Skip to main content

Data Fusion and Auto-fusion for Quantitative Structure-Activity Relationship (QSAR)

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Included in the following conference series:

Abstract

Data fusion originally referred to the process of combining multi-sensor data from different sources such that the resulting information/model is in some sense better than would be possible when these sources where used individually. In this paper the data fusion concept is extended to molecular drug design. Rather than using data from different sensor sources, different descriptor sets are used to predict activities or responses for a set of molecules. Data fusion techniques are applied in order to improve the predictive (QSAR) model on test data. In this case this type of data fusion is referred to as auto-fusion. An effective auto-fusion functional model and alternative architectures are proposed for a predictive molecular design or QSAR model to model and predict the binding affinity to the human serum albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hall, D.L., McMullen, S.A.H.: Mathematical Techniques in Multisensor Data Fusion, 2nd edn. Artech House Publishers (2004)

    Google Scholar 

  2. Kessler, et. al.: Functional description of the data fusion process. Technical report (1992)

    Google Scholar 

  3. Steinberg, A.N., Bowman, C.L., White, F.E.: Revisions to the JDL data fusion model. In: Joint NATO/IRIS Conference Proceedings, Quebec, October (1998), In: Sensor Fusion: Architectures, Algorithms, and Applications, Proceedings of the SPIE, vol. 3719, 1999 (1998)

    Google Scholar 

  4. Steinberg, A.N., Bowman, C.L.: Rethinking the JDL data fusion model. In: Proceedings of the 2004 MSS National Symposium Sensor on Sensor and Data Fusion, vol. 1 (2004)

    Google Scholar 

  5. Roussel, S., Bellon-Maurel, V., Roger, J.M., Grenier, P.: Fusion of aroma, FT-IR and UV sensor data based on the bayesian inference. application to the discrimination of white grape varieties. Chemometrics and Intelligent Laboratory Systems 65, 209–219 (2003)

    Article  Google Scholar 

  6. Ginn, C.M.R., Willett, P., Bradshaw, J.: Combination of molecular similarity measures using data fusion. Perspectives in Drug Discovery and Design 20 (2000)

    Google Scholar 

  7. Hert, J., Willett, P., Wilton, D.J.: New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching. Journal of Chemical Information and Modeling 46, 462–470 (2006)

    Article  Google Scholar 

  8. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  9. Rogers, W.: An evaluation of statistical matching. Journal of Business and Economic Statistics 2(1), 91–102 (1984)

    Article  Google Scholar 

  10. Hall, D.L., Llinas, J.: Handbook of Multisensor Data Fusion. CRC Press, USA (2001)

    Google Scholar 

  11. White, F.: A model for data fusion. In: Proc. 1st National Symposium on Sensor Fusion (1988)

    Google Scholar 

  12. Llinas, J., Bowman, C., Rogova, G., Steinberg, A., Waltz, E., White, F.: Revisiting the JDL data fusion model II. In: Proceedings 7th International Conference on Information Fusion, Stockholm, Sweden (2004)

    Google Scholar 

  13. Xu, Q.S., Liang, Y.Z., Du, Y.P.: Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. Journal of Chemometrics 18(2), 112–120 (2004)

    Article  Google Scholar 

  14. Colmenarejo, G., Alvarez-Pedraglio, A., Lavandera, J.L.: Cheminformatic models to predict binding affinities to human serum albumin. Journal of Medicinal Chemistry 44, 4370–4378 (2001)

    Article  Google Scholar 

  15. Breneman, C.M., Sundling, C.M., Sukumar, N., Shen, L., Katt, W.P., Embrechts, M.J.: New developments in PEST shape/property hybrid descriptors. Journal of Computer-Aided Molecular Design 17, 231–240 (2003)

    Article  Google Scholar 

  16. Rhem, M.O.: RECON: An Algorithm for Molecular Charge Density Reconstruction Using Atomic Charge Density Fragments. PhD thesis, Rensselaer Polytechnic Institute (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, C., Embrechts, M.J., Sukumar, N., Breneman, C.M. (2007). Data Fusion and Auto-fusion for Quantitative Structure-Activity Relationship (QSAR). In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics