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Abstract. It is quite common to use feature extraction methods prior to classi-
fication. Here we deal with three algorithms defining uncorrelated features. The
first one is the so-called whitening method, which transforms the data so that
the covariance matrix becomes an identity matrix. The second method, the well-
known Fast Independent Component Analysis (FastICA) searches for orthogonal
directions along which the value of the non-Gaussianity measure is large in the
whitened data space. The third one, the Whitening-based Springy Discriminant
Analysis (WSDA) is a novel method combination, which provides orthogonal di-
rections for better class separation. We compare the effects of the above methods
on a real-time vowel classification task. Based on the results we conclude that the
WSDA transformation is especially suitable for this task.

1 Introduction

The primary goal of this paper is twofold. First we would like to deal with a unique
group of feature extraction methods, namely with the uncorrelated ones. The uncorre-
lation can be carried out by using the well-known whitening method. After whitening
among the linear transformations precisely the orthogonal ones preserve the property
that the data covariance matrix remains the identity matrix. Thus following the white-
ning process we can apply any feature extraction method, which resulted in orthogonal
feature directions. This kind of method composition in every case leads to uncorrelated
features. Among the possibilities we selected two methods from the orthogonal family.
The first one is the Fast Independent Component Analysis proposed by Hyvärinen and
Oja [8], while the second one, recently introduced, is the Springy discriminant Analy-
sis [9]. In this paper we investigate a version of this method combined with the white-
ning process. Our second aim here is to compare the effects of the above methods on
a speech recognition task. We try to apply them on a real-time vowel classification task,
which is one of the basic building blocks of our speech impediment therapy system
[10].

Now without loss of generality we shall assume that, as a realization of multivariate
random variables, there are n-dimensional real attribute vectors in a compact set X over
R

n describing objects in a certain domain, and that we have a finite n×k sample matrix
X = (x1, . . . ,xk) containing k random observations. Actually, X constitutes the initial
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feature space and X is the input data for the linear feature extraction algorithms which
defines a linear mapping

h : X → R
m

z → V z (1)

for the extraction of a new feature vector. The m × n (m ≤ n) matrix of the linear
mapping – which may inherently include a dimension reduction – is denoted by V , and
for any z ∈ X we will refer to the result h(z) = V z of the mapping as z∗. With the
linear feature extraction methods we search for an optimal matrix V , where the precise
definition of optimality can vary from method to method. Now we will decompose V in
a factorized form, i.e. we assume that V = WQ, where W, Q are orthogonal matrices
and Q transforms the covariance matrix into the identity matrix. We will obtain Q by
the whitening process, which can easily be solved by an eigendecomposition of the data
covariance matrix (cf. Section 2). For the W matrix, which further transforms the data,
we can apply various objective functions. Here we will find each particular direction
of the optimal W transformations one-by-one, employing a τ : R

n → R objective
function for each direction (i.e. row vectors of W ) separately. We will describe the
Fast Independent Component Analyses (FastICA), and the Whitening-based Springy
Discriminant Analysis (WSDA) via defining different τ functions.

The structure of the paper is as follows. In Section 2 we introduce the well-known
whitening process, which is followed in Section 3 and 4 by the description of Indepen-
dent Component Analysis and Springy Discriminant Analysis, respectively. Section 5
deals with the experiments, than in Section 6 we round off the paper with some con-
cluding remarks.

2 The Whitening Process

Whitening is a traditional statistical method for turning the data covariance matrix into
an identity matrix. It has two steps. First, we shift the original sample set x1, . . . ,xk

with its mean E{x}, to obtain data

x′
1 = x1 − E{x}, . . . ,x′

k = xk − E{x}, (2)

with a mean of 0. The goal of the next step is to transform the centered samples
x′

1, . . . ,x
′
k via an orthogonal transformation Q into vectors z1 = Qx′

1, . . . , zk = Qx′
k,

where the covariance matrix E{zz�} is the unit matrix. If we assume that the eigenpairs
of E{x′x′�} are (c1, λ1), . . . , (cn, λn) and λ1 ≥ . . . ≥ λn, the transformation ma-

trix Q will take the form [c1λ
−1/2
1 , . . . , ctλ

−1/2
t ]�. If t is less than n a dimensionality

reduction is employed.

Whitening transformation of arbitrary vectors. For an arbitrary vector z ∈ X the whi-
tening transformation can be performed using z∗ = Q(z − E{x}).

Basic properties of the whitening process. i) for every normalized v the mean of
v�z1, . . . ,v�zk is set to zero, and its variance is set to one; ii) for any matrix W
the covariance matrix of the transformed, whitened data Wz1, . . . , Wzk will remain a
unit matrix if and only if W is orthogonal.
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3 Independent Component Analysis

Independent Component Analysis [8] is a general purpose statistical method that orig-
inally arose from the study of blind source separation (BSS). An application of ICA is
unsupervised feature extraction, where the aim is to linearly transform the input data
into uncorrelated components, along which the distribution of the sample set is the least
Gaussian. The reason for this is that along these directions the data is supposedly easier
to classify.

For optimal selection of the independent directions, several objective functions were
defined using approximately equivalent approaches. Here we follow the way proposed
by A. Hyvärinen et al. [8]. Generally speaking, we expect these functions to be non-
negative and have a zero value for the Gaussian distribution. Negentropy is a useful
measure having just this property, which is used for assessing non-Gaussianity (i.e. the
least Gaussianity). The negentropy of a variable η with zero mean and unit variance is
estimated by using the formula

JG(η) ≈ (E{G(η)} − E{G(ν)})2 , (3)

where G : R → R is an appropriate non-quadratic function, E again denotes the
expectation value and ν is a standardized Gaussian variable. The following three choices
of G(η) are conventionally used: η4, log (cosh (η)) and − exp (−η2/2). It should be
mentioned that in Eq. (3) the expectation value of G(ν) is a constant, its value only
depending on the selected G function.

In Hyvärinen’s FastICA algorithm for the selection of a new direction w the follow-
ing τ objective function is used:

τG(w) =
(
E{G(w�z)} − E{G(ν)}

)2
, (4)

which can be obtained by replacing η in the negentropy approximant Eq. (3) with w�z,
the dot product of the direction w and sample z. FastICA is an approximate Newton
iteration procedure for the local optimization of the function τG(w). Before running the
optimization procedure, however, the raw input data X must first be preprocessed – by
whitening it.

Actually property i) of the whitening process (cf. Section 2) is essential since Eq.
(3) requires that η should have a zero mean and variance of one hence, with the substi-
tution η = w�z, the projected data w�z must also have this property. Moreover, after
whitening based on property ii) it is sufficient to look for a new orthogonal base W for
the preprocessed data, where the values of the non-Gaussianity measure τG for the base
vectors are large. Note that since the data remains whitened after an orthogonal trans-
formation, ICA can be considered an extension of PCA. The optimization procedure of
the FastICA algorithm can be found in Hyvärinen’s work [8].

Transformation of test vectors. For an arbitrary test vector z ∈ X the ICA transfor-
mation can be performed using z∗ = WQ(z− E{x}). Here W denotes the orthogonal
transformation matrix we obtained as the output from FastICA, while Q is the matrix
obtained from whitening.
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4 Whitening-Based Springy Discriminant Analysis

Springy discriminant analysis (SDA) is a method similar to Linear Discriminant Anal-
ysis (LDA), which is a traditional supervised feature extraction method [4,9]. Because
SDA belongs to the supervised feature extraction family, let us assume that we have
r classes and an indicator function L : {1, . . . , k} → {1, . . . , r}, where L(i) gives the
class label of the sample xi. Let us further assume that we have preprocessed the data
using the whitening method, the new data being denoted by z1, . . . , zk.

The name Springy Discriminant Analysis stems from the utilization of a spring &
antispring model, which involves searching for directions with optimal potential energy
using attractive and repulsive forces. In our case sample pairs in each class are con-
nected by springs, while those of different classes are connected by antisprings. New
features can be easily extracted by taking the projection of a new point in those direc-
tions where a small spread in each class is obtained, while different classes are spaced
out as much as possible. Now let δ(w), the potential of the spring model along the
direction w, be defined by

δ(w) =
k∑

i,j=1

(
(zi − zj)

� w
)2

[M ]ij , (5)

where

[M ]ij =
{

−1, if L(i) = L(j)
1, otherwise

i, j = 1, . . . , k. (6)

Naturally, the elements of matrix M can be initialized with values different from ±1
as well. The elements can be considered as a kind of force constant and can be set to
a different value for any pair of data points.

It is easy to see that the value of δ is largest when those components of the ele-
ments of the same class that fall in the given direction w (w ∈ R

n) are close, and the
components of the elements of different classes are far at the same time.

Now with the introduction of the matrix

D =
k∑

i,j=1

(zi − zj) (zi − zj)
� [M ]ij (7)

we immediately obtain the result that δ(w) = w�Dw. Based on this, the objec-
tive function τ for selecting relevant features can be defined as the Rayleigh quotient
τ(w) = δ(w)/w�w. It is straightforward to see that the optimization of τ leads to the
eigenvalue decomposition of D. Because D is symmetric, its eigenvalues are real and
its eigenvectors are orthogonal. The matrix W of the SDA transformation is defined
using those eigenvectors corresponding to the m dominant eigenvalues of D.

Transformation of test vectors. For an arbitrary vector z ∈ X the Whitening-Based
SDA transformation can be performed using z∗ = WQ(z − E{x}).
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5 Experiments and Results

In the previous sections three linear feature space transformation algorithms were pre-
sented. Whitening concentrates on those uncorrelated directions with the largest vari-
ances. FastICA besides keeping the directions uncorrelated, chooses directions along
which the non-Gaussianity is large. WSDA creates attractive forces between the sam-
ples belonging to the same class and repulsive forces between samples of different
classes. Then it chooses those uncorrelated directions along which the potential energy
of the system is maximal. In this section we discuss these methods on the real-time
vowel recognition tests. The motivation for doing this is to improve the recognition
accuracy of our speech impediment therapy system, the ’SpeechMaster’. Besides re-
viewing ’SpeechMaster’ here we will talk about the extraction of the acoustic features,
the way the transformations were applied, the learners we employed and, finally, about
the setup and evaluation of the real-time vowel recognition experiments.

The ’SpeechMaster’. An important clue to the process of learning to read for alpha-
betical languages is the ability to separate and identify consecutive sounds that make
words and to associate these sounds with its corresponding written form. To learn to
read in a fruitful way young learners must, of course, also be aware of the vowels and
be able to manipulate them. Many children with learning disabilities have problems in
their ability to process phonological information. Furthermore, phonological awareness
teaching has also great importance for the speech and hearing handicapped, along with
improving the corresponding articulatory strategies of tongue movement.

The ’SpeechMaster’ software developed by our team seeks to apply speech recogni-
tion technology to speech therapy and the teaching of reading. Both applications require
a real-time response from the system in the form of an easily comprehensible visual feed-
back. With the simplest display setting, feedback is given by means of flickering letters,
their identity and brightness being adjusted to the speech recognizer’s output [10]. In
speech therapy it is intended to supplement the missing auditive feedback of the hear-
ing impaired, while in teaching reading it is to reinforce the correct association between
the phoneme-grapheme pairs. With the aid of a computer, children can practice with-
out the need for the continuous presence of the teacher. This is very important because
the therapy of the hearing impaired requires a long and tedious fixation phase. Experi-
ence shows that most children prefer computer exercises to conventional drills. In the
’SpeechMaster’ system the real-time vowel recognition module has a great importance,
this is why we chose this task for testing the uncorrelated feature extraction methods.

Evaluation Domain. For training and testing purposes we recorded samples from 160
normal children aged between 6 and 8. The ratio of girls and boys was 50% - 50%.The
speech signals were recorded and stored at a sampling rate of 22050Hz in 16-bit quality.
Each speaker uttered all the 12 isolated Hungarian vowels, one after the other, separated
by a short pause. The recordings were divided into a train and a test set in a ratio of
50% - 50%.

Acoustic Features. There are numerous methods for obtaining representative feature
vectors from speech data, but their common property is that they are all extracted from
20-30 ms chunks or ”frames” of the signal in 5-10 ms time steps. The simplest possible
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feature set consists of the so-called bark-scaled filterbank log-energies (FBLE). This
means that the signal is decomposed with a special filterbank and the energies in these
filters are used to parameterize speech on a frame-by-frame basis. In our tests the filters
were approximated via Fourier analysis with a triangular weighting, as described in [6].

It is known from phonetics that the spectral peaks (called formants) code the iden-
tity of vowels [11]. To estimate the formants, we implemented a simple algorithm that
calculates the gravity centers and the variance of the mass in certain frequency bands
[1]. The frequency bands are chosen so that they cover the possible place of the first,
second and third formants. This resulted in 6 new features altogether.

A more sophisticated option for the analysis of the spectral shape would be to ap-
ply some kind of auditory model. We experimented with the In-Synchrony-Bands-
Spectrum of Ghitza [5], because it is computationally simple and attempts to model
the dominance relations of the spectral components. The SBS model analysis the signal
using a filterbank that is approximated by weighting the output of a FFT - quite similar
to the FBLE analysis. In this case, however, the output is not the total energy of the
filter, but the frequency of the component that has the maximal energy.

Feature Space Transformation. When applying the uncorrelated feature extraction
methods (see Section 2, 3 and 4) we invariably kept only 8 of the new features. We
performed this severe dimension reduction in order to show that, when combined with
the transformations, the classifiers can yield the same scores in spite of the reduced fea-
ture set. Naturally, when we applied a certain transformation on the training set before
learning, we applied the same transformation on the test data during testing.

Classifiers. Describing the mathematical background of the learning algorithms applied
is beyond the scope of this article; in the following we specify only the parameters
applied.

Gaussian Mixture Modeling (GMM). In the GMM experiments, three Gaussian com-
ponents were used and the expectation-maximization (EM) algorithm was initialized
by k-means clustering [4]. To find a good starting parameter set we ran it 15 times and
used the one with the highest log-likelihood. In every case the covariance matrices were
forced to be diagonal.

Artificial Neural Networks (ANN). In the ANN experiments we used the most com-
mon feed-forward multilayer perceptron network with the backpropagation learning
rule [2]. The number of neurons in the hidden layer was set to 18 in each experiment
(this value was chosen empirically, based on preliminary experiments). Training was
stopped based on the cross-validation of 15% of the training data.

Projection Pursuit Learning (PPL). Projection pursuit learning is a relatively little-
known modelling technique [7]. It can be viewed as a neural net where the rigid sigmoid
function is replaced by an interpolating polynomial. In each experiment, a model with
8 projections and a 5th-order polynomial was applied.

Support Vector Machines (SVM). Support vector machines is a classifier algorithm
that is based on the ubiquitous kernel idea [12]. In all the experiments with SVM the
radial basis kernel function was applied.

Experiments. In the experiments 5 feature sets were constructed from the initial acous-
tic features described above. Set1 contained the 24 FBLE features. In Set2 we combined
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Table 1. Recognition errors for each feature set as a function of the transformation and classifi-
cation applied

feature set classifier none(all) Whitening(8)FastICA(8)WSDA(8)
GMM 16.38 14.21 16.45 14.32
ANN 10.34 9.85 9.93 9.42

Set1 (24) PPL 11.04 10.46 10.69 10.02
SVM 9.93 10.12 8.95 8.05
GMM 13.33 11.21 13.33 12.33
ANN 7.43 7.35 7.36 5.25

Set2 (30) PPL 9.37 8.41 6.54 6.23
SVM 8.33 6.85 6.66 5.43
GMM 25.90 22.34 25.90 23.67
ANN 20.00 18.41 19.58 19.65

Set3 (24) PPL 20.48 19.43 19.58 19.33
SVM 19.65 20.08 18.88 19.48
GMM 13.95 12.21 15.90 13.67
ANN 10.27 9.79 8.05 8.48

Set4 (48) PPL 10.48 8.80 9.37 9.31
SVM 9.09 9.46 8.26 7.41
GMM 15.48 12.46 13.33 12.72
ANN 8.68 7.31 6.45 7.41

Set5 (54) PPL 8.26 9.05 7.36 7.09
SVM 9.37 9.11 5.76 5.64

Set1 with the gravity center features, so Set2 contained 30 measurements. Set3 was
composed of the 24 SBS features, while in Set4 we combined the FBLE and SBS sets.
Lastly, in Set5 we added all the FBLE, SBS and gravity center features, thus obtaining
a set of 54 values.

In the classification experiments every transformation was combined with every clas-
sifier on every feature set. The results are shown in Table 1. In the header Whitening,
FastICA, WSDA stand for the linear uncorrelated feature space transformation meth-
ods. The numbers shown are the recognition errors on the test data. The number in
parentheses denotes the number of features preserved after a transformation. The best
scores of each set are given in bold.

Results and Discussion. Upon inspecting the results the first thing one notices is that
the SBS feature set (Set3) did about twice as badly as the other sets, no matter what
transformation or classifier was tried. When combined with the FBLE features (Set1)
both the graity center and the SBS features brought some improvement, but this im-
provement is quite small and varies from method to method.

When focusing on the performance of the classifiers, we see that ANN, PPL and
SVM yielded very similar results. They, however, consistently outperformed GMM,
which is still the method most commonly used in speech technology today. This can be
attributed to the fact that the functions that a GMM (with diagonal covariances) is able
to represent are more restricted in shape than those of ANN or PPL.

As regards the transformations, an important observation is that after the transforma-
tions the classification scores did not get worse compared to the classifications when no
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transformation was applied. This is so in spite of the dimension reduction, which shows
that some features must be highly redundant. Removing some of this redundancy by
means of a transformation can make the classification more robust and, of course, faster.
Comparing the methods, we may notice that WSDA brought significant improvement
on the recognition accuracy. Maybe this is due to the supervised nature of the method.

6 Conclusions

In this paper three linear uncorrelated feature extraction algorithms (Whitening, Fas-
tICA and WSDA) were presented, and applied to real-time vowel classification. After
inspecting the test results we can confidently say that it is worth experimenting with
these methods in order to obtain better classification results. The Whitening-based
Springy Discriminant Analysis brought a notable increase in the recognition accuracy
despite applying a severe dimension reduction. This transformation could greatly im-
prove our phonological awareness teaching system by offering a robust and reliable
real-time vowel classification, which is a key part of the system.
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