Skip to main content

Research on the Online Evaluation Approach for the Digital Evolvable Hardware

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4684))

Included in the following conference series:

Abstract

An issue that arises in evolvable hardware is how to verify the correctness of the evolved circuit, especially in online evolution. The traditional exhaustive evaluation approach has made evolvable hardware unpractical to real-world applications. In this paper an incremental evaluation approach for online evolution is proposed, in which the immune genetic algorithm is used as the search engine. This evolution approach is performed in an incremental way: some small seed-circuits have been evolved firstly; then these small seed-circuits are employed to evolve larger module-circuits; and the module-circuits are utilized to build still larger circuits further. The circuits of 8-bit adder, 8-bit multiplier and 110-sequence detector have been evolved successfully. The evolution speed of the incremental evaluation approach appears to be more effective compared with that of the exhaustive evaluation method; furthermore, the incremental evaluation approach can be used both in the combinational logic circuits as well as the sequential logic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yao, X., Hugichi, T.: Promises and Callenges of Evolvable Hardware. IEEE Trans On Systems Man and Cybernetics -Part C: Applications and Reviews 29(1), 87–97 (1999)

    Article  Google Scholar 

  2. Zhao, S.-g., Jiao, L.-c.: Multi-objective evolutionary design and knowledge discovery of logic circuits based on an adaptive genetic algorithm. Genetic Programming and Evolvable Machines 7(3), 195–210 (2006)

    Article  Google Scholar 

  3. Liu, R., Zeng, S.-y., Ding, L., et al.: An Efficient Multi-Objective Evolutionary Algorithm for Combinational Circuit Design. In: Proc. of the First NASA/ESA Conference on Adaptive Hardware and Systems, pp. 215–221 (2006)

    Google Scholar 

  4. Wang, Y.-r., Yao, R., Zhu, K.-y., et al.: The Present State and Future Trends in Bio-inspired Hardware Research (in Chinese). Bulletin of National Natural Science Foundation of China 5, 273–277 (2004)

    Google Scholar 

  5. Xu, Y., Yang, B., Zhu, M.-c.: A new genetic algorithm involving mechanism of simulated annealing for sigital FIR evolving hardware (in Chinese). Journal of Computer-Aided Design & Computer Graphics 18(5), 674–678 (2006)

    Google Scholar 

  6. Torresen, J.: Evolving Multiplier Circuits by Training Set and Training Vector Partitioning. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 228–237. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Sakanashi, H., Iwata, M., Higuchi, T.: Evolvable hardware for lossless compression of very high resolution bi-level images. Computers and Digital Techniques 151(4), 277–286 (2004)

    Article  Google Scholar 

  8. Salami, M., Hendtlass, T.: The Fast Evaluation Strategy for Evolvable Hardware. Genetic Programming and Evolvable Machines 6(2), 139–162 (2005)

    Article  Google Scholar 

  9. Upegui, A., Sanchez, E.: Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 56–65. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Forest, S., Perelson, A.S.: Genetic algorithms and the immune system. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 320–325. Springer, Heidelberg (1991)

    Google Scholar 

  11. Fukuda, T., Mori, K., Tsukiama, M.: Parallel Search for Multi-modal Function Optimization with Diversity and Learning of Immune Algorithm. In: Dasgupta, D. (ed.) Artificial Immune Systems and Their Applications, pp. 210–220. Springer, Berlin (1999)

    Google Scholar 

  12. Jiao, L.-c., Wang, L.: A Novel Genetic Algorithm Based on Immunity. IEEE Transactions on Systems, Man and Cybernetics-Part S: Systems and Humans 30(5), 552–561 (2000)

    Article  Google Scholar 

  13. Cao, X.-b., Liu, K.-s., Wang, X.-f.: Solve Packong Problem Using An Immune Genetic Algorithm. Mini-Micro Systems 21(4), 361–363 (2000)

    MathSciNet  Google Scholar 

  14. Song, D., Fu, M.: Adaptive Immune Algorithm Based on Multi-population. Control and Decision 20(11), 1251–1255 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, R., Wang, Yr., Yu, Sl., Gao, Gj. (2007). Research on the Online Evaluation Approach for the Digital Evolvable Hardware. In: Kang, L., Liu, Y., Zeng, S. (eds) Evolvable Systems: From Biology to Hardware. ICES 2007. Lecture Notes in Computer Science, vol 4684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74626-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74626-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74625-6

  • Online ISBN: 978-3-540-74626-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics