Skip to main content

An Analytical Model of Divisive Normalization in Disparity-Tuned Complex Cells

  • Conference paper
Book cover Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Included in the following conference series:

  • 2673 Accesses

Abstract

Based on the energy model for disparity-tuned neurons, we calculate probability density functions of complex cell activity for random-dot stimuli. We investigate the effects of normalization and give analytical expressions for the disparity tuning curve and its variance. We show that while normalized and non-normalized complex cells have similar tuning curves, the variance is significantly lower for normalized complex cells, which makes disparity estimation more reliable. The results of the analytical calculations are compared to computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ohzawa, I., DeAngelis, G., Freeman, R.: Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990)

    Article  Google Scholar 

  2. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985)

    Article  Google Scholar 

  3. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for processing binocular information. I. Simple cells. J. Neurophysiol. 82, 891–908 (1999)

    Google Scholar 

  4. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for processing binocular information. II. Complex cells. J. Neurophysiol. 82, 909–924 (1999)

    Google Scholar 

  5. Fleet, D., Heeger, D., Wagner, H.: Modeling binocular neurons in primary visual cortex. In: Jenkin, M., Harris, L. (eds.) Computational and Biological Mechanisms of Visual Coding, pp. 103–130. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. Heeger, D.: Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992)

    Google Scholar 

  7. Carandini, M., Heeger, D., Movshon, J.A.: Linearity and normalization in simple cells of the macaque primary visual cortex. The Journal of Neuroscience 17, 8621–8644 (1997)

    Google Scholar 

  8. Wainwright, M., Schwartz, O., Simoncelli, E.: Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons. In: Rao, R., Olshausen, B., Lewicki, M. (eds.) Probabilistic Models of the Brain: Perception and Neural Function, MIT Press, Cambridge (2002)

    Google Scholar 

  9. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for encoding binocular disparity: Receptive field position versus phase. J. Neurophysiol. 82, 874–890 (1999)

    Google Scholar 

  10. DeValois, R., DeValois, K.: Spatial Vision. Oxford University Press, Oxford (1988)

    Google Scholar 

  11. Zhu, Y., Qian, N.: Binocular receptive field models, disparity tuning, and characteristic disparity. Neural Computation 8, 1611–1641 (1996)

    Article  Google Scholar 

  12. Tsai, J., Victor, J.: Reading a population code: a multi-scale neural model for representing binocular disparity. Vision Research 43, 445–466 (2003)

    Article  Google Scholar 

  13. Tanabe, S., Doi, T., Umeda, K., Fujita, I.: Disparity-tuning characteristics of neuronal responses to dynamic random-dot stereograms in macaque visual area V4. J. Neurophysiol. 94, 2683–2699 (2005)

    Article  Google Scholar 

  14. Truchard, A., Ohzawa, I., Freeman, R.: Contrast gain control in the visual cortex: Monocular versus binocular mechanisms. The Journal of Neuroscience 20, 3017–3032 (2000)

    Google Scholar 

  15. Read, J., Cumming, B.: Testing quantitative models of binocular disparity selectivity in primary visual cortex. J. Neurophysiol. 90, 2795–2817 (2003)

    Article  Google Scholar 

  16. Prince, S., Pointon, A., Cumming, B., Parker, A.: Quantitative analysis of the responses of v1 neurons to horizontal disparity in dynamic random-dot stereograms. J. Neurophysiol. 87, 191–208 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stürzl, W., Mallot, H.A., Knoll, A. (2007). An Analytical Model of Divisive Normalization in Disparity-Tuned Complex Cells. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics