
Input Parameterization of the HVS Semantic
Parser

Jan Švec1, Filip Jurč́ıček1, and Luděk Müller2

1 Center of Applied Cybernetics, University of West Bohemia,
Pilsen, 306 14, Czech Republic
{honzas,filip}@kky.zcu.cz

2 Department of Cybernetics, University of West Bohemia,
Pilsen, 306 14, Czech Republic

muller@kky.zcu.cz

Abstract. The aim of this paper is to present an extension of the hidden
vector state semantic parser. First, we describe the statistical semantic
parsing and its decomposition into the semantic and the lexical model.
Subsequently, we present the original hidden vector state parser. Then,
we modify its lexical model so that it supports the use of the input se-
quence of feature vectors instead of the sequence of words. We compose
the feature vector from the automatically generated linguistic features
(lemma form and morphological tag of the original word). We also ex-
amine the effect of including the original word into the feature vector.
Finally, we evaluate the modified semantic parser on the Czech Human-
Human train timetable corpus. We found that the performance of the
semantic parser improved significantly compared with the baseline hid-
den vector state parser.

1 Introduction

This article concerns statistical semantic parsing which we interpret as a search
process of the sequence of semantic tags C = (c1, c2, . . . , ct) that maximizes
the a posteriori probability P (C|W) given the input sequence of words W =
(w1, w2, . . . , wt). This process can be described as:

C∗ = arg max
C

P (C|W) = arg max
C

P (W |C)P (C) (1)

where the probability P (C) is called the semantic model and the probability
P (W |C) is called the lexical model. The simplest implementation of this process
is Pieraccini’s semantic finite state tagger (FST) which was used for the ATIS
task [1]. The main disadvantage of this tagger is its inability to capture either
long distance dependencies or a hierarchical structure of the processed utterance.

Several attempts has been proposed to overcome these disadvantages. In [2]
He and Young described a HMM based parser with a hidden state variable imple-
mented as a stack and where the state transitions are modeled using pushdown

II

operations on this stack. The stack (called also vector state) stores the infor-
mation about the hierarchical structure of a processed sequence of words. They
called their parser the hidden vector state (HVS) parser [2].

The HVS parser is able to decode the hierarchical structure of the input
sequence because it approximates the pushdown automaton. To estimate the
parser parameters one needs a training data set provided with a structured
semantic annotation. This structured semantic annotation forms a semantic tree.
The nodes of the semantic tree are labeled with semantic concepts, which are
considered to be basic units of particular meaning. The annotation must define
an ordering relation between the nodes of the semantic tree. The order of nodes
must correspond to the order of words in the underlying sentence. As a result,
any semantic tree can be expressed as a sequence of vectors containing semantic
concepts.

To alleviate the annotation stage the training data could be only weakly an-
notated by so-called abstract semantic trees. The abstract semantic tree does
not provide the explicit word alignment between the nodes of the tree and the
words of the sentence. Due to this merit the abstract annotation represents a
robust annotation scheme to the intent to obtain a high inter-annotator agree-
ment. We write the abstract semantic tree in the parenthesized form, which
express both the parent/child relationships and the ordering of nodes in the se-
mantic tree. For example, the sentence Jede nějaký spěšný vlak do Prahy kolem
čtvrté odpoledne? 3 could be annotated with the semantic tree showed in Fig. 1.
The corresponding abstract semantic tree is DEPARTURE(TO(STATION),
TIME). Both the semantic and the abstract semantic trees can be converted
into a sequence of vectors as it is shown at the bottom of the figure.

 DEPARTURE

 TO

 TIME

 STATION

TO
DEPARTURE

-
-

DEPARTURE
-
-
-

STATION
TO

DEPARTURE
-

TIME
DEPARTURE

-
-

DEPARTURE
-
-
-

DEPARTURE
-
-
-

DEPARTURE
-
-
-

TIME
DEPARTURE

-
-

TIME
DEPARTURE

-
-

jede
does go

nějaký
any

spěšný
express

vlak
train

do
to

Prahy
Prague

kolem
around

čtvrté
four

odpoledne
p.m.

Fig. 1. An example of a full semantic parse tree with the corresponding stack sequence.

Later in this paper, we present an extension of the original HVS parser which
we call the input parameterization of the HVS parser. The input of the original
HVS parser is a pure sequence of words W . However, if the parser has some

3 Lit. translation: Does any express train go to Prague around four p.m.?

III

additional information, it can take advantage of it and use a sequence of feature
vectors S = (s1, s2, . . . , sT) where for every input word wt one feature vector
st = (st[1], . . . , st[N]) is computed. For example, the feature vector can be com-
posed of some prosodic and linguistic features computed for the word wt. In
our experiments, we used the combination of the input word, its lemma, and
morphological tag generated by an automatic morphology analyzer.

This article is organized in the following manner: in Section 2 we shortly
describe the original HVS parser. In Section 3 we propose a novel method for
the input parameterization of the HVS parser. Section 4 provides experimental
results and finally, Section 5 concludes this paper.

2 The HVS parser

The HVS parser is an approximation of a pushdown automaton. This is mainly
due to the limited stack depth and a reduced set of allowed stack operations.
In other words, the HVS parser is the generalization of the finite state tagger.
The HVS parser has a larger state space in comparison with Pieraccini’s parser
and state transitions are modeled using pushdown operations. The HVS parser
is able to better capture the hierarchical structure typical of natural language.

The original HVS parser proposed by He and Young uses two stack opera-
tions: popping zero to four concepts off the stack and pushing exactly one new
concept onto the stack. These operations are implemented in the semantic model
which is given by:

P (C) =
T∏

t=1

P (popt | ct−1)P (ct[1] | ct[2], ct[3], ct[4]) (2)

where the hidden variable popt is the stack shift operation and takes values in
the range 0, . . . , 4 and the hidden variable ct = (ct[1], . . . , ct[4]) is the vector
state (the stack) of the HVS model. The depth of the stack is chosen to be the
maximal depth of semantic trees found in the training data. We observed that
the stack of at most four concepts is quite sufficient in all experiments described
in Section 4. The concept ct[1] is the preterminal concept of the word wt and the
concept ct[4] is the root of semantic tree. The value of popt represents the count
of concepts to be popped off the stack at time t. The value popt = 0 means that
no concept is popped off the stack so the stack ct grows by one new concept
ct[1]. Values greater than zero lead to popping popt concepts off the stack and
to pushing one new concept ct[1] onto the stack.

The lexical model imposes an additional constraint on the stack sequence by
allowing only such stack sequences that correspond to the input word sequence.
The original HVS parser can process one word wt at time t. The lexical model
is given by:

P (W |C) =
T∏

t=1

P (wt|ct[1, . . . 4]) (3)

IV

Starting with the definition of the HVS parser, we extend the lexical model so
that it accepts a sequence of feature vectors (parameterized input) on its input.

3 Input parameterization

The input parameterization extends the HVS parser into a more general HVS
parser with the input feature vector (HVS-IFV parser). This parser works on a
sequence of feature vectors S = (s1, . . . , sT) instead of a sequence of words W .
The feature vector is defined as st = (st[1], st[2], . . . , st[N]). To every word wt,
we assign the fixed number N of features. If we use the feature vector st instead
of the word wt in Eq. 3, the lexical model changes as follows:

P (S|C) =
T∏

t=1

P (st | ct)

=
T∏

t=1

P (st[1], st[2], . . . st[N] | ct)

(4)

Using the chain rule, we can rewrite this equation into the form:

P (S|C) =
T∏

t=1

N∏
i=1

P (st[i] | st[1, . . . i − 1], ct) (5)

To minimize the data sparsity problem, we used the conditional independence
assumption between the features st[i] and st[j], i 6= j given the concept ct. This
kind of assumption is also used for example in the naive Bayes classifier to avoid
the curse of dimensionality problem. The lexical model of the HVS-IFV parser
is then given by:

P (S|C) =
T∏

t=1

N∏
i=1

P (st[i] | ct) (6)

Because the conditional independence assumption is hardly expected to be al-
ways true, we need to modify the search process defined in Section 1. Let’s assume
that for example we have the sequence of the feature vectors S = (st[1], st[2])T

t=1

where st[1] is equal to st[2] for every t. The search process is given by:

C∗ = arg max
C

T∏
t=1

[
2∏

i=1

P (st[i] | ct)

]
P (popt | ct−1)P (ct[1] | ct[2], ct[3], ct[4])

= arg max
C

T∏
t=1

[P (st[1] | ct)]
2
P (popt | ct−1)P (ct[1] | ct[2], ct[3], ct[4])

As we can see, the lexical model probability P (S|C) is exponentially scaled
with the factor 2 and it causes imbalance between the lexical and the semantic

V

model depending on the dimension N of the feature vector. Therefore, we use
the scaling factor λ to compensate the imbalance caused by the use of feature
vectors:

C∗ = arg max
C

P (S|C)Pλ(C) (7)

The HVS-IFV parser is defined by equations 2, 6, and 7. To find the optimal
value of λ, we use a grid search over the finite set of values to maximize the
concept accuracy measure defined in Section 4.2. The grid search is performed
on the development data.

4 Experiments

The semantic parsers evaluated in this article were trained and tested on the
Czech human-human train timetable (HHTT) dialogue corpus [3]. The HHTT
corpus consists of 1,109 dialogues completely annotated with the abstract se-
mantic annotations. Both operators and users have been annotated. The corpus
comprises 17,900 utterances in total. The vocabulary size of the whole corpus
is 2,872 words. There are 35 semantic concepts in the HHTT corpus. The di-
alogues were divided into training data (798 dialogues - 12,972 dialogue acts,
72%), development data (88 dialogues - 1,418 dialogue acts, 8%), and test data
(223 dialogues - 3,510 dialogue acts, 20%). The development data were used for
finding the optimal value of the semantic model scaling factor.

The training of the HVS parser is divided into three parts: 1) initialization
of the semantic and lexical models, 2) estimation of parameters of the semantic
and lexical models, 3) smoothing the probabilities of the semantic and lexical
models. All probabilities are initialized uniformly. To estimate the parameters
of the semantic and the lexical model, it is necessary to use the expectation-
maximization (EM) algorithm because abstract semantic annotations does not
provide fully annotated parse trees. There are no explicit word level annotations.
After training the parameters we smooth all three probabilities using the back-off
model.

We evaluated our experiments using two measures: semantic accuracy (SAcc)
and concept accuracy (CAcc). We could not use the PARSEVAL measures [4]
because they rely on availability of full parse trees of the test data. As we already
mentioned above, the HHTT corpus has no explicit word level annotation.

4.1 Semantics accuracy

Two semantic annotations are considered equal only if they exactly match each
other. Exact match is very tough standard because under the exact match the
difference between semantics ARRIVAL(TIME, FROM(STATION)) and AR-
RIVAL(TIME, TO(STATION)) is equal to the difference between semantics
ARRIVAL(TIME, FROM(STATION)) and DEPARTURE(TRAIN TYPE).
The semantic accuracy of a hypothesis is defined as

VI

SAcc =
E

N
· 100% (8)

where N is the number of evaluated semantic annotations and E is the number
of hypothesis semantic annotations which exactly match the reference.

4.2 Concept accuracy

Similarity scores between the reference and the hypothesis semantics can be
computed also by the tree edit distance algorithm [5]. The tree edit distance
measures the similarity between two trees by comparing subtrees of both the
reference and the hypothesis annotations.

The tree edit distance algorithm computes the minimum number of substitu-
tions, deletions, and insertions required to transform one tree into another one
and uses the dynamic programing. The operations act on the tree nodes and
modify the tree by changing the parent/child relationships of the tree. The tree
edit distance is convenient for measuring similarity between two abstract seman-
tic annotations because it does not rely on the alignment of the annotation and
the underlying word sequence. We define the concept accuracy as

CAcc =
N − S − D − I

N
· 100% (9)

where N is the number of concepts in the reference semantic annotation and S,
D, and I are the numbers of substitutions, deletions, and insertions, respectively,
in the minimum-cost alignment of the reference and the hypothesis semantic
annotation.

4.3 Morphological analysis

Every utterance of the HHTT training corpus was automatically processed using
the morphological analyser and the tagger from Prague Dependency Treebank
(PDT) [6]. The morphological analysis for every input word generated a lemma
and a morphological tag which were then used as features in the parameterized
input of the HVS parser. The morphological tag is represented as a string of
several symbols, each for one morphological category: part-of-speech, detailed
part-of-speech, gender, number, case, possessor’s gender, possessor’s number,
person, tense, degree of comparison, negation, and voice. We have also done
some experiments with reduced morphological tags (we removed some morpho-
logical categories from the morphological tag) but these experiments bring no
improvement in concept accuracy. Because Czech has very rich inflection, the
lemmatization of input sentence reduced the vocabulary. The vocabulary size
for every input feature is shown in Table 1.

VII

4.4 Results

Table 1 shows the performance of the original HVS parser described in Section
2 with words, lemmas, and morphological tags on its input. The original HVS
parser with words on its input was chosen as the baseline. To measure the sta-
tistical significance, we used the paired t-test (NIST MAPSSWE test) and the
difference was taken as significant if p-value of this test was < 0.01.

We combined these features and passed their combination to the input of
HVS-IFV parser described in Section 3. The performance on the development
data set is shown in Table 2. We can see, that the HVS-IFV parser whose feature
vector contains besides words also their lemmas yields better performance. Table
3 reports the performance comparison of the original HVS parser and the best
HVS-IFV parser evaluated both on the development and the test data sets.

Table 1. The performance and the vocabulary size of the HVS parser with different
inputs evaluated on the development data.

Input feature Vocab. size CAcc SAcc p-value

words (baseline) 696 67.0 52.8
lemmas 551 68.3 53.4 < 0.01

morph. tags 225 42.2 30.5 < 0.01

Table 2. The performance of the HVS-IFV parser with different inputs evaluated on
the development data.

Input features SAcc CAcc p-value

words, m. tags 69.3 55.3 < 0.01
lemmas, m. tags 70.3 56.2 < 0.01
words, lemmas 73.1 58.2 < 0.01

words, lemmas, m. tags 72.2 58.1 < 0.01

Table 3. The performance of the baseline HVS and developed HVS-IFV parsers. The
parsers were evaluated on the test and the development data.

Test data Development data
Parser Type CAcc SAcc p-value CAcc SAcc p-value

HVS (baseline) 64.9 50.4 67.0 52.8
HVS-IFV (words, lemmas) 69.4 57.0 < 0.01 73.1 58.2 < 0.01

VIII

5 Conclusion

In this work, we presented a modification of the HVS parser. The proposed
HVS-IFV parser is able to parse the sequence of feature vectors. We started
with the original lexical model of the HVS parser and we used the assumption
of conditional independence of the input features to simplify the parser’s lexical
model. We showed that the conditional independence assumption affects the
search process. We used the exponential scaling of the semantic model probability
to correct the imbalance between the lexical and the semantic model of the HVS-
IFV parser.

We processed the training corpus with the automatic morphology analyzer
and tagger. We used original words, their lemmas, and morphological tags as
the input features of the HVS-IFV parser. The best performance was achieved
with the feature vector composed of words and lemmas. This approach signif-
icantly increases the performance of the semantic parser. We believe that the
improvements come mainly from the ability of lemmas to cluster the original
word vocabulary into classes with the same meaning and in this way make the
model more robust. However, we found that in some cases it is still useful to
include the words into the feature vector because the words help to distinguish
the ambiguous cases where two words with the different meaning has the same
lemma. In total, SAcc was significantly increased from 50.4% to 57.0% and CAcc
from 64.9% to 69.4% measured on the test data.

6 Acknowledgments

This work was supported by the Ministry of Education of the Czech Republic
under project No. 1M0567 (CAK).

References

1. Hemphill, C.T., Godfrey, J.J., Doddington, G.R.: The ATIS spoken language sys-
tems pilot corpus. In: Proceedings of DARPA Speech and Natural Language Work-
shop, Hidden Valley, PA, USA (1990) 96–101

2. He, Y., Young, S.: Hidden vector state model for hierarchical semantic parsing. In:
Proceedings of ICASSP, Hong Kong (2003)

3. Jurč́ıček, F., Zahradil, J., Jelinek, L.: A Human-Human Train Timetable Dialogue
Corpus. In: Proceedings of EUROSPEECH, Lisboa, Portugal (2005)

4. Black, E., Abney, S., Flickinger, D., Gdaniec, C., Grishman, R., Harrison, P., Hindle,
D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S.,
Strzalkowski, S.T.: A procedure for quantitatively comparing the syntactic coverage
of english grammars. In: Proceedings of the 1990 DARPA Speech and Natural
Language Workshop, Pacific Grove, CA (1991) 306–311

5. Klein, P.: Computing the edit-distance between unrooted ordered trees. In Bilardi,
G., Italiano, G.F., Pietracaprina, A., eds.: Proceedings of the6 th Annual European
Symposium. Number 1461, Venice, Italy, Springer-Verlag, Berlin (1998) 91–102

6. Hajič, J.: Disambiguation of Rich Inflection (Computational Morphology of Czech).
Karolinum Press, Charles University -in prep., Prague (2001)

