Skip to main content

Evolving in Extended Hamming Distance Space: Hierarchical Mutation Strategy and Local Learning Principle for EHW

  • Conference paper
Book cover Evolvable Systems: From Biology to Hardware (ICES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4684))

Included in the following conference series:

Abstract

In this paper extended Hamming distance is introduced to construct the search space. According to the features of this space, a hierarchical mutation strategy is developed for the purpose of enlarging the search area with less computation effort. A local learning principle is proposed. This principle is used to ensure that no mutation operates on the same locus of chromosomes within one generation. An evaluation method called fitness effort for calculating computational effort per increased fitness value is also given. Experimental results show that the proposed hybrid approach of hierarchical mutation and local learning can achieve better performance than traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shipman, R., Shackleton, M., Harvey, I.: The Use of Neutral Genotype-phenotype Mappings for Improved Evolutionary Search. BT Technology Journal 18, 103–111 (2000)

    Article  Google Scholar 

  2. Sekanina, L.: Evolutionary Design of Gate-Level Polymorphic Digital Circuits. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 185–194. Springer, Heidelberg (2005)

    Google Scholar 

  3. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Digital Circuits – Part I. In: Banzhaf, W. (ed.) Genetic Programming and Evolvable Machines, vol. 1(1/2), pp. 7–35. Kluwer Academic Publishers, Netherlands (2000)

    Google Scholar 

  4. Levi, D.: HereBoy: A Fast Evolutionary Algorithm. In: Proceedings of the 2nd NASA/DoD Evolvable Hardware Workshop, IEEE Computer Society Press, Los Alamitos, CA (2000)

    Google Scholar 

  5. Liu, H., Miller, J.F., Tyrrell, A.M.: Intrinsic Evolvable Hardware Implementation of a Robust Biological Development Model for Digital System. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, Springer, Heidelberg (2004)

    Google Scholar 

  6. Yu, T., Miller, J.F.: The Role of Neutral and Adaptive Mutation in an Evolutionary Search on the OneMax Problem. In: Cantú-Paz, E. (ed.) GECCO 2002. Late Breaking Papers at the Genetic and Evolutionary Computation Conference, New York, pp. 512–519 (2002)

    Google Scholar 

  7. Miller, J.F.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Google Scholar 

  8. Layzell, P.: Visualizing Evolutionary Pathways in Real-World Search Spaces. Technical report 308, Hewlett Packard (2002)

    Google Scholar 

  9. Sekanina, L.: Design Methods for Polymorphic Digital Circuits. In: Proc. of 8th IEEE Design and Diagnostic of Electronic Circuits and Systems Workshop, Sopron, HU, UWH, pp. 145–150. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  10. Sekanina, L., Vašíček, Z.: On the Practical Limits of the Evolutionary Digital Filter Design at the Gate Level. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 344–355. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Walker, J.A., Miller, J.F.: Evolution and Acquisition of Modules in Cartesian Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S.M., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187–197. Springer, Heidelberg (2004)

    Google Scholar 

  12. Székely, G.: Learning is Remembering. In: Behavioral and Brain Sciences, vol. 20, pp. 577–578. Cambridge University Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, J., Huang, S. (2007). Evolving in Extended Hamming Distance Space: Hierarchical Mutation Strategy and Local Learning Principle for EHW. In: Kang, L., Liu, Y., Zeng, S. (eds) Evolvable Systems: From Biology to Hardware. ICES 2007. Lecture Notes in Computer Science, vol 4684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74626-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74626-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74625-6

  • Online ISBN: 978-3-540-74626-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics