Skip to main content

A Dynamical Model for Receptive Field Self-organization in V1 Cortical Columns

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Abstract

We present a dynamical model of processing and learning in the visual cortex, which reflects the anatomy of V1 cortical columns and properties of their neuronal receptive fields (RFs). The model is described by a set of coupled differential equations and learns by self-organizing the RFs of its computational units – sub-populations of excitatory neurons. If natural image patches are presented as input, self-organization results in Gabor-like RFs. In quantitative comparison with in vivo measurements, we find that these RFs capture statistical properties of V1 simple-cells that learning algorithms such as ICA and sparse coding fail to reproduce.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpenter, G.A., Grossberg, S.: Adaptive resonance theory. In: Arbib (ed.) The handbook of brain theory and neural networks, pp. 87–90. MIT Press, Cambridge (2003)

    Google Scholar 

  2. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  3. Yoshimura, Y., Dantzker, J.L., Callaway, E.M.: Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005)

    Article  Google Scholar 

  4. Lücke, J., von der Malsburg, C.: Rapid processing and unsupervised learning in a model of the cortical macrocolumn. Neural Computation 16, 501–533 (2004)

    Article  MATH  Google Scholar 

  5. Lücke, J., Bouecke, J.D.: Dynamics of cortical columns – self-organization of receptive fields. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 31–37. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bell, A.J., Sejnowski, T.J.: The independent components of natural scenes are edge filters. Vision Research 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  7. van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London B 265, 359–366 (1998)

    Article  Google Scholar 

  8. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  9. Olshausen, B.A.: Probabilistic Models of the Brain: Perception and Neural Function. In: chapter Sparse Codes and Spikes, pp. 257–272. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Lücke, J.: Dynamics of cortical columns – sensitive decision making. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 25–30. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Lücke, J.: Hierarchical self-organization of minicolumnar receptive fields. Neural Networks 17/ 8-9, 1377–1389 (2004)

    Article  Google Scholar 

  12. Földiák, P.: Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics 64, 165–170 (1990)

    Article  Google Scholar 

  13. Somers, D., Nelson, S., Sur, M.: An emergent model of orientation selectivity in cat visual cortical simple cells. The Journal of Neuroscience 15, 5448–5465 (1995)

    Google Scholar 

  14. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58(6), 1233–1258 (1987)

    Google Scholar 

  15. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology 88, 455–463 (2002)

    Google Scholar 

  16. Dantzker, J.L., Callaway, E.M.: Laminar sources of synaptic input to cortical inhib. interneurons and pyram. neurons. Nature Neuroscience 3, 701–707 (2000)

    Article  Google Scholar 

  17. Osindero, S., Welling, M., Hinton, G.E.: Topographic product models applied to natural scene statistics. Neural Computation 18, 381–414 (2006)

    Article  MATH  Google Scholar 

  18. Rehn, M., Sommer, F.T.: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Journal of Computational Neuroscience  (2006)

    Google Scholar 

  19. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity. The Journal of Neuroscience 2(1), 32–48 (1982)

    Google Scholar 

  20. Jerez, J., Atencia, M., Vico, F.J.: A Learning Rule to Model the Development of Orientation Selectivity in Visual Cortex. Neural Processing Letters 21, 1–20 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lücke, J. (2007). A Dynamical Model for Receptive Field Self-organization in V1 Cortical Columns. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics