Skip to main content

Implementing Classical Conditioning with Spiking Neurons

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Abstract

In this paper, we attempt to implement classical conditioning with spiking neurons instead of connectionist neural networks. The neuron model used is a leaky linear integrate-and-fire model with a learning algorithm combining spike-time dependent Hebbian learning and spike-time dependent anti-Hebbian learning. Experimental results show that the major phenomena of classical conditioning, including Pavlovian conditioning, extinction, partial conditioning, blocking, inhibitory conditioning, overshadow and secondary conditioning, can be implemented by the spiking neuron model proposed here and further indicate that spiking neuron models are well suited to implementing classical conditioning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Rescorla, R.A., Wagner, A.R.: A theory of pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement. In: Black, A.H., Prokasy, W.F. (eds.) Classical Conditioning II: Current Research and Theory, Aleton-Century-Crofts, pp. 64–69 (1972)

    Google Scholar 

  3. Sutton, R.S., Barto, A.G.: Time-derivative models of pavlovian conditioning. In: Gabriel, M., Moore, J.W. (eds.) Learning and Computational Neuroscience, pp. 497–537. MIT Press, Cambridge (1990)

    Google Scholar 

  4. Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  5. Rao, R.P.N., Sejnowski, T.J.: Spike-timing-dependent hebbian plasticity as temporal difference learning. Neural Computation 13, 2221–2237 (2001)

    Article  MATH  Google Scholar 

  6. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  7. Thorpe, S.J., Imbert, M.: Biological constraints on connectionist models. In: Pfeifer, R., Schreter, Z., Fogelman-Soulié, F., Steels, L. (eds.) Connectionism in Perspective, pp. 63–92. Elsevier, Amsterdam (1989)

    Google Scholar 

  8. Jen, P.H., Sun, X.D., Lin, P.J.: Frequency and space representation in the primary auditory cortex of the frequency modulating bat Eptesicus fuscus. Journal of Comparative Physiology 165(1), 1–14 (1989)

    Article  Google Scholar 

  9. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes — Exploring the Neural Code. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  10. Wickens, J.R., Begg, A.J., Arbuthnott, G.W.: Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70(1), 1–5 (1996)

    Article  Google Scholar 

  11. Calabresi, P., Pisani, A., Mercuri, N.B., Bernardi, G.: The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends in Neurosciences 19(1), 19–24 (1996)

    Article  Google Scholar 

  12. Bell, C.C., Han, V.Z., Sugawara, Y., Grankt, K.: Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997)

    Article  Google Scholar 

  13. Han, V.Z., Grant, K., Bell, C.C.: Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27, 611–622 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, C., Shapiro, J. (2007). Implementing Classical Conditioning with Spiking Neurons. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics