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Abstract. Traditional parallel schedulers running on cluster supercomputers sup-
port only static scheduling, where the number of processorsallocated to an ap-
plication remains fixed throughout the execution of the job.This results in under-
utilization of idle system resources thereby decreasing overall system throughput.
In our research, we have developed a prototype framework called ReSHAPE,
which supports dynamic resizing of parallel MPI applications executing on dis-
tributed memory platforms. The resizing library in ReSHAPEincludes support
for releasing and acquiring processors and efficiently redistributing application
state to a new set of processors. In this paper, we derive an algorithm for redis-
tributing two-dimensional block-cyclic arrays fromP toQ processors, organized
as 2-D processor grids. The algorithm ensures a contention-free communication
schedule for data redistribution ifPr ≤ Qr andPc ≤ Qc. In other cases, the al-
gorithm implements circular row and column shifts on the communication sched-
ule to minimize node contention.

Key words: Dynamic scheduling, Dynamic resizing, Data redistribution, Dynamic re-
source management, process remapping, resizable applications

1 Introduction

As terascale supercomputers become more common and as the high-performance com-
puting (HPC) community turns its attention to petascale machines, the challenge of
providing effective resource management for high-end machines grows in both impor-
tance and difficulty. A fundamental problem is that conventional parallel schedulers are
static, i.e., once a job is allocated a set of resources, theyremain fixed throughout the
life of an application’s execution. It is worth asking whether a dynamic resource man-
ager, which has the ability to modify resources allocated tojobs at runtime, would allow
more effective resource management. The focus of our research is on dynamically re-
configuring parallel applications to use a different numberof processes, i.e., ondynamic
resizing of applications.1

In order to explore the potential benefits and challenges of dynamic resizing, we are
developing ReSHAPE, a framework for dynamicResizing andScheduling ofHomo-
geneousApplications in aParallelEnvironment. The ReSHAPE framework includes a

1 A shorter version of this paper is available in the proceedings of theThe Fifth International
Symposium on Parallel and Distributed Processing and Applications (ISPA07)
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programming model and an API, data redistribution algorithms and a runtime library,
and a parallel scheduling and resource management system framework. ReSHAPE al-
lows the number of processors allocated to a parallel message-passing application to be
changed at run time. It targets long-running iterative computations, i.e., homogeneous
computations that perform similar computational steps over and over again. By moni-
toring the performance of such computations on various processor sizes, the ReSHAPE
scheduler can take advantage of idle processors on large clusters to improve the turn-
around time of high-priority jobs, or shrink low-priority jobs to meet quality-of-service
or advanced reservation commitments.

Dynamic resizing necessiates runtime application data redistribution. Many high
performance computing applications and mathematical libraries like ScaLAPACK [1]
require block-cyclic data redistribution to achieve computational efficiency. Data re-
distribution involves four main stages — data identification and index computation,
communication schedule generation, message packing and unpacking and finally, data
transfer. Each processor identifies its part of the data to redistribute and transfers the
data in the message passing step according to the order specified in the communication
schedule. A node contention occurs when one or more processors sends messages to a
single processor. A redistributioncommunication schedule aims to minimize these node
contentions and maximiz network bandwidth utilization. Data is packed or marshalled
on the source processor to form a message and is unmarshalledon the destination pro-
cessor.

In this paper, we present an algorithm for redistributing two-dimensional block-
cyclic data fromP ( Pr rows×Pc columns) toQ (Qr rows×Qc columns) processors,
organized as 2-D processor grids. We evaluate the algorithm’s performance by measur-
ing the redistribution time for different block-cyclic matrices. IfPr ≤ Qr andPc ≤ Qc,
the algorithm ensures a contention-free communication schedule for redistributing data
from source processor setP toQ processor set. In other cases the algorithm minimizes
node contentions by performing row or column circular shifts on the communication
schedule. The algorithm discussed in this paper supports 2-D block cyclic data redistri-
bution for only one- and two-dimensional processor topology. We also discuss in detail
the modifications needed to port an existing scientific application to use the dynamic
resizing capability of ReSHAPE using the API provided by theframework.

The rest of the paper is organized as follows: Section 2 discusses prior work in the
area of data redistribution. Section 3 briefly reviews the architecture of the ReSHAPE
framework and discusses in detail the two-dimensional redistribution algorithm and the
ReSHAPE API. Section 4 reports our experimental results of the redistribution algo-
rithm with the ReSHAPE framework tested on the SystemX cluster at Virginia Tech.
We conclude in Section 5 discussing future directions to this research.

2 RelatedWork

Data redistribution within a cluster using message passingapproach has been exten-
sively studied in literature. Many of the past research efforts [2] [3] [4] [5] [6] [7]
[8] [9] [10] [11] [12] were targeted towards redistributingcyclically distributed one
dimensional arrays between the same set of processors within a cluster on a 1-D pro-
cessor topology. To reduce the redistribution overhead cost, Walker and Otto [12] and



Kaushik [7] proposed a K-step communication schedule basedon modulo arithmetic
and tensor products repectively. Ramaswamy and Banerjee [9] proposed a redistribu-
tion technique, PITFALLS, that uses line segments to map array elements to a processor.
This algorithm can handle any arbitrary number of source anddestination processors.
However, this algorithm does not use communication schedules during redistribution
resulting in node contentions during data transfer. Thakuret al. [11][10] usegcd and
lcm methods for redistributing cyclically distributed one dimensional arrays on the same
processor set. The algorithms described by Thakur et al. [10] and Ramaswamy [9] use
a series of one-dimensional redistributions to handle multidimensional arrays. This ap-
proach can result in significant redistribution overhead cost due to unwanted commu-
nication. Kalns and Ni [6] presented a technique for mappingdata to processors by
assigning logical processor ranks to the target processors. This technique reduces the
total amount of data that must be communicated during redistribution. Hsu et al. [5]
further extended this work and proposed a generalized processor mapping technique
for redistributing data from cyclic(kx) to cyclic(x), and vice versa. Here, x denotes the
number of data blocks assigned to each processor. However, this method is applicable
only when the number of source and target processors are same. Chung et al. [2] pro-
posed an efficient method for index computation using basic-cycle calculation (BCC)
technique for redistributing data from cyclic(x) to cyclic(y) on the same processor set.
An extension of this work by Hsu et al. [13] uses generalized basic-cyclic calcula-
tion method to redistribute data from cyclic(x) over P processors to cyclic(y) over Q
processors. The generalized BCC uses uses bipartite matching approach for data re-
distribution. Lim et al. [8] developed a redistribution framework that could redistribute
one-dimensional array from one block-cyclic scheme to another on the same processor
set using a generalized circulant matrix formalism. Their algorithm applies row and col-
umn transformations on the communication schedule matrix to generate a conflict-free
schedule.

Prylli et al. [14], Desprez et al. [3] and Lim et al. [15] proposed efficient algorithms
for redistributing one- and two-dimensional block cyclic arrays. Prylli et al. [14] pro-
posed a simple scheduling algorithm, called Caterpillar, for redistributing data across a
two-dimensional processor grid. At each stepd in the algorithm, processorPi(0 < i ≤
P ) in the destination processor set exchanges its data with processorP((P−i−d) mod P ).
The Caterpillar algorithm does not have a global knowledge of the communication
schedule and redistributes the data using the local knowledge of the communications at
every step. As a result, this algorithm is not efficient for data redistribution using “non-
all-to-all” communication. Also, the redistribution timefor a step is the time taken to
transfer the largest message in that step. Desprez et al. [3]proposed a general solution
for redistributing one-dimensional block-cyclic data from a cyclic(x) distribution on a
P-processor grid to a cyclic(y) distribution on a Q-processor grid for arbitrary values of
P, Q, x, and y. The algorithm assumes the source and target processors as disjoint sets
and uses a bipartite matching to compute the communication schedule. However, this
algorithm does not ensure a contention-free communicationschedule. In a recent work,
Guo and Pan [4] described a method to construct schedules that minimizes number of
communication steps, avoids node contentions, and minimizes the effect of difference
in message length in each communication step. Their algorithm focuses on redistribut-
ing one-dimensional data from a cyclic(kx) distribution onP processors to cyclic(x)



distribution on Q processors for any arbitrary positive values of P and Q. Lim et al. [15]
propose an algorithm for redistributing a two-dimensionalblock-cyclic array across
a two-dimensional processor grid. But the algorithm is restricted to redistributing data
across different processor topologies on the same processor set. Park et al. [16] extended
the idea described by Lim et al. [15] and proposed an algorithm for redistributing one-
dimensional block-cyclic array with cyclic(x) distribution on P processors to cyclic(kx)
on Q processors where P and Q can be any arbitrary positive value.

To summarize, most of the existing approaches either deal with redistribution of
block-cyclic array across one-dimensional processor topology on the same or on a dif-
ferent processor set. The Caterpillar algorithm by Prylli et al. [14] is the closest related
work to our redistribution algorithm in that it supports redistribution on checkerboard
processor topology. In our work, we extend the idea in [15][16] to develop an algorithm
to redistribute two-dimensional block-cyclic data distributed across a 2-D processor
grid topology. The data is redistributed fromP (Pr × Pc) to Q (Qr × Qc) processors
where P and Q can be any arbitrary positive value. Our work is contrary to Desprez et
al. [3] where they assume that there is no overlap among processors in the source and
destination processor set. Our algorithm builds an efficient communication schedule
and uses non-all-to-all communication for data redistribution. We apply row and col-
umn transformations using the circulant matrix formalism to minimize node contentions
in the communication schedule.

3 System Overview

The ReSHAPE framework, shown in Figure 1(a), consists of twomain components. The
first component is the application scheduling and monitoring module which schedules
and monitors jobs and gathers performance data in order to make resizing decisions
based on application performance, available system resources, resources allocated to
other jobs in the system and jobs waiting in the queue. The second component of the
framework consists of a programming model for resizing applications. This includes
a resizing library and an API for applications to communicate with the scheduler to
send performance data and actuate resizing decisions. The resizing library includes al-
gorithms for mapping processor topologies and redistributing data from one processor
topology to another. The individual components in these modules are explained in detail
by Sudarsan and Ribbens [17].

3.1 Resizing library

The resizing library provides routines for changing the size of the processor set assigned
to an application and for mapping processors and data from one processor set to another.
An application needs to be re-compiled with the resize library to enable the scheduler to
dynamically add or remove processors to/from the application. During resizing, rather
than suspending the job, the application execution controlis transferred to the resize
library which maps the new set of processors to the application and redistributes the
data (if required). Once mapping is completed, the resizinglibrary returns control back
to the application and the application continues with its next iteration. The application
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Fig. 1. (a) Architecture of ReSHAPE (b) State diagram for application expansion and
shrinking

user needs to indicate the global data structures and variables so that they can be redis-
tributed to the new processor set after resizing. Figure 1(b) shows the different stages
of execution required for changing the size of the processorset for an application.

Our API gives programmers a simple way to indicateresize points in the application,
typically at the end of each iteration of the outer loop. At resize points, the application
contacts the scheduler and provides performance data to thescheduler. The metric used
to measure performance is the time taken to compute each iteration. The scheduler’s de-
cision to expand or shrink the application is passed as a return value. If an application is
allowed to expand to more processors, the response from the Remap Scheduler includes
the size and the list of processors to which an application should expand. A call to the
redistribution routine remaps the global data to the new processor set. If the Sched-
uler asks an application to shrink, then the application first redistributes its global data
across a smaller processor set, retrieves its previously stored MPI communicator, and
creates a new BLACS [18] context for the new processor set. The additional processes
are terminated when the old BLACS context is exited. The resizing library notifies the
Remap Scheduler about the number of nodes relinquished by the application.



3.2 Application Programming Interface (API)

A simple API allows user codes to access the ReSHAPE framework and library. The
core functionality is accessed through the following internal and external interfaces.
These functions are available for use by advanced application programmers. These
functions provide the main functionality of the resizing library by contacting the sched-
uler, remapping the processors after an expansion or a shrink, and redistributing the
data. These functions are listed as follows:

– reshape Initialize (global data array, nprocessors, blacs context, iterationCount,
processor row, processor column, job id): initializes the iterationCount and the
global data array with the initial values and creates a blacscontext for the two-
dimensional processor topology. The function returns values for processor row,
column configuration and jobid.

– reshape ContactScheduler(iteration time, redistribution time, processor row count,
processor column count, job id): contacts the scheduler and supplies last iteration
time; on return, the scheduler indicates whether the application should expand,
shrink, or continue execution with the current processor size.

– reshape Expand (): adds the new set of processors (defined by previous call to
reshapecontactScheduler) to the current set using BLACS.

– reshape Shrink (): reduces the processor set size (defined by previous call to re-
shapecontactScheduler) to an earlier configuration and relinquishes additional pro-
cessors.

– reshape Redistribute(Global data array, current BLACS context, current processor
set size, EXPAND/SHRINK): redistributes global data among the newly spawned or
shrunk processors. The redistribution time is computed andstored for next resize
point.

– reshape Log (starttime, endtime): computes the average iteration time of the current
iteration for all the processors and stores it for next resize point.

Figure 2(a) shows the source code for a simple MPI application for solving a se-
quence of linear system of equations using ScaLAPACK functions. The original code
was refactored to identify the global data structures and variables. The ReSHAPE API
calls were inserted at the appropriate locations in the refactored code. Figure 2(b) shows
the modified code.

3.3 Data Redistribution

The data redistribution library in ReSHAPE uses an efficientalgorithm for redistribut-
ing block-cyclic arrays between processor sets organized in a 1-D (row or column for-
mat) or checkerboard processor topology. The algorithm forredistributing 1-D block-
cyclic array over a one-dimensional processor topology wasfirst proposed by Park et
al. [16]. We extend this idea to develop an algorithm to redistribute both one- and two-
dimensional block-cyclic data across a two-dimensional processor grid of processors.
In our redistribution algorithm, we assume the following:

– Source processor configuration:Pr × Pc (rows × columns), Pr, Pc > 0.



� 
� 
int main{int argc, char**argv[]){ 
 
double **A,**B; 
 
int maxIterations =10; 
 
//MPI Initializations 
//Read Global matrix A of dimensions m x n, B with 
dimensions n x p 
 
for(iterationCount=0;iterationCount<maxIterations;itera
tionCount++) 
    {  
      //Compute descriptor and other parameters for 
PDGETRF and   
         PDGETRS 
      // Solve linear system of equations  using LU 
factrorization             
    } 
} 

(a)

� 
/*Identification of Global arrays and variables*/ 
double **A,**B; 
int maxIterations =10; 
int blacs_context, iterationCount, nprocessor_row, 
nprocessor_column,job_id; 
int iteration_time, redistribution_time; 
 
int main{int argc, char**argv[]){ 
 
    //MPI Initialization 
    //Read Global matrix A of dimensions m x n, B with dimensions n x p 
    
reshape_Initialize(A, size, blacs_context, iterationCount, nprocessor_row,  

    nprocessor_column, job_id); 
reshape_Initialize(B, size, blacs_context, iterationCount, nprocessor_row 

 , nprocessor_column ,job_id ); 
 
      Compute(); //Refactoring the original code 
} 
 
void compute(){ 
      for(;iterationCount<maxIterations; iterationCount++) 
       { 
       //Read array dimensions 
       //Compute descriptor and other parameters for PDGETRF and PDGETRS 
 
            start = MPI_Wtime(); 
            // Solve linear system of equations by performing LU factorization     
            end = MPI_Wtime(); 
 
          reshape_Log(start, end); 
           return_scheduler_decision = 
              reshape_ContactScheduler(iteration_time, redistribution_time,  
                                                 nprocessor_row, nprocessor_column, job_id); 
             if (return_scheduler_decision == EXPAND) 
 { 

   reshape_Expand(); 
                reshape_Redistribute(A,blacs_context,nprocessor_row,  

 nprocessor_column,EXPAND);  
   reshape_Redistribute(B,blacs_context,nprocessor_row,  

nprocessor_column,EXPAND); 
} 

           else if (return_scheduler_decision == SHRINK) 
  { 

   reshape_Shrink(); 
   reshape_Redistribute(A,blacs_context,nprocessor_row  

,nprocessor_column,SHRINK); 
   reshape_Redistribute(B,blacs_context,nprocessor_row,  

nprocessor_column,SHRINK);  
} 

       } 
   } 

(b)

Fig. 2. (a) Original MPI code for solving system of linear equations. (b) Code modified
for resizing using ReSHAPE’s API

– Destination processor configuration:Qr ×Qc (rows × columns), Qr, Qc > 0.
– The data granularity is set at the block level, i.e., a block is the smallest data that

will be transferred which cannot be further subdivided. This block size is specified
by the user.

– The data matrix,data, which needs to be redistributed, is of dimensionn× n.
– Let the block size beNB. Therefore total number of data blocks =(n/NB) ∗
(n/NB) = N ×N , represented using matrixMat.

– We useMat(x,y) to referblock(x, y), 0 ≤ x, y < N .
– The data that can be equally divided among the source and destination processors P

and Q respectively, i.e.,N is evenly divisible byPr,Pc,Qr, andQc. Each processor
has an integer number of data blocks.

– The source processors are numberedP(i,j), 0 ≤ i < Pr, 0 ≤ j < Pc and the
destination processors are numbered asQ(i,j), 0 ≤ i < Qr, 0 ≤ j < Qc



Problem Definition. We define 2D block-cyclic distribution as follows: Given a two
dimensional array ofn × n elements with block sizeNB and a set ofP processors
arranged in checkerboard topology, the data is partitionedinto N × N blocks and dis-
tributed acrossP processors, whereN = n/NB. Using this distribution a matrix block,
Mat(x, y), is assigned to the source processorPc ∗ (x%Pr) + y%Pc, 0 ≤ x < N ,
0 ≤ y < N . Here we study the problem of redistributing a two-dimensional block-
cyclic matrix fromP processors toQ processors arranged in checkerboard topology,
whereP 6= Q andNB is fixed. After redistribution, the blockMat(x, y) will belong
to the destination processorQc ∗ (x%Qr) + y%Qc, 0 ≤ x < N , 0 ≤ y < N .
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Fig. 3.(a)P = 4 (2×2),Q = 12 (3×4) Data layout in source and destination processors.
(b) Creating of Communication Schedule (CTransfer) from Initial Data Processor Con-
figuration table (IDPC), Final Data Processor Configurationtable (FDPC)

Redistribution Terminologies.

(a) Superblock: Figure 3(a) shows the checkerboard distribution of a8 × 6 block-
cyclic data on source and destination processor grids. Theb00 entry in the source
layout table indicates that the block of data is owned by processorP(0,0), block
denoted byb01 is owned by processorP(0,1) and so on. The numbers on the top
right corner in every block indicates the id of that data block. From this data layout,
a periodic pattern can be identified for redistributing datafrom source to destina-
tion layout. The blocksMat(0, 0), Mat(0, 2), Mat(2, 0), Mat(2, 2), Mat(4, 0)
andMat(4, 2), owned by processorP(0,0) in the source layout, are transferred to
processorsQ(0,0), Q(0,2), Q(2,0), Q(2,2), Q(1,0) andQ(1,2). This mapping pattern
repeats itself for blocksMat(0, 4), Mat(0, 6), Mat(2, 4), Mat(2, 6), Mat(4, 4)



andMat(4, 6). Thus we can see that the communication pattern of the blocks
Mat(i, j), 0 ≤ i < 5, 0 ≤ j < 4 repeats for other blocks in the data. A superblock
is defined as the smallest set of data blocks whose mapping pattern from source to
destination processor can be uniquely identified. For a 2-D processor topology data
distribution, each superblock is represented as a table of Rrows and C columns,
where

R = lcm(Pr,Qr) C = lcm(Pc,Qc)
The entire data is divided into multiple superblocks and themapping pattern of
the data in each superblock is identical to the first superblock, i.e., the data blocks
located at the same relative position in all the superblocksare transferred to the
destination processor. A 2-D block matrix withSup elements is used to represent
the entire data where each element is a Superblock. The dimensions of this block
matrix areSupR andSupC where,

SupR = N/R SupC = N/C Sup = (N/R ∗N/C)
(b) Layout: Layout is an 1-D array ofSupR ∗ SupC elements where each element

is a 2-D table which stores the block ids present in that superblock. There areSup
number of 2-D tables in the Layout array where each table has the dimensionR×C.

(c) Initial Data-Processor Configuration (IDPC): This table represents the initial
processor layout for the data before redistribution for a single superblock. Since
the data-processor mapping is identical over all the superblocks, only one instance
of this table is created. The table hasR rows×C columns.IDPC(i, j) contains
the processor idP(i,j) that owns the blockMat(i, j) located at the same relative
position in all the superblocks, (0 ≤ i <,R, 0 ≤ j < C).

(d) Final Data-Processor Configuration (FDPC): The table represents the final pro-
cessor configuration for the data layout after redistribution for a single superblock.
Like IDPC, only one instance of this table is created and used for all the data su-
perblocks. The dimensions of this table isR×C. FDPC(i, j) contains the processor
id Q(i,j) that owns the blockMat(i, j) after redistribution located at the same rel-
ative position in all the superblocks, (0 ≤ i < R, 0 ≤ j < C).

(e) The source processor for any data blockMat(i, j) in the data matrix can be computed
using the formula

Source(i, j) = Pc ∗ (i%Pr) + (j%Pc)
(f) Communication schedule send table (CTransfer): This table contains the final

communication schedule for redistributing data from source to destination layout.
This table is created by re-ordering theFDPC table. The columns ofCTransfer

correspond toP source processors and the rows correspond to individual commu-
nication steps in the schedule. The number of rows in this table is determined by
(R∗C)/P . The network bandwidth is completely utilized in every communication
step as the schedule involves all the source processors in data transfer. A positive
entry in theCTransfer table indicates that in theith communication step, processor
j will send data toCTransfer(i, j), 0 ≤ i < (R ∗ C)/P , 0 ≤ j < (Pr ∗ Pc).

(g) Communication schedule receive table (CRecv): This table is derived from the
CTransfer table where the columns correspond to the destination processors. The
table has the same number of rows as theCTransfer table. A positive entry at
CRecv(i, j) indicates that processorj will receive data from source processor at
CRecv(i, j) in theith communication step,0 ≤ i < (R∗C)/P , 0 ≤ j < (Qr∗Qc).



If (Qr ∗ Qc) ≥ (Pr ∗ Pc), then the additional entries in theCRecv table are filled
with -1.

Algorithm.

Step 1: Create Layout table
The Layout array of tables are created by traversing throughall the data blocks in
matrixMat(i, j), where0 ≤ i, j < N , 0 ≤ j < N . The superblocks inMat(i, j)
is traversed in row-major format.
Pseudocode:

for superblockcount← 0 to Sup− 1 do
for i← 0 to R/Pr − 1 do

for j ← 0 to C/Pc − 1 do
for k ← 0 to Pr − 1 do

for l← 0 to Pc − 1 do
Layout[superblockcount](i ∗ C/Pc + k, j ∗R/Pr + l) =

Mat(superblockidrow ∗R+ i ∗ Pc + k,
superblockidcol ∗ C + j ∗ Pr + l)

if(reached end of column) then
increment SupR
SupC ← 0

else
increment SupC

Step 2: Creating IDPC and FDPC tables
An entry atIDPC(i, j) is calculated using the indexi andj of the table and the
size of the source processor setP , 0 ≤ i < R, 0 ≤ j < C. The Source function
returns the processor id of the owner of the data before redistribution stored in that
location.
Similarly, an entryFDPC(i, j) is computed using thei andj coordinates of the
table and the size of the destination processor setQ, 0 ≤ i < R, 0 ≤ j < C.
The Source function returns the processor id of the owner of the redistributed data
stored in that location.
Pseudocode:

for i← 0 to R− 1 do
for j ← 0 to C − 1 do

IDPC(i, j)← Source(i, j)← Pc ∗ (i%Pr, j%Pc)

for i← 0 to R− 1 do
for j ← 0 to C − 1 do

FDPC(i, j)← Source(i, j)← Qc ∗ (i%Qr, j%Qc)

Step 3: Communication schedule tables(CTransfer and CRecv)
TheCTransfer table stores the final communication schedule for transferring data



between the source and the destination processors. The columns inCTransfer cor-
respond to source processorP(i,j). The table hasCTransferRows rows and (Pr ∗

Pc) columns, where
CTransferRows = (R ∗ C)/(Pr ∗ Pc)

Each entry in theCTransfer table is filled by sequentially traversing theFDPC
table in row-major format. The data corresponding to each processor inserted at the
appropriate column at the next available location. An integer counter updates itself
and keeps track of the next available location (next row) foreach processor.
Pseudocode:

processor id = IDPC(i, j)
CTransfer(counterj , processor id)← FDPC(i, j)
Update counterj

where0 ≤ i < R and 0 ≤ j < C. Each row in theCTransfer table forms
a single communication step where all the source processorssend the data to a
unique destination processor. TheCRecv table is used by the destination processors
to know the source of their data in a particular communication step.

CRecv(i, CTransfer(i, j)) = j
where0 ≤ i < CTransferRows and0 ≤ j < (Qr ×Qc).
Node contention can occur in theCTransfer communication schedule if any one of
the following conditions are true
(i) Pr ≥ Qr

(ii) Pc ≥ Qc

(iii) Pr ≥ Qr andPc ≥ Qc

If there are node contentions in the communication schedule, create aProcessor
Mapping (PM) table of dimensionR × C and initialize it with the values from
FDPC table. To reduce node contentions, thePM tables are circularly shifted in
row or columns. To maintain data consistency, same operations are performed on
the IDPC table and the superblock tables within the Layout array. TheCTransfer

table is created from the modified PM table. We identify 3 situations where node
contentions can occur. Case 1 and case 2 are applicable during both expansion and
shrinking of an application while Case 3 can occur only when an application is
shrinking to a smaller destination processor set.
Do the following operation on IDPC, PM and on each 2-D table inthe Layout array.
Case 1: If Pr > Qr andPc < Qc then
1. Create(R/Pr) groups withPr rows in each group.
2. For1 ≤ i < Pr, perform a circular right shift on each row i byPc ∗ i elements

in each group.
3. Create theCTransfer table from the resultingPM table.

Case 2: If Pr < Qr andPc > Qc then
1. Create(C/Pc) groups withPc columns in each group.
2. For1 ≤ j < Pc, perform a circular down shift on each column j byPr ∗ j

elements in each group.
3. Create theCTransfer table from the resultingPM table.

Case 3: If Pr > Qr andPc > Qc then



1. Create (C/Pc) groups withPc columns in each group.
2. For1 ≤ j < Pc, perform a circular down shift each column j byPr∗j elements

in each group.
3. Create (R/Pr) groups withPr rows in each group.
4. For1 ≤ i < Pr, perform a circular right shift each row i byPc ∗ i elements in

each group
5. Create theCTransfer table from the resultingPM table.

TheCRecv table is not used when the schedule is not contention-free. Node con-
tention results in overlapping entries in theCRecv table thus rendering it as unus-
able.

Step 4: Data marshalling and unmarshalling
If a processor’s rank equal the value atIDPC(i, j), then the processor collects the
data from the relative indexes of all the superblocks in the Layout array. Each col-
lection of data over all the superblocks forms a single message for communication
for processor j.
If there are no node contentions in the schedule, each sourceprocessor stores(R ∗
C)/(Pr ∗ Pc) messages, each of size(N ∗ N/(R ∗ C)) in the original order of
the data layout. The messages received on the destination processor are unpacked
into individual blocks and stored at an offset of (R/Qr) ∗ (C/Qc) elements from
the previous data block in the local array. The first data block is stored atzeroth

location of the local array. If the communication schedule has node contentions,
the order of the messages are shuffled according to row or column transformations.
In such cases, the destination processor performs reverse index computation and
stores the data at the correct offset.

Step 5: Data Transfer
The message size in each send communication is equal to(N ∗ N)/(R ∗ C)
data blocks. Each row in theCTransfer table corresponds to a single communi-
cation step. In each communication step, the total volume ofmessages exchanged
between the processors isP ∗ (N ∗ N/(R ∗ C)) data blocks. This volume in-
cludes cases where data is locally copied to a processor without performing a
MPI Send and MPIRecv operation. In a single communication step j, a source
processorPi sends the marshalled message to the destination processor given by
CTransfer(j, i), where0 ≤ j < CTransferRows, 0 ≤ i < (Pr ∗ Pc),

Data Transfer Cost. For every communication call using MPISend and MPIRecv,
there is a latency overhead associated with it. Let us denotethis time to initiate a
message byλ. Let τ denote the time taken to transmit a unit size of message from
source to destination processor. Thus, the time taken to send a message from a
source processor in single communication step is((N ∗ N)/(R ∗ C)) ∗ τ . The
total data transfer cost for redistributing the data acrossdestination processors is
CTransferRows ∗ (λ+ ((N ∗N)/(R ∗ C)) ∗ τ).

4 Experiments and Results

This section presents experimental results which demonstrate the performance of our
two-dimensional block-cyclic redistribution algorithm.The experiments were conduct-
ed on 50 nodes of a large homogeneous cluster (System X). Eachnode is a dual 2.3



GHz PowerPC 970 processor with 4GB of main memory. Message passing was done
using MPICH2 [19] over a Gigabit Ethernet interconnection network. We integrated
the redistribution algorithm into the resizing library andevaluated its performance by
measuring the total time taken by the algorithm to redistribute block-cyclic matrices
from P to Q processors. We present results from two sets of experiments. The first set
of experiments evaluates the performance of the algorithm for resizing and compares it
with the Caterpillar algorithm. The second set of experiments focuses on the effects of
processor topology on the redistribution cost. Table 1 shows all the possible processor
configurations for various processor topologies. Processor configurations for the one-
dimensional processor topology (1 × Qr ∗ Qc or Qr ∗ Qc × 1) are not shown in the
table. For the two set of experiments described in this section, we have used the fol-
lowing matrix sizes -2000× 2000, 4000× 4000, 6000× 6000, 8000× 8000, 12000×
12000, 16000× 16000, 20000× 20000 and24000 × 24000. A problem size of8000
indicates the matrix8000× 8000. The processor configurations listed in Table 1 evenly
divide the problem sizes listed above.

Table 1.Processor configuration for various topologies

Topology Processor configurations
Nearly-square 1× 2, 2× 2, 2× 3, 2× 4, 3× 3, 3× 4, 4× 4, 4× 5, 5× 5,

5× 6, 6× 6, 5× 8, 6× 8
Skewed-rectangular1× 2, 2× 2, 2× 3, 2× 4, 3× 3, 2× 6, 2× 8, 2× 10, 5× 5,

3× 10, 2× 18, 2× 20, 2× 24, 2× 1, 3× 2, 4× 2, 6× 2,
8× 2, 10× 2, 10× 3, 18× 2, 20× 2, 24× 2

4.1 Overall Redistribution Time

Every time an application acquires or releases processors,the globally distributed data
has to be redistributed to the new processor topology. Thus,the application incurs a
redistribution overhead each time it expands or shrinks. Weassume a nearly-square
processor topology for all the processor sizes used in this experiment. The matrix stores
data as double precision floating point numbers. Figure 4(a)shows the overhead for
redistributing large dense matrices for different matrix sizes using the our redistribution
algorithm. Each data point in the graph represents the data redistribution cost incurred
when increasing the size of the processor configuration fromthe previous (smaller) con-
figuration. Problem size 8000 and 12000 start execution with2 processors, problem size
16000 and 20000 start with 4 processors, and the 24000 case starts with 6 processors.
The starting processor size is the smallest size which can accommodate the data. The
trend shows that the redistribution cost increases with matrix size, but for a fixed matrix
size the cost decreases as we increase the number of processors. This makes sense be-
cause for small processor size, the amount of data per processor that must be transferred
is large. Also the communication schedule developed by our redistribution algorithm is



independent of the problem size and depends only on the source and destination pro-
cessor set size.
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Fig. 4.Redistribution overhead incurred while resizing using ReSHAPE.

Figure 4(b) shows the overhead cost incurred while shrinking large matrices from
P processors toQ processors. In this experiment, we assign the values forP from the
set25, 40, 50 andQ from the set4, 8, 10, 25 and32. Each data point in the graph rep-
resents the redistribution overhead incurred while shrinking at that problem size. From
the graph, it is evident that the redistribution cost increases as we increase the prob-
lem size. Typically, a large difference between the source and destination processor set
results in higher redistribution cost. The rate at which theredistribution cost increases
depends on the size of source and destination processor set.But we note that smaller
destination processor set size has a greater impact on the redistribution cost compared
to the difference between the processor set sizes. This is shown in the graph where the
redistribution cost for shrinking fromP = 50 toQ = 32 is lower compared to the cost
when shrinking fromP = 25 to Q = 10 orP = 25 toQ = 8.

Figure 5(a) and 5(b) compares the total redistribution costof our algorithm and
the Caterpillar algorithm. We have not compared the redistribution costs with the bi-
partite redistribution algorithm as our algorithm assumesthat data redistribution from
P to Q processors includes an overlapping set processors from the source and desti-
nation processor set. The total redistribution time is the sum total of schedule com-
putation time, index computation time, packing and unpacking the data and the data
transfer time. In each communication step, each sender packs a message before send-
ing it and the receiver unpacks the message after receiving it. The Caterpillar algorithm
does not attempt to schedule communication operations and send equal sized messages
in each step. Figure 5(a) shows experimental results for redistributing block-cyclic two-
dimensional arrays from a2 × 4 processor grid to a5 × 8 processor grid. On average,
the total redistribution time of our algorithm is 12.7 timesless than the Caterpillar algo-
rithm. In Figure 5(b), the total redistribution time of our algorithm is about 32 times less
than of the Caterpillar algorithm. In our algorithm, the total number of communication
calls for redistributing from 8 to 40 processors is 80 whereas in Caterpillar the number
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Fig. 5. Comparing the total redistribution time for data redistribution in our algorithm
with Caterpillar algorithm

is 160. Similarly, the number of MPI communication calls in our algorithm for redis-
tributing 2D block-cyclic array from 8 processors to 50 processors is 196 as compared
to 392 calls in the Caterpillar algorithm.

4.2 Effects of Processor Topology on Total Redistribution Time
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Fig. 6.Effects of skewed processor topologies on total redistribution time

In this experiment, we report the performance of our redistribution algorithm with
four different processor topologies — One-dimensional-row (Row-major), One-dim-
ensional-column (Column major), Skewed-rectangular-row(Pr × Pc, Pr > Pc) and
Skewed-rectangular-column (Pr × Pc, Pr < Pc). The processor configurations used
for the Skewed-rectangular topologies are listed in Table 1. Figure 6(a) and Figure 6(b)



shows the overhead for redistributing problem size 20000 and 24000 across different
processor topologies using the our redistribution algorithm, respectively. The total re-
distribution cost for redistributing20000 × 20000 matrix across an one-dimensional
topology is comparable to the total redistribution cost on anearly-square processor
topology (see Figure 4(a)). In the case of skewed-rectangular topologies, the total redis-
tribution time is slightly higher compared to the redistribution cost with nearly-square
processor topologies. We ran this experiment on other problem sizes —8000 × 8000
and16000× 16000 and observed results similar to Figure 6(a). An increase in the total
redistribution time for skewed-rectangular topology can be due to one of the two situa-
tions.
(1) There is an increase in the total number of messages to be transferred using the
communication schedule.
(2) Node contention in the communication schedule is high.

Since the dimensions of a superblock depends upon source anddestination pro-
cessor row and columns, a change in the processor topology can change the number
of elements in a superblock. As a result, the number of messages exchanged between
processors will also vary thereby increasing or decreasingthe total redistribution time.
Figure 6(b) shows that the total redistribution cost for a skewed processor topology sud-
denly increases when the processor size increases from 30 to36 (10× 3 to 18× 2). In
this case the number of elements in superblock increases to 540. Table 2 shows the total
MPI send/receive counts for redistributing between different processor sets on different
topologies. From Table 2, we note that data redistribution using a skewed-rectangular
processor topology requires exactly half the number of send/receive operation as com-
pared to nearly-square topology. The algorithm uses only 18MPI send/receive opera-
tions to redistribute data from4 to 20 processors and 36 to redistribute from8 to 40
processors as compared to 36 and 72 respectively required for a nearly-square topol-
ogy. In Figure 6(a), the cost of redistribution in aP < Q topology is more than the
redistribution cost for aP > Q topology. The reason for this additional overhead can
be attributed to increased number of node contentions in thecomunication schedule for
theP < Q topology. The node contentions reduces as the processor size increases and
the topology is maintained in subsequent iterations. When data is redistributed fromP
= 25 (square topology) toQ = 40 (skewed topology), node contentions in the communi-
cation schedule ofQ = 40 (10×4) are higher compared to the schedule for redistribution
toQ = 40 (4× 10).

5 Discussion and Future Work

In this paper we have introduced a framework, ReSHAPE, that enables parallel message
passing applications to be resized during execution. We have extended the functionality
of the resizing library in ReSHAPE to support redistribution of 2-D block-cyclic ma-
trices distributed across a 2-D processor topology. We build upon the work by Park et
al. [16] to derive an efficient 2-D redistribution algorithm. Our algorithm redistributes
a two-dimensional block-cyclic data distribution on a 2-D grid of P (Pr × Pc) proces-
sors to two-dimensional block-cyclic data distribution ona 2-D grid with Q (Qr ×Qc)



Table 2. Counting topology dependent Send/Recvs. (P, Q) = size of source and desti-
nation processor set

RedistributionCommunication Nearly square 1 Dimensional Skewed-rectangle
configuration steps CopySend/RecvCopySend/RecvCopy Send/Recv

(2, 4) 2 2 2 2 2 2 2
(4, 6) 3 3 9 4 8 3 9
(4, 8) 2 2 6 4 4 2 6
(6, 9) 3 6 12 6 12 3 15
(8, 16) 2 8 8 8 8 4 12
(9, 12) 4 6 30 9 27 3 33
(12, 16) 4 12 36 12 36 12 36
(16, 20) 5 10 70 16 64 16 64
(20, 25) 5 20 80 20 80 5 95
(25, 30) 6 15 135 25 125 4 146
(25, 40) 8 7 193 20 180 25 175
(30, 36) 6 30 150 30 150 15 525
(36, 48) 4 12 132 36 108 36 108
(4, 20) 10, 5 (skewed) 2 38 4 36 2 18
(8, 40) 10, 5 (skewed) 8 72 8 72 4 36
(8, 50) 25 8 192 8 192 8 192

processors, where P and Q can be any arbitrary positive value. The algorithm ensures a
contention-free communication schedule ifPr ≤ Qr, Pc ≤ Qc. For all other conditions
involvingPr, Pc, Qr, Qc, the algorithm minimizes node contention in the communica-
tion schedule by performing a sequence of row or column circular shifts. We also show
the ease of use of API provided by the framework to port and execute applications to
make use of ReSHAPE’s dynamic resizing capability. Currently the algorithm can re-
distributeN × N blocks of data on P processors to Q processors only ifQr andQc

evenly divide N so that all the processors have equal number of integer blocks. We plan
to generalize this assumption so that the algorithm can redistribute data between P and
Q processors for any arbitrary value of P and Q.

We are currently evaluating ReSHAPE framework with different scheduling strate-
gies for processor reallocation, quality-of-service and advanced reservation services.
We are also working towards adding resizing capabilities toseveral production scien-
tific codes and adding support for a wider array of distributed data structures and other
data redistribution algorithms. Finally, we plan to make ReSHAPE a more extensible
framework so that support for heterogeneous clusters, gridinfrastructure, shared mem-
ory architectures, and distributed memory architectures can be implemented as individ-
ual plug-ins to the framework.
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