
Identifying Binding Sites in Sequential Genomic Data 

 
Mark Robinson, Cristina González Castellano, Rod Adams,  

Neil Davey, Yi Sun 

Science and Technology Research Institute 
Univesrity of Hertfordshire 

UK 
{M.Robinson, R.G.Adams, Y.2.Sun, N.Davey}@herts.ac.uk 

c.gonzalezcastellano@yahoo.es 

Abstract. The identification of cis-regulatory binding sites in DNA is a difficult 
problem in computational biology. To obtain a full understanding of the 
complex machinery embodied in genetic regulatory networks it is necessary to 
know both the identity of the regulatory transcription factors together with the 
location of their binding sites in the genome.  We show that using an SVM 
together with data sampling, to integrate the results of individual algorithms 
specialised for the prediction of binding site locations, can produce significant 
improvements upon the original algorithms.  These results make more tractable 
the expensive experimental procedure of actually verifying the predictions. 
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1   Introduction 

Binding site prediction is both biologically important and computationally interesting.  
One aspect that is challenging is the imbalanced nature of the data and that has 
allowed us to explore some powerful techniques to address this issue.  In addition the 
nature of the problem allows domain specific heuristics to be applied to the 
classification problem.  Specifically we can remove some of the final predicted 
binding sites as not being biologically plausible. 

Computational predictions are invaluable for deciphering the regulatory control of 
individual genes and by extension aiding in the automated construction of the genetic 
regulatory networks to which these genes contribute. Improving the quality of 
computational methods for predicting the location of transcription factor binding sites 
(TFBS) is therefore an important research goal. Currently, experimental methods for 
characterising the binding sites found in regulatory sequences are both costly and time 
consuming. Computational predictions are therefore often used to guide experimental 
techniques. Larger scale studies, reconstructing the regulatory networks for entire 
systems or genomes, are therefore particularly reliant on computational predictions, 
there being few alternatives available.   



Computational prediction of cis-regulatory binding sites is widely acknowledged 
as a difficult task [1]. Binding sites are notoriously variable from instance to instance 
and they can be located considerable distances from the gene being regulated in 
higher eukaryotes. Many algorithmic approaches are inherently constrained with 
respect to the range of binding sites that they can be expected to reliably predict. For 
example, co-regulatory algorithms would only be expected to successfully find 
binding sites common to a set of co-expressed promoters, not any unique binding sites 
that might also be present. Scanning algorithms are likewise limited by the quality of 
the position weight matrices available for the organism being studied. Given the 
differing aims of these algorithms it is reasonable to suppose that an efficient method 
for integrating predictions from these diverse strategies should increase the range of 
detectable binding sites. Furthermore, an efficient integration strategy may be able to 
use multiple sources of information to remove many false positive predictions, while 
also strengthening our confidence about many true positive predictions. The use of 
algorithmic predictions prone to high rates of false positive is particularly costly to 
experimental biologists using the predictions to guide experiments. High rates of false 
positive predictions also limits the utility of prediction algorithms for their use in 
network reconstruction. Reduction of the false positive rates is therefore a high 
priority.   

 In this paper we show how the algorithmic predictions can be combined so that a 
Support Vector Machine (SVM) can perform a new prediction that significantly 
improves on the performance of any one of the individual algorithms.  Moreover we 
show how the number of false positive predictions can be reduced by around 80%. 

2   Background 

The use of a non-linear classification algorithm for the purposes of integrating the 
predictions from a set of cis-regulatory binding site prediction algorithms is explored 
in this paper.  This is achieved by first running a set of established prediction 
algorithms, chosen to represent a range of different algorithmic strategies, on a set of 
annotated promoter sequences. Subsequently, an SVM is trained to classify individual 
sequence positions as a component of either a binding site or the background 
sequence. The set of predictions from the original algorithms, appropriately sampled 
to account for the imbalanced nature of the data set, and labeled with experimental 
annotations is used for the training inputs.  

A wide range of binding site prediction algorithms were used in this study. They 
were selected to represent the full range of computational approaches to the binding 
site prediction problem. The algorithms chosen were either reported in the literature 
or were developed in-house or by our collaborators in the case of PARS, Dream and 
Sampler. Table 1 lists the algorithms used along with references. Where possible, 
parameter settings for the algorithms were taken from the literature, if not available, 
default settings were used. 

 



Table 1.  The 12 Prediction Algorithms used.  

Strategy  Algorithm 
Scanning algorithms Fuzznuc 

MotifScanner [2] 
Ahab [3] 

Statistical algorithms  PARS 
Dream (2 versions) [4] 
Verbumculus [5] 

Co-regulatory algorithms MEME [6] 
AlignACE [7] 
Sampler 

Evolutionary algorithms  SeqComp [8] 
Footprinter [9] 

 

3  Description of the Data  

Experimentally annotated sequences were used in this study. The yeast, S.cerevisiae 
was selected for the model organism; the use of this particularly well studied model 
organism ensures that the annotations available are among the most complete 
available. 112 annotated promoter sequences were extracted from the S.cerevisiae 
promoter database [10] for training and testing the algorithms. For each promoter, 500 
base-pairs (bp) of sequence taken immediately upstream from the transcriptional start 
site was considered sufficient to typically allow full regulatory characterisation in 
yeast [10]. In cases where annotated binding sites lay outside of this range, then the 
range was expanded accordingly. Likewise, where a 500 bp upstream region would 
overlap a coding region then it was truncated accordingly.  Further details about how 
the data was obtained can be found in [11].  

Predictions made by the original algorithms across the dataset were placed into a 
matrix consisting of 67,782 12-ary real valued vectors, each associated with a binary 
label indicating the presence or absence of an experimental annotation at that position, 
see Figure 1.  

Each 12-ary vector represents the predictions from all 12 original algorithms for a 
particular position in the dataset. All predictions in the matrix were normalised as real 
values in the range [-1,1] with the value of 0 allocated to sequence positions where an 
algorithm was unable to be run.  Additionally, we contextualize the training and test 
datasets to ensure that the classification algorithms have data on contiguous binding 
site predictions. This is achieved by windowing the vectors within each of the 112 
annotated promoter sequences. We use a window size of 7, providing contextual 
information for 3 bp either side of the position of interest.   

Additionally this procedure carries the considerable benefit of eliminating a large 
number of repeated or inconsistent vectors which are found to be present in the data 
and would otherwise pose a significant obstacle to the training of the classifiers. 

 
 



 
Fig. 1.  The formation of the windowed data.  The 12 predictions from the original algorithms 
for the target site are concatenated with the predictions from the 3 sites on either side.  This 
gives an input vector of 12 by 7 real numbers.  The corresponding label of this vector is the 
annotation of the central nucleotide. 

A number of statistics summarising the dataset are shown in Table 2. 
 

Table 2.  Summary of the data used.  

Total number of sequences  112 
Total sequence length  67782 bp 
Average sequence length  605 bp 
Average number of TFBS sites per sequences 3.6 
Average TFBS width  13.2 bp 
Total number of TFBS sites  400 
Number of unique TFBS sites  69 
TFBS density in total dataset  7.8% 

 

4  Performance Metrics 

As approximately 8% of the dataset (see Table 2) is annotated as being a part of a 
binding site, this dataset is imbalanced.  If the algorithms are to be evaluated in a 
useful manner simple error rates are inappropriate, it is therefore necessary to use 
other metrics. Several common performance metrics, such as Recall (also known as 
Sensitivity), Precision, False Positive rate (FP-Rate) and F-Score, can be defined 



using a confusion matrix (see Table 3) of the classification results.  Precision 
describes the proportion of predictions that are accurate; Recall describes the 
proportion of binding site positions that are accurately predicted; FP-Rate describes 
the proportion of the actual negatives that are falsely predicted as positive; and the  
F-Score is the weighted harmonic mean of Precision and Recall. There is typically a 
trade off between Precision and Recall, making the F-Score particularly useful as it 
incorporates both measures. In this study, the weighting factor, β, was set to 1 giving 
equal weighting to both Precision and Recall. It is worth noting that for all these 
metrics a higher value represents improved performance with the solitary exception of 
FP-rate for which a lower value is preferable.   

Table 3.  The definition of performance measures  

 Predicted Negatives Predicted Positives 
Actual Negatives True Negatives - TN False Positives - FP 
Actual Positives False Negatives - FN True Positives - TP 
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5  Techniques for Learning Imbalanced Datasets 

Without addressing the imbalance of the two classes in the data, classifiers will 
produce negligible true positive predictions.  This is due to the fact that predicting that 
every base-pair is not part of a binding site will give high accuracy, being correct 92% 
of the time (with no false positives).  However such a predictor is obviously 
worthless.  

In this paper we address the problem of our imbalanced data in two ways: firstly by 
using data based sampling techniques [12, 13] and secondly by using different SVM 
error costs for the two classes [14].   

5.1  Sampling Techniques 

One way to address imbalance is simply to change the relative frequencies of the two 
classes by under sampling the majority class and over sampling the minority class.  
Under sampling the majority class can be done by just randomly selecting a subset of 
the class.  Over sampling the minority class is not so simple and here we use the 
Synthetic Minority Oversampling Technique (SMOTE) [12].   For each member of the 
minority class its nearest neighbours in the same class are identified and new 
instances are created, placed randomly between the instance and its neighbours. In the 
first experiment the number of items in the minority class was first doubled and the 



number of randomly selected majority class members was then set to ensure that the 
final ratio of minority to majority class was 0.5. This value was selected using 5-fold 
cross validation experiments. 

5.2  Different SVM error costs 

In the standard SVM the primal Lagrangian that is minimized is: 
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Here C represents the trade-off between the empirical error, ξ , and the margin.   The 
problem here is that both the majority and minority classes use the same value for C, 
which as pointed out by Akbani et al [15] will probably leave the decision boundary 
too near the minority class.  Veropoulos et al [14] suggest that having a different C 
value for the two classes may be useful.  They suggest that the primal Lagrangian is 
modified to: 
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Here the trade-off coefficient C is split into 
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the decision boundary to be influenced by different trade-offs for each class.  Thus the 
decision boundary can be moved away from the minority class by lowering 
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Akbani et al [15] argue that using this technique should improve the position of the 
decision boundary but will not address the fact that it may be misshapen due to the 
relative lack of information about the distribution of the minority class.  So they 
suggest that the minority class should also be over-sampled, using SMOTE, to 
produce a method they call SMOTE with Different Costs (SDC).  This is one of the 
techniques we evaluate here.   

6  Biologically Constrained Post-Processing 

One important concern when applying classifier algorithms to the output of many 
binding site prediction algorithms is that the classifier decisions could result in 
biologically unfeasible results.  The original algorithms only predict reasonable, 
contiguous sets of base pairs as constituting complete binding sites.  However when 
combined in our meta-classifier each base pair is predicted independently of the 



neighbouring base pairs, and it is therefore possible to get lots of short predicted 
binding sites of length one or two base pairs. 

In this and a previous study, it was observed that many of the predictions made by 
the classifiers were highly fragmented and too small to correspond to biological 
binding sites. It was not clear whether these fragmented predictions were merely 
artifacts or whether they were accurate but overly conservative. Therefore, predictions 
with a length smaller than a threshold value were removed and the effect on the 
performance measures observed. It was found that removal of the fragmented 
predictions had a considerable positive effect on the performance measures, most 
notably for Precision and that an optimal value for the threshold is 6 bp. Interestingly, 
this value corresponds roughly to the lower limit of biologically observed binding site 
lengths which are typically in the range 5-30 bp in length.  

7  Results 

Before presenting the main results we should point out that predicting binding sites 
accurately is extremely difficult.  The performance of the best individual original 
algorithm (Fuzznuc) is:   
                                                                                                                                  

 Predicted Negatives Predicted Positives 
Actual Negatives TN= 83% FP = 10% 
Actual Positives FN = 4% TP = 3% 

 
Here we can see over three times as many false positives as true positives.  This 

makes the predictions almost useless to a biologist as most of the suggested binding 
sites will need expensive experimental validation and most will not be useful.  
Therefore the key aim of our combined classifier is to significantly reduce the number 
of false positives given by the original algorithms. 

7.1 Results Using Sampling 

As described above the imbalanced nature of the data must be addressed.  First the 
data is divided into a training set and test set, in the ratio 2 to 1.  This gives a training 
set of 32,615 84-ary vectors and a test set of 16,739 vectors.   

In the results here the majority class in the training set is reduced, by random 
sampling, from 30,038 vectors to 9,222 and the minority class was increased from 
2,577 vectors to 4,611 vectors using the SMOTE algorithm.  Therefore the ratio of the 
majority class to the minority class is reduced from approximately 12 : 1 to 2 : 1.  
Other ratios were tried but this appears to give good results.  The test set was not 
altered at all. 

As described earlier an SVM with Gaussian kernel was used as the trainable 
classifier, and to find good settings for the two free parameters of the model, C and γ 
standard 5-fold cross validation was used.  After good values for the parameters were 
found (C = 1000, γ = 0.001), the test set was presented and the results are as follows: 



 
 Recall Precision F-Score FP-Rate 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 
 

The first notable feature of this result is that the combined classifier has produced a 
weaker Recall than the best original algorithm.  This is because it is giving fewer 
positive predictions, but it has a much higher precision.  Of particular significance is 
that the FP-Rate is relatively low at 0.04, so that only 4% of the actual non-binding 
sites are predicted incorrectly.  However this is still too large a figure to make the 
classifier useful to biologists.  So we turn to our second Combined Classifier using 
SDC. 

7.2  Results Using SDC 

First the minority class was over-sampled using SMOTE.  The size of the minority 
class was tripled to 7731 vectors so that the ratio of majority to the minority class was 
now about 4 : 1.  Once again 5-fold cross validation was used to find appropriate 
values for the three free parameters of the SVM with different costs, namely 
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and γ.  The best values found were: 
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C
"= 1320 and γ = 0.0001. 

 
 Recall Precision F-Score FP-RATE 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 
SDC 0.283 0.375 0.324 0.036 

 
This method has produced a good classifier, but it is not much better than the 

classifier using a straightforward SVM and sampling.  However the FP-Rate has been 
further reduced to 0.036. 

7.3  Results after Post-Processing 

Finally we investigate how the results can be further improved by removing those 
predictions of base-pairs being part of a binding site that are not biologically 
plausible.  As described earlier we find that removing predictions that are not part of a 
contiguous predicted binding site of at least six nucleotides gives an optimal result.  
So here we take the predictions of the SDC algorithm and remove all those that do not 
meet this criterion. 

 
 Recall Precision F-Score FP-Rate 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 
SDC 0.283 0.375 0.324 0.036 
SDC + Post-Processing 0.264 0.517 0.350 0.021 



This produces our best result by some way.  The Precision of the prediction has 
been increased to 0.517 and the FP-Rate is now down to just 2%. 

To see how this has come about Figure 2 shows a fragment of the genome with the 
original algorithmic predictions, the SVM predictions, the result of post-processing 
the SVM predictions and the actual annotation.  It can be seen that for this fragment 
the removal of the implausible predictions eliminates almost all the false positive 
predictions. 
 

 
Fig. 2. A fragment of the genome with the 12 original predictions, the actual annotations in 
black.  The last row shows the predictions of the SVM and above it the effect of removing 
unrealistically short predictions. 

8  Discussion 

The identification of regions in a sequence of DNA that are regulatory binding sites is 
a very difficult problem.  Individually the original prediction algorithms are 
inaccurate and consequently produce many false positive predictions.  Our results 
show that by combining the predictions of the original algorithms we can make a 
significant improvement from their individual results.  This suggests that the 
predictions that they produce are complementary, perhaps giving information about 
different parts of the genome.  The only problem of our approach is that the combined 
predictor can indicate implausibly short binding sites.  However we have shown that 
by simply rejecting these binding sites, using a length threshold, gives a very low rate 
of false positive predictions.  This is exactly the result that we wanted: false positives 
are very undesirable in this particular domain. 

On the technical issue of dealing with the highly imbalanced data we found that 
both sampling of the two classes and using the SDC algorithm gave similar results, 
with both methods dealing well with our data. 
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