Skip to main content

Resilient Approximation of Kernel Classifiers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Abstract

Trained support vector machines (SVMs) have a slow run-time classification speed if the classification problem is noisy and the sample data set is large. Approximating the SVM by a more sparse function has been proposed to solve to this problem. In this study, different variants of approximation algorithms are empirically compared. It is shown that gradient descent using the improved Rprop algorithm increases the robustness of the method compared to fixed-point iteration. Three different heuristics for selecting the support vectors to be used in the construction of the sparse approximation are proposed. It turns out that none is superior to random selection. The effect of a finishing gradient descent on all parameters of the sparse approximation is studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinwart, I.: Sparseness of support vector machines. Journal of Machine Learning Research 4, 1071–1105 (2003)

    Article  Google Scholar 

  2. Burges, C.J.C.: Simplified support vector decision rules. In: ICML 1996. Proceedings of the 13th International Conference on Machine Learning, pp. 71–77 (1996)

    Google Scholar 

  3. Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vector machines. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems, Cambridge, MA, vol. 9, pp. 375–381 (1997)

    Google Scholar 

  4. Schölkopf, B., Knirsch, P., Smola, A.J., Burges, C.J.C.: Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature space. In: Levi, P., Ahlers, R.J., May, F., Schanz, M. (eds.) DAGM-Symposium, pp. 124–132. Springer, Heidelberg (1998)

    Google Scholar 

  5. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.R., Rätsch, G., Smola, A.J.: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10(5), 1000–1017 (1999)

    Article  Google Scholar 

  6. Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Efficient face detection by a cascaded support-vector machine expansion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 460, 3283–3297 (2004)

    Article  MATH  Google Scholar 

  7. Igel, C., Hüsken, M.: Empirical evaluation of the improved Rprop learning algorithm. Neurocomputing 50(C), 105–123 (2003)

    Article  MATH  Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Glasmachers, T., Igel, C.: Maximum-gain working set selection for support vector machines. Journal of Machine Learning Research 7, 1437–1466 (2006)

    Google Scholar 

  10. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms, pp. 14–21 (1987)

    Google Scholar 

  11. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Networks 13(3), 780–784 (2002)

    Article  Google Scholar 

  12. Zhang, R., Rudnicky, A.I.: A large scale clustering scheme for kernel k-means. In: Proceedings of the International Conference on Pattern Recognition, pp. 289–292 (2002)

    Google Scholar 

  13. Riedmiller, M.: Advanced supervised learning in multi-layer perceptrons – From backpropagation to adaptive learning algorithms. Computer Standards and Interfaces 16(5), 265–278 (1994)

    Article  Google Scholar 

  14. Rätsch, G., Onoda, T., Müller, K.–R.: Soft margins for AdaBoost. Machine Learning 42(3), 287–320 (2001)

    Article  MATH  Google Scholar 

  15. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suttorp, T., Igel, C. (2007). Resilient Approximation of Kernel Classifiers. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics