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Abstract. Traditional parallel schedulers running on cluster supemuters sup-
port only static scheduling, where the number of procesaliosated to an ap-
plication remains fixed throughout the execution of the Jdiis results in under-
utilization of idle system resources thereby decreasirgaisystem throughput.
In our research, we have developed a prototype framewotedc&eSHAPE,
which supports dynamic resizing of parallel MPI applicatiexecuting on dis-
tributed memory platforms. The resizing library in ReSHAREludes support
for releasing and acquiring processors and efficientlystetiuting application
state to a new set of processors. In this paper, we deriveganithim for redis-
tributing two-dimensional block-cyclic arrays fromto @) processors, organized
as 2-D processor grids. The algorithm ensures a contefré@ncommunication
schedule for data redistribution#. < @, andP. < Q.. In other cases, the al-
gorithm implements circular row and column shifts on the oamication sched-
ule to minimize node contention.

Key words: Dynamic scheduling, Dynamic resizing, Data redistribaitibynamic re-
source management, process remapping, resizable appigat

1 Introduction

As terascale supercomputers become more common and aglhpdrformance com-
puting (HPC) community turns its attention to petascale ivgs, the challenge of
providing effective resource management for high-end imsshgrows in both impor-
tance and difficulty. A fundamental problem is that convexmdil parallel schedulers are
static, i.e., once a job is allocated a set of resources,réragin fixed throughout the
life of an application’s execution. It is worth asking whetla dynamic resource man-
ager, which has the ability to modify resources allocatgdlis at runtime, would allow
more effective resource management. The focus of our refséaon dynamically re-
configuring parallel applications to use a different nuntdfg@rocesses, i.e., aynamic
resizing of application

In order to explore the potential benefits and challengegwénhic resizing, we are
developing ReSHAPE, a framework for dynanResizing andScheduling ofHomo-
geneoudpplications in aParallelEnvironment. The ReSHAPE framework includes a

L A shorter version of this paper is available in the procegsliaf theThe Fifth International
Symposium on Parallel and Distributed Processing and Applications (1SPA07)
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programming model and an API, data redistribution algonghand a runtime library,
and a parallel scheduling and resource management systemvirork. ReSHAPE al-
lows the number of processors allocated to a parallel mesgagsing application to be
changed at run time. It targets long-running iterative cotapons, i.e., homogeneous
computations that perform similar computational steps avnel over again. By moni-
toring the performance of such computations on variousgesar sizes, the ReSHAPE
scheduler can take advantage of idle processors on largeedito improve the turn-
around time of high-priority jobs, or shrink low-prioritglps to meet quality-of-service
or advanced reservation commitments.

Dynamic resizing necessiates runtime application datestrésution. Many high
performance computing applications and mathematicaddibs like ScaLAPACKI[1]
require block-cyclic data redistribution to achieve cotapional efficiency. Data re-
distribution involves four main stages — data identificatend index computation,
communication schedule generation, message packing ggatking and finally, data
transfer. Each processor identifies its part of the datadetribute and transfers the
data in the message passing step according to the ordefisg@tithe communication
schedule. A node contention occurs when one or more prosessnds messages to a
single processor. A redistributi@memmunication schedule aims to minimize these node
contentions and maximiz network bandwidth utilizationt®e packed or marshalled
on the source processor to form a message and is unmarsbalted destination pro-
cessor.

In this paper, we present an algorithm for redistributing-dvmensional block-
cyclic data fromP ( P, rows x P. columns) toQ (@, rows x . columns) processors,
organized as 2-D processor grids. We evaluate the algdsithenformance by measur-
ing the redistribution time for different block-cyclic mites. If P. < @,.andP, < Q.,
the algorithm ensures a contention-free communicatioadwle for redistributing data
from source processor sEtto ) processor set. In other cases the algorithm minimizes
node contentions by performing row or column circular shdh the communication
schedule. The algorithm discussed in this paper suppditbdck cyclic data redistri-
bution for only one- and two-dimensional processor toppldge also discuss in detail
the modifications needed to port an existing scientific @afitbn to use the dynamic
resizing capability of ReSHAPE using the API provided by fiteenework.

The rest of the paper is organized as follows: Sedflon 2 diszsiprior work in the
area of data redistribution. Sectioh 3 briefly reviews thehaecture of the ReSHAPE
framework and discusses in detail the two-dimensionaktgHution algorithm and the
ReSHAPE API. Sectiohl4 reports our experimental resulthefredistribution algo-
rithm with the ReSHAPE framework tested on the SystemX eluat Virginia Tech.
We conclude in Sectidn 5 discussing future directions te thsearch.

2 RelatedWork

Data redistribution within a cluster using message pasapgoach has been exten-
sively studied in literature. Many of the past researchresf@?] [3] [4] [5] [6] [7]

[8] [@] [LO] [11] [L2] were targeted towards redistributiryclically distributed one
dimensional arrays between the same set of processorswittiuster on a 1-D pro-
cessor topology. To reduce the redistribution overheat ¥déaker and Otto[[12] and



Kaushik [#] proposed a K-step communication schedule bageshodulo arithmetic
and tensor products repectively. Ramaswamy and Banérjggdposed a redistribu-
tion technique, PITFALLS, that uses line segments to magyaiements to a processor.
This algorithm can handle any arbitrary number of sourcedaslination processors.
However, this algorithm does not use communication sclesddiliring redistribution
resulting in node contentions during data transfer. Thatwal. [11][10] usegcd and
Icmmethods for redistributing cyclically distributed one dinsional arrays on the same
processor set. The algorithms described by Thakur et gl ai® Ramaswamy [9] use
a series of one-dimensional redistributions to handleidioiensional arrays. This ap-
proach can result in significant redistribution overheast clue to unwanted commu-
nication. Kalns and Ni[[6] presented a technique for mappmiata to processors by
assigning logical processor ranks to the target processbis technique reduces the
total amount of data that must be communicated during médlision. Hsu et al.[[5]
further extended this work and proposed a generalized psocenapping technique
for redistributing data from cyclic(kx) to cyclic(x), andce versa. Here, x denotes the
number of data blocks assigned to each processor. Howhiemethod is applicable
only when the number of source and target processors are §4mag et al.[[2] pro-
posed an efficient method for index computation using begite calculation (BCC)
technique for redistributing data from cyclic(x) to cy¢liy on the same processor set.
An extension of this work by Hsu et al._[13] uses generalizadidcyclic calcula-
tion method to redistribute data from cyclic(x) over P psm@'s to cyclic(y) over Q
processors. The generalized BCC uses uses bipartite mgtapproach for data re-
distribution. Lim et al.[[8] developed a redistributionrinawork that could redistribute
one-dimensional array from one block-cyclic scheme tolagrodn the same processor
set using a generalized circulant matrix formalism. Thigioethm applies row and col-
umn transformations on the communication schedule mairgenerate a conflict-free
schedule.

Prylli et al. [14], Desprez et al.[3] and Lim et dl. [15] progeal efficient algorithms
for redistributing one- and two-dimensional block cyclicays. Prylli et al.[[14] pro-
posed a simple scheduling algorithm, called Caterpilarrédistributing data across a
two-dimensional processor grid. At each steip the algorithm, processdr,; (0 < i <
P) in the destination processor set exchanges its data wittepsoP (p_;_q4) mod P)-
The Caterpillar algorithm does not have a global knowledfyjthe communication
schedule and redistributes the data using the local kngelefithe communications at
every step. As a result, this algorithm is not efficient fotad@distribution using “non-
all-to-all” communication. Also, the redistribution tinfer a step is the time taken to
transfer the largest message in that step. Desprez et @ltdBbsed a general solution
for redistributing one-dimensional block-cyclic datarfra cyclic(x) distribution on a
P-processor grid to a cyclic(y) distribution on a Q-prooesgid for arbitrary values of
P, Q, X, and y. The algorithm assumes the source and targeggsors as disjoint sets
and uses a bipartite matching to compute the communicatioadsile. However, this
algorithm does not ensure a contention-free communicatibrdule. In a recent work,
Guo and Pari |4] described a method to construct schedulesithemizes number of
communication steps, avoids node contentions, and miesrtize effect of difference
in message length in each communication step. Their algoribcuses on redistribut-
ing one-dimensional data from a cyclic(kx) distribution Brprocessors to cyclic(x)



distribution on Q processors for any arbitrary positivauesl of P and Q. Lim et al. [15]
propose an algorithm for redistributing a two-dimensioblaick-cyclic array across
a two-dimensional processor grid. But the algorithm isrietgtd to redistributing data
across different processor topologies on the same pratssts®ark et all [16] extended
the idea described by Lim et al. [15] and proposed an algorftr redistributing one-
dimensional block-cyclic array with cyclic(x) distriboti on P processors to cyclic(kx)
on Q processors where P and Q can be any arbitrary positiue.val

To summarize, most of the existing approaches either dehl idistribution of
block-cyclic array across one-dimensional processorltayoon the same or on a dif-
ferent processor set. The Caterpillar algorithm by Prylile[14] is the closest related
work to our redistribution algorithm in that it supports igdbution on checkerboard
processor topology. In our work, we extend the idea in [1&][d develop an algorithm
to redistribute two-dimensional block-cyclic data distried across a 2-D processor
grid topology. The data is redistributed from (P, x P.) to Q (Q. x @.) processors
where P and Q can be any arbitrary positive value. Our worbkiigrary to Desprez et
al. [3] where they assume that there is no overlap among gsocg in the source and
destination processor set. Our algorithm builds an effitc@®mmunication schedule
and uses non-all-to-all communication for data redistidou We apply row and col-
umn transformations using the circulant matrix formalisrminimize node contentions
in the communication schedule.

3 System Overview

The ReSHAPE framework, shown in Fig{ire 1(a), consists ofrh@i components. The
first component is the application scheduling and monitpnrodule which schedules
and monitors jobs and gathers performance data in order ke mesizing decisions
based on application performance, available system ressuresources allocated to
other jobs in the system and jobs waiting in the queue. Thersecomponent of the
framework consists of a programming model for resizing @agibns. This includes
a resizing library and an API for applications to commurgcaith the scheduler to
send performance data and actuate resizing decisionses§teng library includes al-
gorithms for mapping processor topologies and redistiniguiata from one processor
topology to another. The individual components in theseutesiare explained in detail
by Sudarsan and Ribbemns [17].

3.1 Resizing library

The resizing library provides routines for changing the sifthe processor set assigned
to an application and for mapping processors and data frenpoatessor set to another.
An application needs to be re-compiled with the resize fipta enable the scheduler to
dynamically add or remove processors to/from the appticaDuring resizing, rather
than suspending the job, the application execution corgrotainsferred to the resize
library which maps the new set of processors to the appliocatind redistributes the
data (if required). Once mapping is completed, the resiliiongry returns control back
to the application and the application continues with itstriieration. The application
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Fig. 1. (a) Architecture of ReSHAPE (b) State diagram for applamatxpansion and
shrinking

user needs to indicate the global data structures and \esiab that they can be redis-
tributed to the new processor set after resizing. Figurg difpws the different stages
of execution required for changing the size of the processbfor an application.

Our API gives programmers a simple way to indicagze pointsin the application,
typically at the end of each iteration of the outer loop. Aize points, the application
contacts the scheduler and provides performance data sehigeluler. The metric used
to measure performance is the time taken to compute eaetidgter The scheduler’s de-
cision to expand or shrink the application is passed as arealue. If an application is
allowed to expand to more processors, the response frometma®Scheduler includes
the size and the list of processors to which an applicatioulshexpand. A call to the
redistribution routine remaps the global data to the newcgssor set. If the Sched-
uler asks an application to shrink, then the application fedistributes its global data
across a smaller processor set, retrieves its previoustgdtMPl communicator, and
creates a new BLACS [18] context for the new processor set.attditional processes
are terminated when the old BLACS context is exited. Thezmegilibrary notifies the
Remap Scheduler about the number of nodes relinquisheceptblication.



3.2 Application Programming Interface (API)

A simple API allows user codes to access the ReSHAPE franiear library. The
core functionality is accessed through the following indrand external interfaces.
These functions are available for use by advanced apmitgiogrammers. These
functions provide the main functionality of the resizingriiry by contacting the sched-
uler, remapping the processors after an expansion or akstamd redistributing the
data. These functions are listed as follows:

— reshape_Initialize (global data array, nprocessors, blacs_context, iterationCount,
processor _row, processor_column, job_id): initializes the iterationCount and the
global data array with the initial values and creates a btacgext for the two-
dimensional processor topology. The function returns eslfor processor row,
column configuration and jalal.

— reshape_ContactScheduler (iteration_time, redistribution_time, processor _row_count,
processor _column_count, job_id): contacts the scheduler and supplies last iteration
time; on return, the scheduler indicates whether the agidic should expand,
shrink, or continue execution with the current processa.si

— reshape_Expand (): adds the new set of processors (defined by previous call to
reshapecontactScheduler) to the current set using BLACS.

— reshape_Shrink (): reduces the processor set size (defined by previous cad-to r
shapecontactScheduler) to an earlier configuration and relistygs additional pro-
cessors.

— reshape_Redistribute(Global data array, current BLACS context, current processor
set size, EXPAND/SHRINK): redistributes global data among the newly spawned or
shrunk processors. The redistribution time is computedsam:d for next resize
point.

— reshape_Log (starttime, endtime): computes the average iteration time of the current
iteration for all the processors and stores it for next eepizint.

Figure[2(a) shows the source code for a simple MPI applio&to solving a se-
guence of linear system of equations using ScaLAPACK foneti The original code
was refactored to identify the global data structures amidbkes. The ReSHAPE API
calls were inserted at the appropriate locations in thetefad code. Figufe 2(b) shows
the modified code.

3.3 Data Redistribution

The data redistribution library in ReSHAPE uses an efficagbrithm for redistribut-
ing block-cyclic arrays between processor sets organizedli-D (row or column for-
mat) or checkerboard processor topology. The algorithmddistributing 1-D block-
cyclic array over a one-dimensional processor topology fivasproposed by Park et
al. [16]. We extend this idea to develop an algorithm to reitliste both one- and two-
dimensional block-cyclic data across a two-dimensionatessor grid of processors.
In our redistribution algorithm, we assume the following:

— Source processor configuratiaR: x P, (rows x columns), P,., P. > 0.



};"Identification of Global arrays and variables*/
double **A,**B;

int maxiterations =10;

int blacs_context, iterationCount, nprocessor_row,
nprocessor_column,job_id;

int iteration_time, redistribution_time;

int main{int argc, char**argv[1){

/IMPI Initialization
//Read Global matrix A of dimensions m x n, B with dimensions n x p

reshape_lInitialize(A, size, blacs_context, iterationCount, nprocessor_row,
nprocessor_column, job_id);

reshape_lnitialize(B, size, blacs_context, iterationCount, nprocessor_row
, nprocessor_column ,job_id );

Compute(); //Refactoring the original code
void compute(){
for(;iterationCount<maxlterations; iterationCount++)

{
//Read array dimensions
//Compute descriptor and other parameters for PDGETRF and PDGETRS

start = MPI_Wtime();
/1 Solve linear system of equations by performing LU factorization
end = MPI_Wtime();

reshape_Log(start, end);
return_scheduler_decision =
r pe_Contact! (iteration_time, redistribution_time,

int main{int argc, char**argvi}){ nprocessor_row, nprocessor_column, job_id);
if (return_scheduler_decision == EXPAND)

double **A **B;
reshape_Expand();
reshape_Redistribute(A,blacs_context,nprocessor_row,
nprocessor_column,EXPAND);
reshape_Redistribute(B,blacs_context,nprocessor_row,
nprocessor_column,EXPAND);

int maxIterations =10;

/IMPI Initializations
//Read Global matrix A of dimensions m x n, B with
dimensions n x p

for(iterationCount=0;iterationCount<maxiterations;itera else if (return_scheduler_decision == SHRINK)

tionCount++)
reshape_Shrink();

//Compute descriptor and other parameters for reshape_Redistribute(A,blacs_context,nprocessor_row
PDGETRF and ,nprocessor_column,SHRINK);
PDGETRS reshape_Redistribute(B,blacs_context,nprocessor_row,

// Solve linear system of equations using LU nprocessor_column,SHRINK);
factrorization }

} }
¢ }

(a) (b)

Fig. 2. (a) Original MPI code for solving system of linear equatiafi®y Code modified
for resizing using ReSHAPE's API

— Destination processor configuratidp;. x Q. (rows x columns), Q,, Q. > 0.

— The data granularity is set at the block level, i.e., a blacthie smallest data that
will be transferred which cannot be further subdivided.sTiblibck size is specified
by the user.

— The data matrixdata, which needs to be redistributed, is of dimensior n.

— Let the block size be\B. Therefore total number of data blocks(r/NB)
(n/NB) =N x N, represented using matriat.

— We useM at(x,y) to referblock(z,y), 0 < x,y < N.

— The data that can be equally divided among the source anidalésh processors P
and Q respectively, i.ely is evenly divisible byP,, P., Q.., andQ.. Each processor
has an integer number of data blocks.

— The source processors are numbefed;), 0 < i < P, 0 < j < P. and the
destination processors are numberedgs;), 0 <i < Q,, 0 < j < Q.



Problem Definition. We define 2D block-cyclic distribution as follows: Given actw
dimensional array of: x n elements with block siz&B and a set ofP processors
arranged in checkerboard topology, the data is partitiom@dNV x N blocks and dis-
tributed acros® processors, whe® = n/N B. Using this distribution a matrix block,
Mat(z,y), is assigned to the source processbr (z%FP,) + y%FP., 0 < & < N,

0 < y < N. Here we study the problem of redistributing a two-dimenaldlock-
cyclic matrix from P processors t@) processors arranged in checkerboard topology,
whereP # @) and N B is fixed. After redistribution, the blockZ at(x, y) will belong

to the destination processx. * (2%Q,) + y%Q., 0 < x < N,0 <y < N.
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Fig.3.(a) P=4(2x2), @ =12 (3 x 4) Data layout in source and destination processors.
(b) Creating of Communication Schedut€, ... fe-) from Initial Data Processor Con-
figuration table (IDPC), Final Data Processor Configuratadie (FDPC)

Redistribution Terminologies.

(@) Superblock Figure[3(d) shows the checkerboard distribution of a 6 block-
cyclic data on source and destination processor gridsb0hentry in the source
layout table indicates that the block of data is owned by @gsorF, ), block
denoted byb01 is owned by processary ;) and so on. The numbers on the top
right corner in every block indicates the id of that data klderom this data layout,
a periodic pattern can be identified for redistributing dadan source to destina-
tion layout. The blocks\/at(0,0), Mat(0,2), Mat(2,0), Mat(2,2), Mat(4,0)
andMat(4,2), owned by processaP ¢ in the source layout, are transferred to
processors) o0y, Q(0,2): @(2,0), Q2,2), Q(1,0) andQ(y,2y. This mapping pattern
repeats itself for blockd/at(0,4), Mat(0,6), Mat(2,4), Mat(2,6), Mat(4,4)



and Mat(4,6). Thus we can see that the communication pattern of the blocks
Mat(i,7),0 < i< 5,0 < j < 4repeats for other blocks in the data. A superblock
is defined as the smallest set of data blocks whose mappitegpétom source to
destination processor can be uniquely identified. For a 2edgssor topology data
distribution, each superblock is represented as a tablerofAR and C columns,
where

R=lem(P., Q) C=lem(P.:,Q.)
The entire data is divided into multiple superblocks andrtapping pattern of
the data in each superblock is identical to the first supekblice., the data blocks
located at the same relative position in all the superbl@ckstransferred to the
destination processor. A 2-D block matrix wiffup elements is used to represent
the entire data where each element is a Superblock. The diarenof this block
matrix areSupg andSupc where,

Supr = N/R Supc = N/C Sup = (N/Rx N/C)

(b) Layout: Layout is an 1-D array obupg * Supc elements where each element
is a 2-D table which stores the block ids present in that silpek. There areSup
number of 2-D tables in the Layout array where each tableledimensiom x C.

(c) Initial Data-Processor Configuration (IDPC): This table represents the initial
processor layout for the data before redistribution forrgle superblock. Since
the data-processor mapping is identical over all the supekb, only one instance
of this table is created. The table hRsows xC columns.IDPC(i, j) contains
the processor id; ;) that owns the block/at(i, j) located at the same relative
position in all the superblock9) K i <, R,0 < j < C).

(d) Final Data-Processor Configuration (FDPC) The table represents the final pro-
cessor configuration for the data layout after redistrdoufor a single superblock.
Like IDPC, only one instance of this table is created and used for elttta su-
perblocks. The dimensions of this tabldis< C. FDPC(i, j) contains the processor
id Q5 that owns the block/at (i, j) after redistribution located at the same rel-
ative position in all the superblock$) € i < R, 0 < j < O).

(e) The source processor for any data bltv#t(i, j) in the data matrix can be computed
using the formula

Source(i,j) = P.* (i%P,) + (j%P.)

() Communication schedule send table @7y qnsfer): This table contains the final
communication schedule for redistributing data from seuocdestination layout.
This table is created by re-ordering tR®PC table. The columns o7, qns fer
correspond td” source processors and the rows correspond to individuatrmem
nication steps in the schedule. The number of rows in thike t@bdetermined by
(R+C)/P. The network bandwidth is completely utilized in every coomitation
step as the schedule involves all the source processorddrirdasfer. A positive
entry in theC'ryqns 7er table indicates that in th&" communication step, processor
j will send data taCryansfer(i,7), 0 < i < (R+xC)/P,0 < j < (P, % P.).

(g) Communication schedule receive table({g..,): This table is derived from the
Crranster table where the columns correspond to the destination psocs. The
table has the same number of rows as @€.qnsfer table. A positive entry at
Creev(i, ) indicates that processgrwill receive data from source processor at
CReev(i, 7) in thei®® communication stef < i < (R*C)/P,0 < j < (Q,*Q.).



If (Qr*Q.) > (P * P.), then the additional entries in tf{&z.., table are filled
with -1.

Algorithm.

Step 1: Create Layout table
The Layout array of tables are created by traversing thralighe data blocks in
matrix Mat (i, j), where0 <4, j < N,0 < j < N. The superblocks il at(i, j)
is traversed in row-major format.
Pseudocode:

for superblockcount < 0to Sup — 1.do
fori+ Oto R/P.—1do
for j < 0toC/P.—1do
for k< 0to P. —1do
fori<0toP.—1do
Layout[superblockcount|(i«* C/P. + k,jx R/P. +1) =
Mat(superblockid,oy * R+ i % P. + k,
superblockideo; * C + j * P +1)
if (reached end of column) then
increment Supgr
Supc + 0
else
increment Supc

Step 2: Creating IDPC and FDPC tables
An entry atI DPC(4, j) is calculated using the indexand; of the table and the
size of the source processor $&t0 < i < R, 0 < j < C. The Source function
returns the processor id of the owner of the data beforetréalison stored in that
location.
Similarly, an entryF’ DPC(3, j) is computed using theand; coordinates of the
table and the size of the destination processolkel < i < R, 0 < j < C.
The Source function returns the processor id of the ownerefedistributed data
stored in that location.
Pseudocode:

fori+< OtoR—1do
for j < 0toC —1do
IDPC(i,j) < Source(i,j) < P.* (i%P,, j%P.)

fori+ OtoR—1do
for j < 0toC —1do
FDPC(i,j) « Source(i,j) < Qe * (i%Qr, j%Q¢)

Step 3: Communication schedule tableS(Cryqns fer @aNd Crecy)
The Crpans rer table stores the final communication schedule for transigdata



between the source and the destination processors. Th@esinCr, gy fer COI-
respond to source processl; ;). The table ha€r,ansferrows TOWS and £ *
P,) columns, where

CTransferRows = (R * O)/(Pr * Pc)
Each entry in theCr, 4 fer table is filled by sequentially traversing ti&PC
table in row-major format. The data corresponding to eackgssor inserted at the
appropriate column at the next available location. An ietemunter updates itself
and keeps track of the next available location (next rowgfrh processor.
Pseudocode:

processor_id = IDPC(3, j)
Crranster (counter;, processor_id) < FDPC(i, j)
Update counter;

where0 < ¢ < Rand0 < j < C. Each row in theCrqnsfer table forms
a single communication step where all the source processmd the data to a
unique destination processor. T@eg.., table is used by the destination processors
to know the source of their data in a particular communicesiep.

CRecv (17 CTransfer (’L, ])) = .]
where0 < i < CrransferRows @aNd0 < 7 < (Qr X Q¢).
Node contention can occur in tli&r,q,s fer COMmunication schedule if any one of
the following conditions are true
() Pr > Qr
(i) Po > Q.
(i) P > Q andP. > Q.

If there are node contentions in the communication scheduéate aProcessor
Mapping (PM) table of dimensiorR x C' and initialize it with the values from
FDPC table. To reduce node contentions, B\ tables are circularly shifted in
row or columns. To maintain data consistency, same op@satice performed on
the IDPC table and the superblock tables within the LayoustyaTheCryqns fer
table is created from the modified PM table. We identify 3atittns where node
contentions can occur. Case 1 and case 2 are applicablgdaih expansion and
shrinking of an application while Case 3 can occur only wherapplication is
shrinking to a smaller destination processor set.
Do the following operation on IDPC, PM and on each 2-D tabkaenLayout array.
Casel: If P. > Q,andP. < Q. then

1. Creatg R/ P,) groups withP, rows in each group.

2. Forl <i < P,, perform a circular right shift on each row i . x i elements

in each group.

3. Create th€'r,qpsfer table from the resultingM table.
Case2: If P. < Q,andP. > Q. then

1. CreatgC/P.) groups withP. columns in each group.

2. Forl < j < P., perform a circular down shift on each column j By « j

elements in each group.

3. Create th€'r,qpsfer table from the resultin@M table.

Case3:If P. > Q,andP. > Q. then



Create '/ P.) groups withP. columns in each group.

. Forl < j < P, perform a circular down shift each column j By« j elements
in each group.

3. Create R/ P.) groups withP, rows in each group.

4. Forl < i < P, perform a circular right shift each row i b, x ¢ elements in

each group

5. Create th€'r,qns e table from the resultin@M table.
The Cree, table is not used when the schedule is not contention-fredeMon-

tention results in overlapping entries in tbg,.., table thus rendering it as unus-
able.

Step 4: Data marshalling and unmarshalling
If a processor’s rank equal the valuefd@ PC (i, j), then the processor collects the
data from the relative indexes of all the superblocks in thgdut array. Each col-
lection of data over all the superblocks forms a single nmges$ar communication
for processor j.
If there are no node contentions in the schedule, each spuscessor storeg?
C)/(P, = P.) messages, each of siz& « N/(R = C)) in the original order of
the data layout. The messages received on the destinathorgsor are unpacked
into individual blocks and stored at an offset & (Q.) * (C/Q.) elements from
the previous data block in the local array. The first dataklecstored atero!”
location of the local array. If the communication scheduds hode contentions,
the order of the messages are shuffled according to row omeoltansformations.
In such cases, the destination processor performs revests® computation and
stores the data at the correct offset.

Step 5: Data Transfer
The message size in each send communication is equaVte N)/(R = C)
data blocks. Each row in th€r,qnsfer table corresponds to a single communi-
cation step. In each communication step, the total volumaedsages exchanged
between the processors B« (N = N/(R x C')) data blocks. This volume in-
cludes cases where data is locally copied to a processooutifrerforming a
MPI_Send and MPRecv operation. In a single communication step j, a source
processolP; sends the marshalled message to the destination procégsorby
CTransfer(ja Z)r where0 < .] < CTransferRowm 0 < 1< (Pr * Pc)n

N

Data Transfer Cost. For every communication call using MBend and MPRecyv,
there is a latency overhead associated with it. Let us dehgtdime to initiate a
message by. Let = denote the time taken to transmit a unit size of message from
source to destination processor. Thus, the time taken td aemessage from a
source processor in single communication stef(l « N)/(R = C)) * 7. The
total data transfer cost for redistributing the data acdesination processors is

CTransferRows * ()\ + ((N * N)/(R * C)) * T)'

4 Experiments and Results

This section presents experimental results which dematestne performance of our
two-dimensional block-cyclic redistribution algorithifhe experiments were conduct-
ed on 50 nodes of a large homogeneous cluster (System X). teatshis a dual 2.3



GHz PowerPC 970 processor with 4GB of main memory. Messaggmawas done
using MPICH2 [19] over a Gigabit Ethernet interconnecti@twork. We integrated
the redistribution algorithm into the resizing library aedhluated its performance by
measuring the total time taken by the algorithm to redistekblock-cyclic matrices
from P to Q processors. We present results from two sets ararpnts. The first set
of experiments evaluates the performance of the algoritrmeisizing and compares it
with the Caterpillar algorithm. The second set of experitaéocuses on the effects of
processor topology on the redistribution cost. Table 1 shalmthe possible processor
configurations for various processor topologies. Processafigurations for the one-
dimensional processor topology & Q, * Q. or Q,. * Q. x 1) are not shown in the
table. For the two set of experiments described in this @ectve have used the fol-
lowing matrix sizes 2000 x 2000, 4000 x 4000, 6000 x 6000, 8000 x 8000, 12000 x
12000, 16000 x 16000, 20000 x 20000 and24000 x 24000. A problem size oR000
indicates the matri8000 x 8000. The processor configurations listed in Tdlle 1 evenly
divide the problem sizes listed above.

Table 1.Processor configuration for various topologies

Topology Processor configurations

Nearly-square 1x2,2%x2,2%x3,2x4,3x3,3x4,4x4,4x5,5x35,
5%X6,6x6,5%x8,6x8

Skewed-rectanguldrx 2,2 x 2,2 x 3,2 x 4,3 x3,2x6,2x8,2x10,5 x5,
3x10,2x18,2x20,2x24,2x%x1,3%x2,4x2,6x2,
8x2,10x 2,10 x 3,18 x 2,20 x 2,24 x 2

4.1 Overall Redistribution Time

Every time an application acquires or releases procesbarglobally distributed data
has to be redistributed to the new processor topology. Tiasapplication incurs a
redistribution overhead each time it expands or shrinks.ad®ime a nearly-square
processor topology for all the processor sizes used in xfpisr@ment. The matrix stores
data as double precision floating point numbers. Fi§urg gtfajvs the overhead for
redistributing large dense matrices for different maties using the our redistribution
algorithm. Each data point in the graph represents the ddiatribution cost incurred
when increasing the size of the processor configuration fh@previous (smaller) con-
figuration. Problem size 8000 and 12000 start execution2yitftocessors, problem size
16000 and 20000 start with 4 processors, and the 24000 aat® with 6 processors.
The starting processor size is the smallest size which cemnamodate the data. The
trend shows that the redistribution cost increases withirsize, but for a fixed matrix
size the cost decreases as we increase the number of pn@cd3se makes sense be-
cause for small processor size, the amount of data per mocsit must be transferred
is large. Also the communication schedule developed byedistribution algorithm is



independent of the problem size and depends only on the ssamet destination pro-
cessor set size.

Redistribution overhead for various matrix sizes. Redistribution overhead for shrinking
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Fig. 4. Redistribution overhead incurred while resizing using RABE.

Figure[4(b) shows the overhead cost incurred while shrinkinge matrices from
P processors t@) processors. In this experiment, we assign the value®fivom the
set25, 40, 50 and@ from the set, 8, 10, 25 and32. Each data point in the graph rep-
resents the redistribution overhead incurred while slimiplat that problem size. From
the graph, it is evident that the redistribution cost ineemaas we increase the prob-
lem size. Typically, a large difference between the sountkedestination processor set
results in higher redistribution cost. The rate at whichrédistribution cost increases
depends on the size of source and destination process@wetie note that smaller
destination processor set size has a greater impact ondlstriteution cost compared
to the difference between the processor set sizes. Thigwrsim the graph where the
redistribution cost for shrinking fron? = 50 to Q = 32 is lower compared to the cost
when shrinking fromP = 25t0Q = 10orP = 25to Q = 8.

Figure[5(d) andl 5(b) compares the total redistribution edsiur algorithm and
the Caterpillar algorithm. We have not compared the rabigion costs with the bi-
partite redistribution algorithm as our algorithm assuities data redistribution from
P to Q processors includes an overlapping set processorsth® source and desti-
nation processor set. The total redistribution time is then $otal of schedule com-
putation time, index computation time, packing and unpagkhe data and the data
transfer time. In each communication step, each sendesEaokessage before send-
ing it and the receiver unpacks the message after recetvimbe Caterpillar algorithm
does not attempt to schedule communication operationseartlejual sized messages
in each step. Figufe 5{a) shows experimental results fostrdzliting block-cyclic two-
dimensional arrays from 21 x 4 processor grid to & x 8 processor grid. On average,
the total redistribution time of our algorithm is 12.7 timess than the Caterpillar algo-
rithm. In Figurd 5(0), the total redistribution time of odgarithm is about 32 times less
than of the Caterpillar algorithm. In our algorithm, theaiatumber of communication
calls for redistributing from 8 to 40 processors is 80 wherieCaterpillar the number
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Fig. 5. Comparing the total redistribution time for data redigitibn in our algorithm
with Caterpillar algorithm

is 160. Similarly, the number of MPI communication calls ur @lgorithm for redis-
tributing 2D block-cyclic array from 8 processors to 50 mssors is 196 as compared
to 392 calls in the Caterpillar algorithm.

4.2 Effects of Processor Topology on Total Redistribution ime

Diferent topologies with 20000 x 20000 matrix Diferent topologies with 24000 x 24000 matrix
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Fig. 6. Effects of skewed processor topologies on total redidtiobutime

In this experiment, we report the performance of our reitigtion algorithm with
four different processor topologies — One-dimensional-(Row-major), One-dim-
ensional-column (Column major), Skewed-rectangular{¢bwx P., P, > Pc) and
Skewed-rectangular-columi®( x P., P, < P.). The processor configurations used
for the Skewed-rectangular topologies are listed in Tabkidurd 6(d) and Figufe 6(b)



shows the overhead for redistributing problem size 200@D2#000 across different
processor topologies using the our redistribution alparitrespectively. The total re-
distribution cost for redistributin@0000 x 20000 matrix across an one-dimensional
topology is comparable to the total redistribution cost onearly-square processor
topology (see Figuie 4(a)). In the case of skewed-rectan¢ppologies, the total redis-
tribution time is slightly higher compared to the redistition cost with nearly-square
processor topologies. We ran this experiment on other prolsizes —8000 x 8000
and16000 x 16000 and observed results similar to Figlire 6(a). An increaskeéridtal
redistribution time for skewed-rectangular topology cardibe to one of the two situa-
tions.

(1) There is an increase in the total number of messages tmbsférred using the
communication schedule.

(2) Node contention in the communication schedule is high.

Since the dimensions of a superblock depends upon sourcdesmtithation pro-
cessor row and columns, a change in the processor topolaggtange the number
of elements in a superblock. As a result, the number of messagchanged between
processors will also vary thereby increasing or decreasiadotal redistribution time.
Figure[6(b) shows that the total redistribution cost foreveéd processor topology sud-
denly increases when the processor size increases from3(t0 x 3t0 18 x 2). In
this case the number of elements in superblock increasdftaabld 2 shows the total
MPI send/receive counts for redistributing between défgiprocessor sets on different
topologies. From Tablel 2, we note that data redistributisingia skewed-rectangular
processor topology requires exactly half the number of senéive operation as com-
pared to nearly-square topology. The algorithm uses onlMP8send/receive opera-
tions to redistribute data fronh to 20 processors and 36 to redistribute fr@énto 40
processors as compared to 36 and 72 respectively requiredrfearly-square topol-
ogy. In Figurg 6(3), the cost of redistribution infa < @ topology is more than the
redistribution cost for & > () topology. The reason for this additional overhead can
be attributed to increased number of node contentions indhmunication schedule for
the P < @ topology. The node contentions reduces as the processansizases and
the topology is maintained in subsequent iterations. Wlata @ redistributed fron¥
=25 (square topology) t@) = 40 (skewed topology), node contentions in the communi-
cation schedule ap =40 (10 x 4) are higher compared to the schedule for redistribution
to Q =40 (4 x 10).

5 Discussion and Future Work

In this paper we have introduced a framework, ReSHAPE, thattles parallel message
passing applications to be resized during execution. We Bgtended the functionality
of the resizing library in ReSHAPE to support redistribatiof 2-D block-cyclic ma-
trices distributed across a 2-D processor topology. Wedhiplon the work by Park et
al. [1€] to derive an efficient 2-D redistribution algorith@ur algorithm redistributes
a two-dimensional block-cyclic data distribution on a 2-fidgpf P (P, x P.) proces-
sors to two-dimensional block-cyclic data distributionaB-D grid with Q 2, x Q.)



Table 2. Counting topology dependent Send/Recvs. (P, Q) = size oteand desti-
nation processor set

Redistributiop)Communicatiop Nearly square| 1 Dimensional|Skewed-rectang|e
configuration steps Copy|Send/RecyCopy Send/Rec)Copy Send/Rec
(2,4 2 2 2 2 2 2 2
(4, 6) 3 3 9 4 8 3 9
4,8) 2 2 6 4 4 2 6
(6,9) 3 6 12 6 12 3 15
(8, 16) 2 8 8 8 8 4 12
(9,12) 4 6 30 9 27 3 33
(12, 16) 4 12 36 12 36 12 36
(16, 20) 5 10 70 16 64 16 64
(20, 25) 5 20 80 20 80 5 95
(25, 30) 6 15 135 25 125 4 146
(25, 40) 8 7 193 20 180 25 175
(30, 36) 6 30 150 30 150 15 525
(36, 48) 4 12 132 36 108 36 108
(4, 20) 10, 5 (skewed) 2 38 4 36 2 18
(8, 40) 10, 5 (skewed) 8 72 8 72 4 36
(8, 50) 25 8 192 8 192 8 192

processors, where P and Q can be any arbitrary positive .vBhgealgorithm ensures a
contention-free communication schedul®jf < Q,., P. < Q.. For all other conditions
involving P,, P., Q,, Q., the algorithm minimizes node contention in the communica-
tion schedule by performing a sequence of row or column tarahifts. We also show
the ease of use of API provided by the framework to port and@eeapplications to
make use of ReSHAPE's dynamic resizing capability. Cutyehe algorithm can re-
distribute N x N blocks of data on P processors to Q processors orldy.iftnd Q.
evenly divide N so that all the processors have equal nunfbetager blocks. We plan

to generalize this assumption so that the algorithm carstrddolite data between P and
Q processors for any arbitrary value of P and Q.

We are currently evaluating ReSHAPE framework with différecheduling strate-
gies for processor reallocation, quality-of-service addaaced reservation services.
We are also working towards adding resizing capabilitieseieeral production scien-
tific codes and adding support for a wider array of distridutata structures and other
data redistribution algorithms. Finally, we plan to makeSRAPE a more extensible
framework so that support for heterogeneous clustersjmfriastructure, shared mem-
ory architectures, and distributed memory architectuagshe implemented as individ-
ual plug-ins to the framework.
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