Skip to main content

Impact of Shrinking Technologies on the Activation Function of Neurons

  • Conference paper
  • 2668 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Abstract

Artificial neural networks are able to solve a great variety of different applications, e.g. classification or approximation tasks. To utilize their advantages in technical systems various hardware realizations do exist. In this work, the impact of shrinking device sizes on the activation function of neurons is investigated with respect to area demands, power consumption and the maximum resolution in their information processing. Furthermore, analog and digital implementations are compared in emerging silicon technologies beyond 100 nm feature size.

This work was supported by the Graduate College 776 - Automatic Configuration in Open Systems - funded by the German Research Foundation (DFG).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isaac, R.D.: The future of cmos technology. IBM Journal of Research and Development 44(3), 369–378 (2000)

    Google Scholar 

  2. Compañó, R.: Technology roadmap for nanoelectronics. Technical Report 2nd edn. European Commission (2000)

    Google Scholar 

  3. Beiu, V., Taylor, J.G.: On the circuit complexity of sigmoid feedforward neural networks. Neural Netw. 9(7), 1155–1171 (1996)

    Article  Google Scholar 

  4. Arbib, M.A.: The Handbook of Brain Theory and Neural Networks, 2nd edn. The MIT Press, Cambridge, MA, USA (2002)

    Google Scholar 

  5. Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9(5), 256–268 (1974)

    Article  Google Scholar 

  6. Frank, D., Dennard, R., Nowak, E., Solomon, P., Taur, Y., Wong, H.S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE 89, 259–288 (2001)

    Article  Google Scholar 

  7. Taur, Y.: CMOS design near the limit of scaling. IBM Journal of Research and Development 46(2/3), 213–222 (2002)

    Article  Google Scholar 

  8. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice Hall, New Jersey, USA (1999)

    MATH  Google Scholar 

  9. Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York (2000)

    Google Scholar 

  10. Mead, C.: Analog VLSI and neural systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989)

    MATH  Google Scholar 

  11. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MATH  MathSciNet  Google Scholar 

  12. Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45nm design exploration. In: ISQED ’06. Proceedings of the 7th International Symposium on Quality Electronic Design, pp. 585–590. IEEE Computer Society Press, Washington, DC (2006)

    Google Scholar 

  13. Simoen, E., Claeys, C.: On the flicker noise in submicron silicon MOSFETs. Solid-State Electronics 43(5), 865–882 (1999)

    Article  Google Scholar 

  14. Beiu, V., Peperstraete, J.A., Vandewalle, J., Lauwereins, R.: VLSI Complexity Reduction by Piece-Wise Approximation of the Sigmoid Function. In: Verleysen, M. (ed.) Proc. of the ESANN, Bruges, Belgium, pp. 181–186 (April 1994)

    Google Scholar 

  15. Semiconductor Industry Association: International Technology Roadmap for Semiconductors - Edition (2005), http://public.itrs.net/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eickhoff, R., Kaulmann, T., Rückert, U. (2007). Impact of Shrinking Technologies on the Activation Function of Neurons. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics