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Abstract. This paper is to identify the clustering structure and the rel-
evant features automatically and simultaneously in the context of Gaus-
sian mixture model. We perform this task by introducing two sets of
weight functions under the recently proposed Maximum Weighted Like-
lihood (MWL) learning framework. One set is to reward the significance
of each component in the mixture, and the other one is to discriminate
the relevance of each feature to the cluster structure. The experiments on
both the synthetic and real-world data show the efficacy of the proposed
algorithm.

1 Introduction

The finite mixture model has provided a formal approach to address the clus-
tering problems. In this unsupervised domain, there are two key issues. One is
the determination of an appropriate number of components (also called number
of clusters or model order interchangeably) in a mixture model. In general, the
true clustering structure may not be well described with too few components,
whereas the estimated model may “over-fit” the data if it uses too many com-
ponents. The other issue is how to identify the relevance of observation features
with respect to the clustering structure. From the practical viewpoint, some fea-
tures may not be so important, or even be irrelevant, to the clustering structure.
Their participation in the clustering process will prevent a clustering algorithm
from finding an appropriate partition. Hence, it is necessary to discriminate the
relevance of each feature with respect to the clustering structure in the clustering
analysis.

Clearly, the above two issues are closely related. However, most of the existing
approaches deal with these two issues separately or sequentially. Some methods
typically choose the most influential features prior to a clustering algorithm, e.g.,
see [1,2]. Although the success of their algorithms has been demonstrated in their
application domains, these pre-selected features may not be necessarily suitable
to the clustering algorithm that will be ultimately employed. Moreover, some
approaches [3,4] wrap the clustering algorithms in an outer layer to evaluate the
candidate feature subsets. The performance of such a method is superior to that
of the previous approaches, but their search strategies of generating the feature
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subset candidates are prone to find a local maxima. Recently, it has been be-
lieved that the above two issues should be jointly optimized in a single learning
paradigm. A typical example is the work of [5], which introduces the concept
of feature saliency to measure the relevance of each feature to the clustering
structure, as the feature weight . It then heuristically integrates the Minimum
Message Length (MML) criterion into the likelihood, and optimizes this penal-
ized likelihood using a modified Expectation-Maximization (EM) algorithm to
obtain the feature weights and the clustering results. Nevertheless, the penalty
terms given by the MML criterion are static and fixed for all components at each
EM iteration. As a result, they may not be robust enough under a certain envi-
ronment, in which it is more desirable to implement a dynamic and embedded
scheme to control the model complexity.

In this paper, we propose such an approach to Gaussian mixture clustering
by formulating the above two issues into a single Maximum Weighted Likelihood
(MWL) optimization function [6]. We introduce two sets of weight functions to
address these two issues, respectively. Consequently, both the model selection
and feature weighting are performed automatically and simultaneously. The ex-
periments on both the synthetic and real-world data have shown the efficacy of
the proposed algorithm.

2 The MWL Learning Framework

Suppose N i.i.d. observations, denoted as x1, x2, . . ., xN, come from the follow-
ing mixture model:

p(xt|Θ∗) =
k∗∑

j=1

α∗
jp(xt|θ∗j ) (1)

with

k∗∑
j=1

α∗
j = 1 and ∀1 ≤ j ≤ k∗, α∗

j > 0,

where each observation xt (1 ≤ t ≤ N) is a column vector of d-dimensional
features, i.e. xt = [x1t, . . . , xdt]T , and Θ∗ = {α∗

j , θ
∗
j }k∗

j=1. Furthermore, θ∗j denotes
the parameter set of the jth probability density function (pdf) p(xt|θ∗j ) in the
mixture model, k∗ is the true cluster number, and α∗

j is the mixing proportion
of the jth component in the mixture. Θ∗ is estimated from these N observations
by:

Θ̂ML = argmax
Θ

{log p(XN|Θ)}. (2)

where XN = {x1,x2, . . . ,xN}, and Θ̂ML = {αj , θj}k
j=1 is a maximum likelihood

(ML) estimate of Θ∗.
When the number of components k is known, the ML estimate in (2) could

be obtained by the Expectation-Maximization (EM) algorithm. However, from
the practical viewpoint, it is difficult or even impossible to know the number
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of components in advance. Recently, a promising approach called Rival Penal-
ized Expectation-Maximization (RPEM for short) [6], where the model order is
determined automatically and simultaneously with the parameter estimation,
has been developed under the MWL learning framework. The main idea of the
MWL framework is to introduce unequal weights in general into the conventional
maximum likelihood, which actually provides a new promising way for regular-
ization so that the weighted likelihood does not increase monotonically over the
candidate model complexity. Specifically, the weighted likelihood is given bellow:

Q(Θ,XN ) =
1
N

N∑

t=1

log p(xt|Θ) =
1

Nζ

N∑

t=1

k∑

j=1

g(j|xt, Θ) log p(xt|Θ)

=
1

Nζ

N∑

t=1

M(Θ,xt) (3)

M(Θ,xt) =
k∑

j=1

g(j|xt, Θ) log[αjp(xt|θj)] −
k∑

j=1

g(j|xt, Θ) log h(j|xt, Θ) (4)

where h(j|xt, Θ) = αjp(xt|θj)
p(xt|Θ) is the posterior probability that xt belongs to the

jth component in the mixture, k is an estimate of k∗ with k ≥ k∗, and ζ is a
constant. The g(j|xt, Θ)’s are the weight functions, satisfying the constraints:

∀t, j,
k∑

j=1

g(j|xt, Θ) = ζ; lim
h(j|xt,Θ)→0

g(j|xt, Θ) log h(j|xt, Θ) = 0.

In the RPEM algorithm of [6], the weight functions are constructed as:

g(j|xt, Θ) = (1 + εt)I(j|xt, Θ) − εth(j|xt, Θ) (5)

with

I(j|x, Θ) =
{

1 if j = c ≡ arg max1≤i≤k h(i|x, Θ);
0 otherwise.

(6)

where εt is a small positive quantity. Under this weight construction, given an
observation xt, a positive weight g(c|xt, Θ) is assigned to the log-likelihood of the
winning component, i.e., the component with the maximum value of h(j|xt, Θ),
so that it is updated to adapt to xt, meanwhile all rival components are pe-
nalized with a negative weight. This intrinsic rival penalization mechanism of
the RPEM makes the genuine clusters survive, whereas the “pseudo-clusters”
gradually vanish. The updating details of Θ̂MWL = argmaxΘ{Q(Θ,XN )} can
be found in [6].

The numerical results have shown its outstanding performance on both of syn-
thetic and real-life data [6], where all features are equally useful in clustering pro-
cess. Nevertheless, analogous to the most of the existing clustering algorithms,
the performance of the RPEM may deteriorate provided that there exist some
irrelevant features in feature vectors. In the following, we will therefore perform
the feature relevancy analysis and further extend the RPEM accordingly within
the MWL framework.
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3 Simultaneous Clustering and Feature Weighting

To discriminate the importance of each feature in the cluster structure, we utilize
the concept of feature saliency defined in [5] as our feature weight (i.e., wl, 0 ≤
wl ≤ 1, ∀1 ≤ l ≤ d): the lth feature is relevant with a probability wl that
the feature’s pdf is dependent of the pdf’s of components in the mixture. For
those features whose values are distributed among all clusters, we regard its
distribution as a common one. We suppose the features are independent of each
other, then the pdf of a more general mixture model can be written below as in
[5]:

p(xt|Θ) =
k∑

j=1

αj

d∏

l=1

p(xlt|Φ)

=
k∑

j=1

αj

d∏

l=1

[wlp(xlt|θlj) + (1 − wl)q(xlt|λl)] (7)

where p(xlt|θlj) = N (xl,t|mlj , s
2
lj) denotes a Gaussian density function of the

relevant feature xlt with the mean mlj , and the variance s2
lj ; q(xlt|λl) is the

common distribution of the irrelevant feature. In this paper, we shall limit it
to be a Gaussian as well for a general purpose, i.e., q(xlt|λl) = N (xlt|cml, cs

2
l ).

Subsequently, the full parameter set of the general Gaussian mixture model is
redefined as Θ = {{αj}k

j=1, Φ} and Φ = {{θlj}d,k
l=1,j=1, {wl}d

l=1, {λl}d
l=1}. Note

that
p(xlt|Φ) = wlp(xlt|θlj) + (1 − wl)q(xlt|λl) (8)

is a linear mixture of two possible densities for each feature, and the feature
weight wl acts as a regulator to determine which distribution is more appropriate
to describe the feature. A new perspective is to regard this form as a lower level
Gaussian mixture, which resembles the higher level Gaussian mixture on which
the weights of the genuine clusters are estimated. Hence, the feature weight wl

can be considered as the counterpart of component weight αj . Subsequently, a
similar rewarding and penalizing scheme can be embedded into the likelihood
function of (3) for this lower level mixture. To this end, we re-write (3) as:

Q̃(Θ,XN ) =
1
N

N∑

t=1

log p(xt|Θ) =
1

Nζ

N∑

t=1

M̃(Θ,xt). (9)

To control the complexity of the model to be estimated, we introduce two sets
of weight functions, i.e. g̃(.|xt, Θ) and f̃(.|xlt, Φ), into the log-likelihood for the
components in the higher level and lower level mixtures, respectively. Altogether,
by inserting the following formulas:

p(xt|Θ) =
αjp(xt|Φ)
h̃(j|xt, Θ)

; p(xlt|Φ) =
wlp(xlt|θlj)
h′(1|xlt, Φ)

=
(1 − wl)q(xlt|λl)

h′(0|xlt, Φ)
,

into (9), we obtain the weighted log-likelihood for the mixture model as follows:
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M̃(Θ,xt) =
k∑

j=1

g̃(j|xt, Θ) log αj +

k∑

j=1

d∑

l=1

g̃(j|xt, Θ)
{

f̃(1|xlt, Φ) log[wlp(xlt|θlj)] + f̃(0|xlt, Φ) log[(1 − wl)q(xlt|λl)]
}

−

k∑

j=1

d∑

l=1

g̃(j|xt, Θ)f̃(1|xlt, Φ) log h
′
(1|xlt, Φ) −

k∑

j=1

d∑

l=1

g̃(j|xt, Θ)f̃(0|xlt, Φ) log h
′
(0|xlt, Φ)

−
k∑

j=1

g̃(j|xt, Θ) log h̃(j|xt, Θ)

(10)
where

h̃(j|xt, Θ) =
αjp(xt|Φ)
p(xt|Θ)

=
αj

d∏
l=1

[wlp(xlt|θlj) + (1 − wl)q(xlt|λl)]

k∑
i=1

αi

d∏
l=1

[wlp(xlt|θli) + (1 − wl)q(xlt|λl)]
,

h
′
(1|xlt, Φ) =

wlp(xlt|θlj)
wlp(xlt|θlj) + (1 − wl)q(xlt|λl)

, h
′
(0|xlt, Φ) = 1 − h

′
(1|xlt, Φ).

h̃(j|xt, Θ) indicates the probability that some features in the data points come
from the jth density component in the subspace. h

′
(1|xlt, Φ) represents the pos-

terior probability that the lth feature conforms to the mixture model. That is,
it reflects the prediction for the relevance of the lth feature to the clustering
structure.

We design the weight functions for the higher level mixture as follows:

g̃(j|xt, Θ
old) = I(j|xt, Θ) + h̃(j|xt, Θ), j = 1, . . . , kmax, (11)

where the I(j|xt, Θ) is the indicator function defined in (6). It is clear that this
form meets the requirements of weight functions under the MWL framework. The
rationale behind this form is that we give an award to the winning component,
i.e., the cth one, by assigning a weight whose value is larger than the corre-
sponding h̃(c|xt, Θ). In contrast, we keep the weights of those rival components
exactly equal to their corresponding h̃(j|xt, Θ)’s. That is, we give the winning
component an award, but the rival ones not. Hence, this is actually another kind
of award-penalization scheme. Such a scheme is able to make the genuine com-
ponents survive in the learning process, whereas those “pseudo-clusters” will be
faded out from the mixture gradually.

In (10), the new weight functions {f̃(1|xlt, Φ), f̃(0|xlt, Φ)} should satisfy the
following constraint:

lim
h′(i|xlt,Φ)→0

f̃(i|xt, Θ) log h
′
(i|xlt, Φ) = 0, i ∈ {0, 1}.



A MWL Approach to Simultaneous Model Selection and Feature Weighting 83

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
f(

y)

f(y)=0.5[1−cos(πy)]
s(y)=y

Fig. 1. f(y) vs. s(y). f(y) is plotted with “-”; s(y) is plotted with “.”;

Accordingly, an applicable form is presented below:

f̃(1|xlt, Φ) = f(h
′
(1|xlt, Φ)), f̃(0|xlt, Φ) = 1 − f(h

′
(1|xlt, Φ)),

with
f(y) = 0.5[1 − cos(πy)], y ∈ [0, 1]. (12)

f(y) is plotted in Fig. 1. An interesting property of f(y) can be observed from
Fig. 1:

y > f(y) > 0, for 0 < y < 0.5; y < f(y) < 1, for 0.5 < y < 1.

Hence, if h
′
(1|xlt, Φ) > h

′
(0|xlt, Φ), it implies that the feature seems useful

in the clustering. Subsequently, its log-likelihood log[wlp(xlt|θlj)] is amplified by
a larger coefficient f̃(1|xlt, Φ), meanwhile the log-likelihood of the “common”
distribution is suppressed by a smaller coefficient f̃(0|xlt, Φ). A reverse assigning
scheme is also held for the case when the feature seems less useful. In this sense,
the function f(y) rewards the important features that make the greater contribu-
tion to the likelihood, and penalizes those of insignificant features. Consequently,
the estimation for the whole parameter set is given by:

Θ̂MWL = argmax
Θ

{Q̃(Θ,XN )}. (13)

An EM-like iterative updating by gradient ascent technique is used to esti-
mate the parameter set. Algorithm 1 shows the pseudo-code description of the
proposed algorithm. In implementation of this algorithm, {αj}k

j=1s must sat-
isfy the constraint:

∑k
j=1 αj = 1 and 0 ≤ αj < 1. Hence, we also update

{βj}k
j=1s instead of {αj}k

j=1 as shown in [6], and {αj}k
j=1 are obtained by:

αj = eβj/
∑k

i=1 eβi , 1 ≤ j ≤ k. As for another parameter wl with the con-
straint: 0 ≤ wl ≤ 1, we update γl instead of wl, and wl is obtained by the
sigmoid function of γl: wl = 1

1+e−τ·γl
, 1 ≤ l ≤ d. The constant τ (τ > 0) is used

to tune the shape of the sigmoid function. To implement a moderate sensitivity
for wl, i.e., an approximately equal increasing or decreasing quantity in both γl

and wl, the slope of the sigmoid function around 0 with respect to (w.r.t.) γl

(namely, around 0.5 w.r.t. wl) should be roughly equal to 1. By rule of thumb,
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Algorithm 1. The complete algorithm.
input : {x1,x2, . . . ,xN}, kmax, η, epochmax, initial Θ
output: The converged Θ̂

count ← 0;
while count ≤ epochmax do

for t ← 1 to N do
step 1: Calculate h

′
, h̃ to obtain f̃ and g̃;

step 2:

Θ̂new = Θ̂old + ΔΘ = Θ̂old + η
∂M̃(xt; Θ)

∂Θ

�
�
�
�
Θ̂old

end
count ← count + 1;

end

we find that a linear fitting of the two curves: wl = 1
1+e−τ·γl

and wl = γl + 0.5
around 0 w.r.t γl occurs around τ = 4.5. In the following, we will therefore set
τ at 4.5.

For each observation xt, the changes in the parameters set are calculated as:

Δβj = ηβ
∂M̃(xt; Θ)

∂βj

∣∣∣∣∣
Θold

= ηβ

kmax∑

i=1

∂M̃(xt; Θ)
∂αi

· ∂αi

∂βj

∣∣∣∣∣
Θold

= ηβ(g̃(j|xt, Θ) − αold
j ), (14)

Δmlj = η
∂M̃(xt; Θ)

∂mlj

∣∣∣∣∣
Θold

= ηg̃(j|xt, Θ)f̃ (1|xlt, Φ)
xlt − mold

lj

(sold
lj )2

, (15)

Δslj = η
∂M̃(xt; Θ)

∂slj

∣∣∣∣∣
Θold

= ηg̃(j|xt, Θ)f̃ (1|xlt, Φ)
[ (xlt − mold

lj )2

(sold
lj )3

− 1
sold

lj

]
,

(16)

Δcml = η
∂M̃(xt; Θ)

∂cml

∣∣∣∣∣
Θold

= η

kmax∑

j=1

g̃(j|xt, Θ)f̃ (0|xlt, Φ)
xlt − cmold

l

(csold
l )2

, (17)

Δcsl = η
∂M̃(xt; Θ)

∂csl

∣∣∣∣∣
Θold
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= η

kmax∑

j=1

g̃(j|xt, Θ)f̃ (0|xlt, Φ)
[
(xlt − cmold

l )2

(csold
l )3

− 1
csold

l

]
, (18)

Δγl = η
∂M̃(xt; Θ)

∂γl

∣∣∣∣∣
Θold

= η
∂M̃(xt; Θ)

∂wl
· ∂wl

∂γl

∣∣∣∣∣
Θold

= η · τ ·
kmax∑

j=1

g̃(j|xt, Θ)
[
f̃(1|xlt, Φ)(1 − wold

l ) − f̃(0|xlt, Φ)wold
l

]
. (19)

Generally speaking, the learning rate of βjs should be chosen as ηβ > η to help
eliminate the much smaller αj (we suggest η = 0.1ηβ).

4 Experimental Results

4.1 Synthetic Data

We generated 1, 000 2-dimensional data points from a Gaussian mixture of three
components:
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�
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�
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��
1.0
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�
,

�
0.15 0
0 0.15

��
+0.3∗N

��
2.5
2.5

�
,

�
0.15 0
0 0.15

��
.

In order to illustrate the ability of the proposed algorithm to perform automatic
model selection and feature weighting jointly, we appended two additional features
to the original set to yield a 4-dimensional one. The last two features are sampled
independently from N (2; 2.52) as the Gaussian noise covering the entire data set.
Apparently, the last two dimensions do not hold the same mixture structure, thus
are not as significant as the first two dimensions in the partitioning process.

We initialized kmax to 15, and all βj ’s and γl’s to 0, which is equivalent to
setting each αj to 1/15 and wl to 0.5, the remaining parameters were randomly
initialized. The learning rates are η = 10−5, ηβ = 10−4. After 500 epochs, the
mixing coefficients and feature weights are obtained by the proposed algorithm:

α̂6 = 0.4251 α̂8 = 0.2893 α̂15 = 0.2856 α̂j = 0, j �= 6, 8, 15
ŵ1 = 0.9968 ŵ2 = 0.9964 ŵ3 = 0.0033 ŵ4 = 0.0036.

The feature weights of the first two dimensions converge close to 1, while those of
the last two dimensions are assigned close to 0. It can be seen that the algorithm
has accurately detected the underlying cluster structures in the first two dimen-
sions, and meanwhile the appropriate model order and component parameters
have been well estimated.

4.2 Real-World Data

We further investigated the performance of our proposed algorithm on serval
benchmark databases [7] for data mining. The partitional accuracy of the al-
gorithm without the prior knowledge of the underground class labels and the
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Table 1. Results of the 30-fold runs on the test sets for each algorithm, where each
data set has N data points with d features from k∗ classes

Data Set Method Model Order Error Rate
Mean ± Std Mean ± Std

wine RPEM 2.5 ± 0.7 0.0843 ± 0.0261
d = 13 EMFW 3.3 ± 1.4 0.0673 ± 0.0286

N = 178 NFW 2.8 ± 0.7 0.0955 ± 0.0186
k∗ = 3 proposed method 3.3 ± 0.4 0.0292± 0.0145
heart RPEM 1.7 ± 0.1 0.3167 ± 0.0526
d = 13 EMFW 2.5 ± 0.5 0.2958 ± 0.0936

N = 270 NFW 2.2 ± 0.4 0.2162 ± 0.0473
k∗ = 2 proposed method fixed at 2 0.2042± 0.0379
wdbc RPEM 1.7 ± 0.4 0.2610 ± 0.0781

d = 30 EMFW 6.0 ± 0.7 0.0939 ± 0.0349
N = 569 NFW 3.0 ± 0.8 0.4871 ± 0.2312
k∗ = 2 proposed method 2.6 ± 0.6 0.0834± 0.0386

ionosphere RPEM 1.8 ± 0.5 0.4056 ± 0.0121
d = 34 EMFW 3.2 ± 0.6 0.1968 ± 0.0386

N = 351 NFW 2.2 ± 0.5 0.3201 ± 0.0375
k∗ = 2 proposed method 2.9 ± 0.7 0.2029 ± 0.0667

relevancy of each features were measured by the error rate index. We randomly
split those raw data sets into equal size for the training sets and the testing
sets. The process was repeated 30 times, yielding 30 pairs of different training
and test sets. For comparison, we conducted the proposed algorithm, the RPEM
algorithm, as well as the approach in [5] (denoted as EMFW). To examine the
efficacy of the feature weight function f(.|xlt, Φ), we also conducted the algo-
rithm (denoted as NFW) with the feature weight function in (12) setting to
s(y) = y, y ∈ [0, 1], i.e., no penalization on the lower level Gaussian mixture in
feature relevancy estimation. The means and standard deviations of the results
obtained on the four sets are summarized in Table 1, from which we have the
three remarks as follows:

Table 2. The average weighting results of the 30 fold-runs on the real data, where
the feature weights for wdbc and ionosphere are not included as the number of their
features is too large to accommodate in this Table

Data set Feature
1 2 3 4 5 6 7 8 9 10 11 12 13

wine 0.9990 0.8799 0.0256 0.2831 0.2354 0.9990 0.9990 0.0010 0.9900 0.9869 0.7613 0.9990 0.0451
heart 0.0010 0.6776 0.5872 0.0010 0.0010 0.9332 0.5059 0.0010 0.8405 0.3880 0.3437 0.4998 0.7856

Remark 1: In Table 1, it is noted that the proposed method has much lower
error rates than the RPEM algorithm that is unable to perform the feature
discrimination. Table 2 lists the mean feature weights of the sets obtained by
the proposed algorithm in the 30 runs, indicating that only several features have
good discriminating power. Remark 2: Without the feature weight functions to
assign unequal emphases on the likelihood for the lower level Gaussian mixture,
it is found that the performance of the NFW algorithm is unstable because of no
enough penalization to the model complexity. It therefore validates the design of
the proposed weight functions for weighting features. Remark 3: It is observed
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that the method in [5] tends to use more components for the mixture, whereas
the proposed algorithm not only gives general lower mismatch degrees, but also
produces much more parsimonious models.

5 Conclusion

In this paper, a novel approach to tackle the two challenges for Gaussian mixture
clustering, has been proposed under the Maximum Weighted Likelihood learning
framework. The model order for the mixture model and the feature weighting
are obtained simultaneously and automatically. Experimental results have shown
the promising performance of the proposed algorithm on both the synthetic and
the real-world data sets.
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