequence forP induced by the enumeration
p1, p2, ... of GH and leti be the least index such thatPi is inconsistent. LetS′ = P ′

1, P
′
2, ...

be any module sequence forP induced by the enumerationp′1, p
′
2, ... of GH . Sincei is fi-

nite, there exists a finitek such that{p1, p2, ..., pi} ⊆ {p′1, p
′
2, ..., p

′
k}. So, by construction,

Pi ⊆ P ′
k and thenatom(Pi) ⊆ atom(P ′

k). Moreover, by definition,Pi is downward
closed, thereforePi = botatom(Pi)(P

′
k). SincePi is inconsistent,P ′

k is inconsistent (by the
splitting theorem) and henceS′ is inconsistent, too.

10 S. Baselice, P.A. Bonatti, G. Criscuolo

In other words, for a given programP , either all module sequences are inconsistent, or
they are all consistent. In particular, ifP is consistent, then every memberPi of any mod-
ule sequence forP must be consistent. The converse property would allow to define a
procedure for enumerating the stable models ofP (as shown in the following sections).
Unfortunately, even if each step in a module sequence is consistent, the entire programP
is not necessarily consistent, as shown by the following example.

Example 3.10

As a preliminary step, consider the following programPf (due to Fages (Fages 1994)):

q(X)← q(f(X)).

q(X)← not q(f(X)).

r(0).

The third rule is only needed to introduce the constant0 into the program’s language.
This program is inconsistent. To see this, note that – roughly speaking – the first two

rules inPf are classically equivalent to

q(X)← q(f(X)) ∨ not q(f(X)) .

Since the body is a tautology and the stable models of a program are also classical models
of the program (ifnot is interpreted as¬), we have that every stable model ofPf should
satisfy all ground instances ofq(X). However, the Gelfond-Lifschitz transformation with
respect to such a model would contain only the first and the third program rules, and hence
the least model of the transformation would contain no instance ofq(X). It follows thatPf

is inconsistent (it has no stable models). Now consider the following extensionP of Pf :

1. q(X)← q(f(X)), p(X).

2. q(X)← not q(f(X)), p(X).

3. r(0).

4. p(X)← not p′(X).

5. p′(X)← not p(X).

6. c(X)← not c(X), notp(X).

The programP is inconsistent, too. To verify it, suppose thatM is a stable model ofP .
By rules 4 and 5, for all ground instances ofX , exactly one ofp(X) andp′(X) is true in
M . However, ifp(X) is false, then rule 6 produces an inconsistency due to the odd-cycle
involving c(X). It follows that all ground instances ofp(X) must be true inM . But then
rules 1, 2 and 3 become equivalent to programPf and preventM from being a stable
model, as explained above. SoP is inconsistent.

Next, consider the enumeratione = r(0), q(0), p(0), p′(0), c(0), q(f(0)), p(f(0)),

p′(f(0)), c(f(0)), ... , of the setGH . This enumeration induces the following module
sequence forP (where the expression[X/t] denotes the substitution mappingX ontot):

On Finitely Recursive Programs 11

P0 = {r(0)}

P1 = P0 ∪
⋃

k<ω{ q(X)← q(f(X)), p(X),

q(X)← not q(f(X)), p(X),

p(X)← notp′(X),

p′(X)← not p(X) } [X/fk(0)]

Pi+1 = Pi ∪ {c(X)← not c(X), not p(X)} [X/f i−1(0)] (i ≥ 1) .

Note thatM0 = {r(0)} is a stable model ofP0 and for eachi ≥ 1 andk ≥ i− 2

Mk
i = {r(0), p(f0(0)), p(f1(0)), p(f2(0)), . . . , p(fk(0)),

p′(fk+1(0)), p′(fk+2(0)), . . . , p′(fk+j(0)), . . .

q(f0(0)), q(f1(0)), q(f2(0)), . . . , q(fk(0))}

is a stable model ofPi. Therefore, eachPi is consistent while
⋃

i Pi = Ground(P)

is inconsistent. This happens because for each stable modelM of P1 there exists aPj

(j > 1) such thatM is not the bottom part of any stable model ofPj . Intuitively, M
has been “eliminated” at stepj. In this exampleP1 has infinitely many stable models, and
it turns out that no finite step eliminates them all. Consequently, eachPi in the module
sequence is consistent, but the entire program is not.

Note thatP is not finitely recursive because, for each grounding substitutionσ, q(X)σ

depends on the infinite set of ground atoms{ q(f(X))σ, q(f(f(X)))σ, ... } (due to rules
(1) and (2)). In the following section we are going to prove that finitely recursive programs
are not affected by the problem illustrated in Example 3.10,that is, they enjoy the converse
of Theorem 3.9. This property will be used to design an effective enumeration procedure
for their stable models.

4 Compactness property of disjunctive finitely recursive programs

Here we prove that the compactness theorem proved in (Baselice et al. 2007) for normal
finitely recursive programs actually holds for all disjunctive finitely recursive programs.

The first step is to prove the converse of Theorem 3.9 for all finitely recursive programs.

Theorem 4.1
For all disjunctive finitely recursive programsP , if some module sequence forP is con-
sistent, thenP is consistent.

Proof
Let S be any module sequence forP . If S is consistent, then each modulePi in S has a
nonempty set of stable models. It suffices to prove that thereexists a sequenceM1,M2, ...

of stable models ofP1, P2, ..., respectively, that satisfy the properties of Theorem 3.6,
because this implies thatM =

⋃

iMi is a stable model ofP .
We call a stable modelMi of Pi “bad” if there exists ak > i such that no stable model

Mk of Pk extendsMi, “good” otherwise. We say thatMk extendsMi if Mk∩atom(Pi) =

Mi.

12 S. Baselice, P.A. Bonatti, G. Criscuolo

Claim 1: EachPi must have at least one“good” stable model.
To prove the claim, suppose that there exists ani such that all stable models ofPi are

“bad” . SincePi is a finite program, it has a finite numberMi,1, ...,Mi,r of stable models.
By assumption, for eachMi,j there is a programPkj

none of whose stable models extends
Mi,j. Let k = max{k1, ..., kr}; clearly, no stable model ofPk extends any stable model
of Pi, and this is a contradiction becausePk, by hypotheses, has at least one stable model
Mk and by the splitting theorem,Mk must extend a stable model ofPi. This proves Claim
1.

Claim 2: Each“good” stable modelMi of Pi is extended by some“good” stable model
Mi+1 of Pi+1.

Suppose not. Then, none of the stable modelsMi+1,1, . . . ,Mi+1,r of Pi+1 that extend
the good stable modelMi of Pi is good. This implies (by analogy with the proof of Claim
1) that there exists a modulePk (k > i + 1) none of whose stable models extends any of
Mi+1,1, . . . ,Mi+1,r. It follows that none ofPk ’s stable models can extendMi, and this
contradicts the hypothesis thatMi is good.

From the two claims it follows immediately that there existsan infinite sequenceM1,

M2, ... that satisfies properties 1 and 2 of Theorem 3.6 and hence the unionM =
⋃

iMi is
a stable model ofP .

Note that in Example 3.10, moduleP1 is infinite and has infinitely many stable models, all
of which are “bad”. Each of them is eliminated at some step, but no finite step eliminates
them all, which is why that module sequence is consistent although the entire programP
is not.

Theorem 4.1 can be extended to all smooth splitting sequences with lengthω:

Corollary 4.2
Let 〈Uα〉α<ω be a smooth splitting sequence for a disjunctive programP . ThenP is con-
sistent iff for allα < ω, botUα

(P) is consistent.

Proof
A straightforward consequence of the correspondence between module and splitting se-
quences.

The restriction to sequences with lengthω is essential to derive the above corollary,
which is not valid otherwise, as shown by the following example.

Example 4.3
LetP be the following program, where rule 1 has the role of creating an infinite Herbrand
domain:

1. r(f(0)).
2. p(X)← not q(X).

3. q(X)← not p(X).

4. some q ← q(X).

5. f ← not f, not some q.

6. c(X)← not c(X), q(X).

On Finitely Recursive Programs 13

This program is inconsistent for the following reasons: Forall ground instances ofX ,
rules 2 and 3 force exactly one ofp(X) and q(X) to be true. If no instance ofq(X)

is true, then rules 4 and 5 create a contradiction by “activating” the odd-cycle involving
f . However, if some instance ofq(X) is true, then rule 6 generates a contradiction by
“activating” the odd-cycle involvingc(X). It follows thatP has no stable models.

However,P has a smooth splitting sequence with length2ω whose bottom programs are
all consistent:

U0 = { p(0), q(0), r(0) }

Ui = Ui−1 ∪ { p(f
i(0)), q(f i(0)), r(f i(0)) } (0 < i < ω)

Uω =
⋃

i<ω

Ui

Uω+1 = Uω ∪ { some q, f, c(0) }

Uω+j+1 = Uω+j ∪ { c(f
j(0)) } (0 ≤ j < ω).

In particular,

i) botUω
(P) has infinitely many stable models, one for each choice between p(X) and

q(X), for all instances ofX ;

ii) botUω+1
(P) keeps all the stable models where at least one instance ofq(X) is true;

iii) botUω+j+1
(P) keeps only those stable models where the first true instance of q(X)

is q(fk(0)) with k > j.

Now we are ready to extend the compactness property of finitary normal programs to all
disjunctive finitely recursive programs.

Definition 4.4

An unstable kernelfor a disjunctive programP is a setK ⊆ Ground(P) with the following
properties:

1. K is downward closed.

2. K has no stable model.

Theorem 4.5(Compactness)

A disjunctive finitely recursive programP has no stable model iff it has a finite unstable
kernel.

Proof

By Proposition 3.8 and Theorem 4.1,P has no stable model iff it has an inconsistent
module sequence. So, letP1, P2, ..., Pn, ... be an inconsistent module sequence forP and
choose an indexi ≥ 1 such thatPi is inconsistent. By Proposition 3.2,Pi ⊆ Ground(P);
moreover,Pi is downward closed. ThenPi is an unstable kernel forP . Moreover, by
Theorem 3.4,Pi is finite.

14 S. Baselice, P.A. Bonatti, G. Criscuolo

5 Reasoning with disjunctive finitely recursive programs

By taking an effective enumeration of the setGH of ground head atoms, one can effec-
tively compute each element of the corresponding module sequence. Let us callCON-
STRUCT(P, i) an effective procedure that, given a finitely recursive programP and an
indexi, returns the ground programPi, and letSM (Pi) be an algorithm that computes the
finite set of the finite stable models ofPi:

Theorem 5.1
Let P be a disjunctive finitely recursive program. Deciding whether P is inconsistent is
semidecidable.

Proof
Given a module sequenceP1, P2, ..., Pn, ... for the programP , consider the algorithm
CONSISTENT(P).

Algorithm CONSISTENT(P)

1: i = 0;
2: answer = TRUE;
3: repeat
4: i = i+ 1;
5: Pi =CONSTRUCT(P, i);
6: if SM (Pi) = ∅ then
7: answer = FALSE;
8: until ¬answer ORPi = Ground(P)

9: return answer;

By Proposition 3.8 and Theorem 4.1,P is inconsistent iff there exists ani ≥ 1 such
thatPi is inconsistent (note that we can always check the consistency of Pi becausePi is
finite). Then, the algorithm returnsFALSE iff P is inconsistent.

Note that ifGround(P) is infinite then any module sequence forP is infinite and the
algorithmCONSISTENT(P) terminates iffP is not consistent.

Next we deal with skeptical inference. Recall that a closed first order formulaF is a
skeptical consequence ofP iff F is satisfied (according to classical semantics) by all the
stable models ofP .

Theorem 5.2
Let P be a disjunctive finitely recursive program andP1, P2, ... be a module sequence for
P . A ground formulaF in the language ofP is a skeptical consequence ofP iff there exists
a finitek ≥ 1 such thatF is a skeptical consequence ofPk andatom(F) ⊆ atom(Pk).

Proof
Let h be the least integer such thatatom(F) ⊆ atom(Ph) (note that there always exists
such anh becauseatom(F) is finite). Suppose that there exists ak ≥ h such thatF is a
skeptical consequence ofPk. SincePk is a bottom program forP , then each stable model
M of P extends a stable modelMk of Pk and then satisfiesF (here the assumption that

On Finitely Recursive Programs 15

atom(F) ⊆ atom(Pk) is essential to conclude thatM andMk agree on the truth ofF).
So,F is a skeptical consequence ofP . This proves the “if” part.

Now suppose that, for eachk ≥ h, F is not a skeptical consequence ofPk. This implies
that eachPk is consistent (henceP is consistent) and, moreover, the setS of all the stable
models ofPk that falsifyF is not empty.

Note thatS is finite becausePk is finite (asP is finitely recursive). So, if all the models
in S are “bad” (cf. the proof of Theorem 4.1), then there exists a finite integerj > k such
that no model ofPj contains any model ofS. Consequently,F is a skeptical consequence
of Pj—a contradiction.

Therefore at least one of these model must begood. Then there must be a modelM of
P that contains this “good” model ofPk, and henceF is not a skeptical consequence of
P .

The next theorem follows easily.

Theorem 5.3
Let P be a disjunctive finitely recursive program. For all ground formulasF , the problem
of deciding whetherF is a skeptical consequence ofP is semidecidable.

Proof
Given a module sequenceP1, P2, ..., Pn, ... for the programP , consider the algorithm
SKEPTICAL(P, F).

Algorithm SKEPTICAL(P, F)

1: answer = FALSE;
2: i = 0;
3: repeat
4: i = i+ 1;
5: Pi =CONSTRUCT(P, i);
6: until atom(F) ⊆ atom(Pi)

7: repeat
8: if SM (Pi) = ∅ ORPi skeptically entailsF then
9: answer = TRUE;

10: else
11: i = i+ 1;
12: Pi =CONSTRUCT(P, i);
13: until answer ORPi = P

14: return answer;

For eachPi such thatatom(F) ⊆ atom(Pi), the algorithmSKEPTICAL(P, F) checks
if F is a skeptical consequence ofPi. SincePi is finite, we can always decide ifF is a
skeptical consequence ofPi. So, by Theorem 5.2, the algorithm returnsTRUE iff F is a
skeptical consequence ofP .

Note that ifGround(P) is infinite then any module sequence forP is infinite and the
algorithmSKEPTICAL(P, F) teminates iffF is a skeptical consequence ofP .

16 S. Baselice, P.A. Bonatti, G. Criscuolo

For a complete characterization of the complexity of groundqueries and inconsistency
checking, we are only left to prove that the above upper bounds are tight. Actually, we
prove slightly stronger lower bounds, that hold even fornormalfinitely recursive programs.

Theorem 5.4
Deciding whether a normal finitely recursive programP is inconsistent is r.e.-hard.

Proof
The proof is by reduction of the problem of skeptical inference of a quantified formula over
a finitary normal program (proved to be r.e.-complete in (Bonatti 2004, Corollary 23)) to
the problem of inconsistency checking over a normal finitelyrecursive program.

Let P be a finitary program and∃F be a closed existentially quantified formula. Let
((l11∨ l12 ∨ ...)∧ (l21∨ l22 ∨ ...) ∧ ...) be the conjunctive normal form of¬F . Then∃F is
a skeptical consequence ofP iff the programP ∪ C is inconsistent, where

C =











p1(~x1)← not l11, not l12, ..., notp1(~x1)

p2(~x2)← not l21, not l22, ..., notp2(~x2)
...











,

p1, p2, ... are new atom symbols not occurring inP orF , and~xi is the vector of all variables
occurring in(li1∨ li2 ∨ ...). Note thatP ∪ C is a normal finitely recursive program.

The constraints inC add no model toP , but they only discard those models ofP that
satisfyFθ (for some substitutionθ). So, letSM (P) be the set of stable models ofP . Then
each model inSM (P ∪C) satisfies∀¬F . SM (P ∪C) = ∅ (that isP ∪C is inconsistent)
iff either SM (P) = ∅ or all stable models ofP satisfy∃F . ThenSM (P ∪ C) = ∅ iff ∃F
is a skeptical consequence ofP .

Theorem 5.5
Deciding whether a normal finitely recursive programP skeptically entails a ground for-
mulaF is r.e.-hard.

Proof
The proof is by reduction of inconsistency checking for normal finitely recursive programs
to the problem of skeptical inference of a ground formula from a normal finitely recursive
program.

Let P be a normal finitely recursive program andq be a new ground atom that doesn’t
occur inP . Then,P is inconsistent iffq is a skeptical consequence ofP . Sinceq occurs in
the head of no rule ofP , q cannot occur in a model ofP . So,P skeptically entailsq iff P

has no stable model.

Corollary 5.6
Deciding whether a disjunctive finitely recursive programP credulously entails a ground
formulaF is co-r.e. complete.

Proof
The proof follows immediately from Theorems 5.3 and 5.5 and from the fact that a ground
formulaF is a credulous consequence ofP iff ¬F is not a skeptical consequence ofP .

On Finitely Recursive Programs 17

6 Skeptical resolution for finitely recursive normal programs

In this section we extend the work in (Bonatti 2001b; Bonatti2004) by proving that skep-
tical resolution (a top-down calculus which is known to be complete for Datalog and nor-
mal finitary programs under the skeptical stable model semantics) is complete also for
the class of finitely recursive normal programs. Skeptical resolution has several interesting
properties. For example, it does not require the input programP to be instantiated before
reasoning (unlike the major state-of-the-art stable modelreasoners), and it can produce
nonground (i.e., universally quantified) answer substitutions. The goal-directed nature of
skeptical resolution makes it more interesting than the naive algorithms illustrated in Sec-
tion 5.

We are not describing all the formal details of the calculus here—the reader is referred to
(Bonatti 2001b). Skeptical resolution is based ongoals with hypotheses(h-goalsfor short)
which are pairs(G | H) whereH andG are finite sequences of literals. Roughly speaking,
the answer to a query(G | H) should beyesif G holds in all the stable models that satisfy
H . Hence(G | H) has the same meaning in answer set semantics as the implication
(
∧

G←
∧

H). Finally, askeptical goal(s-goalfor short) is a finite sequence of h-goals.
The calculus consists of five inference rules:

Resolution. This rule may take two forms; a literal can be unified with either a program
rule or a hypothesis. First suppose thatLi is an atom,A← B1, . . . , Bk is a standardized
apart variant of a rule ofP , andθ is themguof Li andA. Then the following is an
instance of the rule.

Γ (L1 . . . Li−1, Li, Li+1 . . . Ln | H) ∆

[Γ (L1 . . . Li−1, B1, . . . , Bk, Li+1 . . . Ln | H) ∆] θ
.

Next, letLi be a (possibly negative) literal, letL′ be a hypothesis, and letθ be themgu
of Li andL′. Then the following is an instance of the rule.

Γ (L1 . . . Li−1, Li, Li+1 . . . Ln | H,L′) ∆

[Γ (L1 . . . Li−1, Li+1 . . . Ln | H,L′) ∆] θ
.

Contradiction. This rule tries to prove(G | H) “vacuously”, by showing that the hy-
pothesesH cannot be satisfied by any stable model ofP . HereafterL̄ = notA if L is
an atomA, andL̄ = A if L = notA.

Γ (G | H,L) ∆

Γ (L̄ | H,L) ∆
.

Split. Essentially, this rule is needed to compute floating conclusions and discover contra-
dictions. It splits the search space by introducing two new,complementary hypotheses.
Let G0 be therestart goal(i.e. the left-hand side of the first h-goal of the derivation),L
be an arbitrary literal andσ be the composition of themgus previously computed during
the derivation; the Split rule is:

Γ (G | H) ∆

Γ (G | H,L) (G0σ | H, L̄) ∆
,

Success.This is a structural rule that removes h-goals once they havebeen successfully

18 S. Baselice, P.A. Bonatti, G. Criscuolo

proved. As usual,✷ denotes the empty goal.

Γ (✷ | H) ∆

Γ ∆
.

We are left to illustrate the last rule of the calculus, that models negation as failure. In
order to abstract away the details of the computation of failed facts, the rule is expressed
in terms of so-calledcounter-supports, that in turn are derived from the standard notion of
support. Recall that a support for a ground atomA is a set of negative literals obtained by
applying SLD resolution toA with respect to the given programP until no positive literal
is left in the current goal (the final, negative goal of the SLDderivation is a support forA).

Definition 6.1((Bonatti 2001b))
LetA be a ground atom. Aground counter-supportfor A in a programP is a set of atoms
K with the following properties:

1. For each supportS for A, there existsnotB ∈ S such thatB ∈ K.
2. For eachB ∈ K, there exists a supportS for A such thatnotB ∈ S.

In other words, the first property says thatK contradicts all possible ways of provingA,
while the second property is a sort of relevance property. Informally speaking, the failure
rule of skeptical resolution says that if all atoms in a counter-support are true, then all
attempts to proveA fail, and hencenotA can be concluded.

Of course, in general, counter-supports are not computableand may be infinite (while
skeptical derivations and their goals should be finite).

In (Bonatti 2001b) the notion of counter-support is generalized to non ground atoms in
the following way:

Definition 6.2
A (generalized)counter-supportfor a ground atomA is a pair〈K, θ〉 whereK is a set
of atoms andθ a substitution, such that for all grounding substitutionsσ, Kσ is a ground
counter-support forAθσ.

The actual mechanism for computing counter-supports can beabstracted by means of
a suitable functionCounterSupp, mapping each (possibly nonground) atomA onto a
set offinite generalized counter-supports forA. The underlying intuition is that function
CounterSupp captures all the negative inferences that can actually be computed by the
chosen implementation. Now negation-as-failure can be axiomatized as follows:

Failure. Suppose thatLi = notA , and〈{B1, . . . , Bk}, θ〉 ∈ CounterSupp(A). Then the
following is an instance of the Failure rule.

Γ (L1 . . . Li−1, Li, Li+1 . . . Ln | H) ∆

[Γ (L1 . . . Li−1, B1, . . . , Bk, Li+1 . . . Ln | H) ∆] θ
.

To achieve completeness for the nonground skeptical resolution calculus, we need the
negation-as-failure mechanism to be complete in the following sense.

Definition 6.3
The functionCounterSupp is completeiff for each atomA, for all of its ground instances
Aγ, and for all ground counter-supportsK for Aγ, there exist〈K ′, θ〉 ∈ CounterSupp(A)

and a substitutionσ such thatAθσ = Aγ andK ′σ = K.

On Finitely Recursive Programs 19

A skeptical derivation from P andCounterSupp with restart goalG0 is a (possibly
infinite) sequence of s-goalsΓ0,Γ1,..., where eachΓi+1 is obtained fromΓi through one of
the five rewrite rules of the calculus. A skeptical derivation issuccessfulif its last s-goal is
empty; in this case we say that the first s-goal has a successful skeptical derivation fromP .

Example 6.4
LetP be

1. p(X)← not q(X)

2. q(X)← not p(X)

3. r(f(X))← not p(X)

4. r(f(X))← not q(X)

For all ground termst, the literalnot p(t) is the unique support ofq(t). Therefore, we can
setCounterSupp(q(X)) = {〈p(X), ε〉} (whereε denotes the empty substitution), since
the truth ofp(X) suffices to block all derivations ofq(X), for all possible values ofX (the
issue of how to computeCounterSupp will be briefly discussed at the end of this section).
The following is a successful derivation of(r(Y) | ∅) from P with answer substitution
[Y/f(X)], showing that for allX , r(f(X)) is a skeptical consequence ofP .

(r(Y) | ∅)

(not p(X) | ∅) by resolution with 3; it bindsY to f(X);
(not p(X) | notp(X)) (r(f(X)) | p(X)) by the splitting rule;

(✷ | notp(X)) (r(f(X)) | p(X)) by resolution with the hypothesis;
(r(f(X)) | p(X)) by the success rule;
(not q(X) | p(X)) by resolution with 4;

(p(X) | p(X)) by the failure rule using〈p(X), ε〉;
(✷ | p(X)) by resolution with the hypothesis;

✷ by the success rule.

Skeptical resolution is sound forall normal programs and counter-support calculation
mechanisms, as stated in the following theorem.

Theorem 6.5(Soundness, (Bonatti 2001b))
Suppose that ans-goal(G | H) has a successful skeptical derivation from a normal pro-
gramP andCounterSupp with restart goalG and answer substitutionθ. Then, for all
grounding substitutionσ, all the stable models ofP satisfy(

∧

Gθ ←
∧

Hθ)σ (equiva-
lently,∀(

∧

Gθ ←
∧

Hθ) is skeptically entailed byP).

However, skeptical resolution is not always complete. Completeness analysis is founded
on ground skeptical derivations, that require a ground version ofCounterSupp.

Definition 6.6
For all ground atomsA, let CounterSuppg(A) be the least set such that if〈K, θ〉 ∈

CounterSupp(A′) and for some groundingσ, A = A′θσ, then

〈Kσ, ǫ〉 ∈ CounterSuppg(A),

20 S. Baselice, P.A. Bonatti, G. Criscuolo

whereǫ is the empty substitution.

Theorem 6.7(Finite Ground Completeness, (Bonatti 2001b))
If some ground implication

∧

G←
∧

H is skeptically entailed by afiniteground program
P andCounterSupp is complete with respect toP , then(G | H) has a successful skeptical
derivation fromP andCounterSuppg with restart goalG. In particular, ifG is skeptically
entailed byP , then(G | ∅) has such a derivation.

This basic theorem and the following standard lifting lemmaallow to prove complete-
ness for all finitely recursive normal programs.

Lemma 6.8(Lifting, (Bonatti 2001b))
Let CounterSupp be complete. For all skeptical derivationsD from a normal program
P andCounterSuppg with restart goalG0, there exists a substitutionσ and a skeptical
derivationD′ from P andCounterSupp with restart goalG′

0 and answer substitutionθ,
such thatD = D′θσ andG0 = G′

0θσ.

Theorem 6.9(Completeness for finitely recursive normal programs)
Let P be a finitely recursive normal program. SupposeCounterSupp is complete with
respect toP and that for some grounding substitutionγ, (

∧

G ←
∧

H)γ holds in all
the stable models ofP . Then(G | H) has a successful skeptical derivation fromP and
CounterSupp with restart goalG and some answer substitutionθ more general thanγ.

Proof
By Theorems 3.4 and 5.2, there exists a smooth module sequence forP with finite elements
P1, P2, ..., and a finitek such that(

∧

G ←
∧

H)γ holds in all the stable models ofPk.
Since eachPi is downward closed, the ground supports of any givenA ∈ atom(Pk)

with respect to programPk coincide with the ground supports ofA with respect to the
entire programP . Consequently, also ground counter-supports and (generalized) counter-
supports, respectively, coincide inPk andP . Therefore,CounterSupp is complete with
respect toPk, too. As a consequence, sincePk is a ground, finite program, the ground
completeness theorem can be applied to conclude that(G | H)γ has a successful skeptical
derivation fromPk andCounterSuppg with restart goalGγ. The same derivation is also a
derivation fromP (asPk ⊆ Ground(P)) andCounterSuppg. Then, by the Lifting lemma
(note thatP is supposed to be normal),(G | H) has a successful skeptical derivation
from P andCounterSupp, with restart goalG and some answer substitutionθ, such that
(G | H)γ is an instance of(G | H)θ. It follows thatθ is more general thanγ.

An important question is whether any computable, complete functionCounterSupp ex-
ists. Take any module sequenceP1, P2, . . . , Pi, . . . based on any effective enumeration
of GH . Note that for all ground atomsA one can effectively find ak ∈ N such that
A ∈ atom(Pk). Now, if the given programP is finitely recursive, then the ground sup-
ports ofA can be computed by building all the acyclic SLD-derivationsfor A using the
finitely many ground rules ofPk. Consequently, the ground counter-supports ofA are fi-
nite and finitely many, too, and can be easily computed from the ground supports ofA.
Now consider a nonground atomA. Let CounterSupp(A) be the set of pairs〈K, γ〉 such

On Finitely Recursive Programs 21

thatγ is a grounding substitution forA andK is a ground counter-support forAγ. Clearly,
for any givenA such pairs can be recursively enumerated by enumerating theground in-
stances ofA, and computing for each of them the corresponding ground counter-supports
as explained above. Clearly, this counter-support function is complete by construction. This
proves that:

Theorem 6.10
If P is normal and finitely recursive, then there exists a completeCounterSupp function
such that for all atomsA, CounterSupp(A) is recursively enumerable.

This property allows to recursively enumerate all skeptical derivations fromP . There-
fore, skeptical resolution provides an alternative proof that skeptical inference from finitely
recursive normal programs is in r.e.

7 Finitary programs and other decidable fragments

The inherent complexity of finitely recursive programs calls for further restrictions to make
deduction decidable.

One of such additional restrictions is based on the following idea: Suppose that there
exists a module sequenceP1, P2, . . . , Pi, . . . and an indexk such that for all interpreta-
tionsI ⊆ atom(Pk), the “top” programeatom(Pk)(Ground(P)\Pk, I) is consistent. Then
the splitting theorem guarantees that every stable model ofPk can be extended to a stable
model ofP and, conversely, every stable model ofP extends a stable model ofPk. As
a consequence, given a ground goalG (be it credulous or skeptical) whose atoms are in-
cluded inatom(Pk), the answer toG can be computed by inspecting only the stable models
Mk,1, . . . ,Mk,n ofPk (which is a finite ground program ifP is finitely recursive). The “up-
per” part of the stable models ofP , that is, the stable models ofeatom(Pk)(Ground(P) \

Pk,Mk,i) (1 ≤ i ≤ n), need not be computed at all—we only need to know that they exist
to be confident thatMk,1, . . . ,Mk,n are sufficient to answerG.

This is the idea underlyingfinitary programs(Bonatti 2004). For normal programs,
the consistency of the top program is guaranteed by means of atheorem due to Fages
(Fages 1994), stating thatorder consistentnormal programs are always consistent. A nor-
mal program is order consistent if there exists no infinite sequence of (possibly repeated)
atoms〈Ai〉i<ω such thatAi depends both positively and negatively onAi+1 for all i < ω.
For example, all positive programs are trivially order consistent, while Fage’s program

q(X)← q(f(X))

q(X)← not q(f(X))

exploited in Example 3.10 is not, as well as any normal program whose dependency graph
contains some odd-cycle. The above program shows that a program may fail to be order
consistent even if the program is acyclic. However, ifP is normal and finitely recursive,
then it can be shown thatP is order consistent iffP is odd-cycle free (Bonatti 2004).
This observation justifies the definition of finitary programs (Definition 2.2): By requiring

22 S. Baselice, P.A. Bonatti, G. Criscuolo

finitary programs to have finitely many odd-cycles, it is possible to confine all odd-cycles
into a single, finite program modulePk and ensure that the “top” programs are odd-cycle
free and hence consistent.

As proved in (Bonatti 2004), the extra condition on odd-cycles suffices to make both
credulous and skeptical ground queries decidable. However, in (Bonatti 2004) the state-
ment erroneously fails to include the set of odd-cyclic literals among the inputs of the
algorithm. Here is the correct statement and a slightly different proof based on module
sequences:

Theorem 7.1

Given a finitary normal programP and a finite setC containing (at least) all of the odd-
cyclic atoms ofP ’s Herbrand base,

i) deciding whether a ground formulaG is a credulous consequence ofP is decidable;

ii) deciding whether a ground formulaG is a skeptical consequence ofP is decidable.

Proof

(Sketch) LetP1, P2, . . . , Pi, . . . be any (recursive) module sequence induced by a re-
cursive enumeration ofP ’s Herbrand base, and letk be the minimal index such that
C ∪ atom(G) ⊆ atom(Pk). Clearly, such ak exists and is effectively computable. More-
over,Pk is ground and finite (becauseP is finitely recursive), therefore the set of its stable
modelsMk,1, . . . ,Mk,n can be effectively computed as well, it is finite, and consists of fi-
nite models. Now, by construction, the “top” programseatom(Pk)(Ground(P) \ Pk,Mk,i)

(1 ≤ i ≤ n) are all odd-cycle free—and hence consistent, by Fage’s theorem. It follows by
the splitting theorem that for alli = 1, . . . , n, the programP has a stable modelM such
thatM ∩ atom(Pk) = Mk,i. As a consequence, ifG is true (resp. false) in a stable model
of Pk, thenG must be true (resp. false) in a stable model ofP . Conversely, by the splitting
theorem, ifG is true (resp. false) in a stable model ofP , thenG must be true (resp. false) in
a stable model ofPk (becauseatom(Pk) splitsP). It follows easily thatG is a credulous
(resp. skeptical) consequence ofP iff G is a credulous (resp. skeptical) consequence of
Pk. Of course, since the set of stable models ofPk is finite, recursive, and contains only
finite models, both the credulous and the skeptical consequences ofPk are decidable.

Extending this result to disjunctive programs is not a trivial task because, unfortunately,
Fage’s theorem does not scale to disjunctive programs in anyobvious way. Consider the
possible natural generalization of atom dependencies fromthe class of normal programs to
the class of disjunctive programs:

1. First assume that the unlabelled edges ofDG(P) are ignored, that is, letA depend
on B iff there is a path fromA to B in DG(P) with no unlabelled edges. This
is equivalent to adopting a dependency graph similar to the traditional graphs for
normal programs, with no head-to-head edges. Using the resulting notion of atom
dependencies, one can find programs that are order consistent but have no stable

On Finitely Recursive Programs 23

models. One of them is

p1 ∨ p2

q1 ∨ q2

p1 ← not q1

q1 ← notp2

p2 ← not q2

q2 ← not p1 .

2. Next, suppose that unlabelled edges are regarded as positive edges, that is,A depends
positively (resp. negatively) onB iff there is a path fromA to B in DG(P) with an
even (resp. odd) number of negative edges. The above inconsistent program is still
order consistent under this new notion of dependency.

3. Finally, assume that unlabelled edges are regarded as negative edges. This is a natural
assumption given the minimization-based nature of disjunctive stable models: For
instance ifP = {p ∨ q}, then the falsity ofp implies the truth ofq and viceversa
(indeedP is equivalent to{p ← not q, q ← notp}). A major problem is that with
this form of dependency, too many interesting disjunctive programs arenot order
consistent:

• every rule with at least three atoms in the head generates an odd-cycle through
those atoms, therefore the program would not be order consistent;
• for every cycleC containing a head-to-body edge(A,±, B) originated by a

“proper” disjunctive rule (i.e., a rule with two or more atoms in the head)
there exists an odd-cycle (possiblyC itself, or the cycle obtained by extending
C with a negative edge fromA to another atom in the same head). This means
that disjunctive rules could never be applied in any recursion.

Similar problems (preconditions that are difficult to ensure in practical cases) affect
Turner’s approach to consistency (Turner 1994). Hissigned programsgeneralize order
consistent normal programs as follows: It should be possible to partition the Herbrand
base into two setsH1 andH2 such that:

1. negative edges always cross the two partitions; positiveedges never do;
2. each rule head is entirely contained in a single partition;
3. the set of rules whose head is contained inH1 is a normal program.

Unfortunately, to the best of our knowledge no application domains naturally require pro-
grams satisfying the third condition (that roughly speaking makes the program “half nor-
mal”).

A more recent paper (Bonatti 2002) ensures consistency through the theory of program
shifting (Bonatti 1993). A shifting ofP is a modified version ofP where some atoms
are moved from heads to bodies and enclosed in the scope of a negation symbol. This
transformation preserves the classical semantics of the program but not its stable models.
However, every stable model of a shifted program is also a stable model of the original
program, so the consistency of the former implies the consistency of the latter. Then the
approach of (Bonatti 2002) consists in adding more conditions to the definition of finitary

24 S. Baselice, P.A. Bonatti, G. Criscuolo

programs to ensure that at least one “full” shifting ofP—transformingP into a normal
program—is finitary, so that the original consistency theorem by Fages can be applied.
The main drawback of this approach is that the extra conditions required are clumsy and—
again—difficult to use in practice.

A very interesting and novel recent approach by Eiter and Simkus (Simkus and Eiter 2007)
consists in replacing the consistency property with other properties enjoyed by some de-
cidable fragments of first-order logic such as description logics and the guarded fragment.
In these fragments, consistent theories always have both a finite model and a tree model
which is the “unwinding” of the finite model, i.e., a regular tree. Syntactic restrictions on
predicate arity and on the occurrences of function symbols (modelled around the skolem-
ization of guarded formulae) have been exploited to prove the decidability of a new class
of finitely recursive programs called FDNC programs. In our framework, this idea roughly
corresponds to having regular module sequences where aftersome steps the new rules
contained inPi \ Pi−1 are isomorphic to some previous program slicePj \ Pj−1 (j < i).
Therefore in order to find a stable model ofP one needs only to find a stable modelM for
some finite modulePi, as a model for the upper part can then be constructed by cloning
M or submodels thereof. FDNC programs can be applied to encodeontologies expressed
in description logics, and are suitable to model a wide classof planning problems. An in-
teresting open question is whether this approach can be generalized to wider interesting
classes of programs by studying regular module sequences.

8 Conclusions

In this paper we have extensively studied the properties of stable model reasoning with
disjunctive, finitely recursive programs—a very expressive formalism for answer set pro-
gramming. Finitely recursive programs extend the class of finitary programs by dropping
the restrictions on odd-cycles, that is, on the number of possible sources of inconsisten-
cies. We extended to finitely recursive programs many of the nice properties of finitary
programs: (i) a compactness property (Theorem 4.5); (ii) the r.e.-completeness of inconsis-
tency checking and skeptical inference (Theorem 5.4); (iii) the completeness of skeptical
resolution (Theorem 6.9); note that this result applies to normal programs only, unlike (i)
and (ii).

Unfortunately, some of the nice properties of finitary programs donot carry over to
finitely recursive programs: (i) ground queries are not decidable (Theorem 5.5 and Corol-
lary 5.6); (ii) nonground credulous queries are not semidecidable (Corollary 5.6).

We proved our results by extending the splitting sequence theorem that, in general, guar-
antees only that each consistent programP has a consistent module sequence forP . We
proved that in general the converse does not hold (Example 3.10), unlessP is finitely re-
cursive: In that case, the stable models of a consistent module sequence always converge
to a model ofP (Theorem 4.1).

As a side benefit, our techniques introduce a normal form for splitting sequences and
their bottom programs, where sequence length is limited toω and—if the program is
finitely recursive—the sequence is smooth (i.e., the “delta” between each non-limit element
and its predecessor is finite). Such properties constitute an alternative characterization of
finitely recursive programs. The theory of module sequencesis a powerful tool for working

On Finitely Recursive Programs 25

on decidable inference with infinite stable models, as it provides a constructive, iterative
characterization of the stable models of a large class of programs with infinite domains.
In Section 7 we carried out a first attempt at relating different approaches using module
sequences as a unifying framework. However such an analysisis still very preliminary and
partially informal; its development constitutes an interesting subject for future work, and it
may contribute to recent areas such as research on FDNC programs.

Another interesting open problem is extending to disjunctive programs Fage’s con-
sistency result (an important ingredient in several decidability results). The existing ap-
proaches are based on rather restrictive assumptions that call for more flexible solutions.

Finally, an interesting theoretical question is whether skeptical resolution can be ex-
tended to disjunctive programs. A related challenge is finding a satisfactory goal-directed
calculus for the positive fragment, which is based on a minimal model semantics.

Acknowledgements

This work was partially supported by the PRIN projectEnhancement and Applications of
Disjunctive Logic Programming, funded by the Italian Ministry of Research (MIUR).

References

BARAL , C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge.

BASELICE, S., BONATTI , P. A., AND CRISCUOLO, G. 2007. On finitely recursive programs. In
ICLP, V. Dahl and I. Niemelä, Eds. Lecture Notes in Computer Science, vol. 4670. Springer, 89–
103.

BONATTI , P. 2001a. Prototypes for reasoning with infinite stable models and function symbols. In
Logic Programming and Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001.
LNCS, vol. 2173. Springer, 416–419.

BONATTI , P. A. 1993. Shift-based semantics: General results and applications. Tech. Rep. CD-TR
93/59, Technical University of Vienna, Computer Science Department, Institute of Information
Systems.

BONATTI , P. A. 2001b. Resolution for skeptical stable model semantics. J. Autom. Reasoning 27,4,
391–421.

BONATTI , P. A. 2002. Reasoning with infinite stable models II: Disjunctive programs. InICLP, P. J.
Stuckey, Ed. Lecture Notes in Computer Science, vol. 2401. Springer, 333–346.

BONATTI , P. A. 2004. Reasoning with infinite stable models.Artif. Intell. 156,1, 75–111.

CALIMERI , F., COZZA, S., IANNI , G., AND LEONE, N. 2008. Computable functions in ASP:
Theory and implementation. InICLP, M. G. de la Banda and E. Pontelli, Eds. Lecture Notes in
Computer Science, vol. 5366. Springer, 407–424.

EITER, T., LEONE, N., MATEIS, C., PFEIFER, G.,AND SCARCELLO, F. 1997. A deductive system
for non-monotonic reasoning. InLogic Programming and Nonmonotonic Reasoning, 4th Interna-
tional Conference, LPNMR’97, Proceedings. LNCS, vol. 1265. Springer, 364–375.

FAGES, F. 1994. Consistency of Clark’s completion and existence of stable models.Methods of
Logic in Computer Science 1, 51–60.

GELFOND, M. AND L IFSCHITZ, V. 1988. The stable model semantics for logic programming.In
Proc. of the 5th ICLP. MIT Press, 1070–1080.

GELFOND, M. AND L IFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive
databases.New Generation Computing 9,3-4, 365–386.

26 S. Baselice, P.A. Bonatti, G. Criscuolo

L IFSCHITZ, V. AND TURNER, H. 1994. Splitting a logic program. InInternational Conference on
Logic Programming. MIT Press, 23–37.

LLOYD , J. W. 1984.Foundations of Logic Programming, 1st Edition. Springer.

MAREK, V. AND REMMEL , J. 2001. On the expressibility of stable logic programming. In Logic
Programming and Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001. LNCS,
vol. 2173. Springer, 107–120.

MAREK, V. W. AND TRUSZCZYNSKI, M. 1998. Stable models and an alternative logic program-
ming paradigm.CoRR cs.LO/9809032.

NIEMELÄ , I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm.Ann. Math. Artif. Intell. 25,3-4, 241–273.

NIEMELÄ , I. AND SIMONS, P. 1997. Smodels – an implementation of the stable model andwell-
founded semantics for normal LP. InLogic Programming and Nonmonotonic Reasoning, 4th
International Conference, LPNMR’97, Proceedings. LNCS, vol. 1265. Springer, 421–430.

SIMKUS , M. AND EITER, T. 2007. FDNC: Decidable non-monotonic disjunctive logicprograms
with function symbols. In14th Int. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR 2007. Lecture Notes in Computer Science, vol. 4790. Springer, 514–530.

TURNER, H. 1994. Signed logic programs. InSLP. MIT Press, 61–75.

TURNER, H. 1996. Splitting a default theory. InProceedings of the Thirteenth National Conference
on Artificial Intelligence, H. Shrobe and T. Senator, Eds. AAAI Press, Menlo Park, California,
645–651.

	Introduction
	Preliminaries
	Module sequences and a normal form for splitting sequences
	Compactness property of disjunctive finitely recursive programs
	Reasoning with disjunctive finitely recursive programs
	Skeptical resolution for finitely recursive normal programs
	Finitary programs and other decidable fragments
	Conclusions
	References

