Skip to main content

Comparisons of Chemical Synapses and Gap Junctions in the Stochastic Dynamics of Coupled Neurons

  • Conference paper
Life System Modeling and Simulation (LSMS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4689))

Included in the following conference series:

Abstract

We study the stochastic dynamics of three FitzHugh-Nagumo neurons with chemical coupling and electrical coupling (gap junction) respectively. For both of the coupling cases, optimal coherence resonance and weak signal propagation can be achieved with intermediate noise intensity. Through comparisons and analysis, we can make conclusions that chemical synaptic coupling is more efficient than the well known linear electrical coupling for both coherence resonance and weak signal propagation. We also find that neurons with parameters locate near the bifurcation point (canard regime) can exhibit the best response of coherence resonance and weak signal propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ullner, E.: Noise-induced Phenomena of Signal Transmission in Excitable Neural Models. DISSERTATION (2004)

    Google Scholar 

  2. Perc, M., Marhl, M.: Amplification of information transfer in excitable systems that reside in a steady state near a bifurcation point to complex oscillatory behavior. Physical Review E 71(2), 26229 (2005)

    Article  Google Scholar 

  3. Volkov, E.I., Ullner, E., Zaikin, A.A., Kurths, J.: Oscillatory amplification of stochastic resonance in excitable systems. Physical Review E 68(2), 26214 (2003)

    Article  Google Scholar 

  4. Zhao, G., Hou, Z., Xin, H.: Frequency-selective response of FitzHugh-Nagumo neuron networks via changing random edges. Chaos: An Interdisciplinary Journal of Nonlinear Science 16, 043107 (2006)

    Article  Google Scholar 

  5. Zaks, M.A., Sailer, X., Schimansky-Geier, L., Neiman, A.B.: Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 15, 026117 (2005)

    Article  MathSciNet  Google Scholar 

  6. Makarov, V.A., Nekorkin, V.I., Velarde, M.G.: Spiking Behavior in a Noise-Driven System Combining Oscillatory and Excitatory Properties. Physical Review Letters 86(15), 3431–3434 (2001)

    Article  Google Scholar 

  7. Shishkin, A., Postnov, D.: Stochastic dynamics of FitzHugh-Nagumo model near the canard explosion, Physics and Control, 2003. In: Proceedings of 2003 International Conference, vol. 2 (2003)

    Google Scholar 

  8. Wellens, T., Shatokhin, V., Buchleitner, A.: Stochastic resonance. Reports on Progress in Physics 67(1), 45–105 (2004)

    Article  Google Scholar 

  9. Ullner, E., Zaikin, A., García-Ojalvo, J., Báscones, R., Kurths, J.: Vibrational resonance and vibrational propagation in excitable systems. Physics Letters A 312(5-6), 348–354 (2003)

    Article  MathSciNet  Google Scholar 

  10. Volkov, E.I., Ullner, E., Zaikin, A.A., Kurths, J.: Frequency-dependent stochastic resonance in inhibitory coupled excitable systems. Physical Review E 68(6), 61112 (2003)

    Article  Google Scholar 

  11. Ullner, E., Zaikin, A., García-Ojalvo, J., Kurths, J.: Noise-Induced Excitability in Oscillatory Media. Physical Review Letters 91(18), 180601 (2003)

    Article  Google Scholar 

  12. Zhou, C., Kurths, J., Hu, B.: Array-Enhanced Coherence Resonance: Nontrivial Effects of Heterogeneity and Spatial Independence of Noise. Physical Review Letters 87(9), 98101 (2001)

    Article  Google Scholar 

  13. Gong, P.L., Xu, J.X.: Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model. Physical Review E 63(3), 31906 (2001)

    Article  MathSciNet  Google Scholar 

  14. Toral, R., Mirasso, C.R., Gunton, J.D.: System size coherence resonance in coupled FitzHugh-Nagumo models. Europhysics Letters 61(2), 162–167 (2003)

    Article  Google Scholar 

  15. Casado, J.M., Baltanás, J.P.: Phase switching in a system of two noisy Hodgkin-Huxley neurons coupled by a diffusive interaction. Physical Review E 68(6), 61917 (2003)

    Article  Google Scholar 

  16. Balenzuela, P., Garcia-Ojalvo, J.: On the role of chemical synapses in coupled neurons with noise. Arxiv preprint q-bio. NC/0502025 (2005)

    Google Scholar 

  17. Wang, J., Li, X., Hu, W.: Canards and Bifurcations in the Chemical Synaptic Coupled FHN Neurons (2006)

    Google Scholar 

  18. Drover, J., Rubin, J., Su, J., Ermentrout, B.: Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math. 65, 69–92 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wechselberger, M.: Existence and bifurcation of canards in R3 in the case of a folded node. SIAM J. Applied Dynamical Systems 4, 101–139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cronin, J.: Mathematical Aspects of Hodgkin-Huxley Neural Theory. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  21. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM REVIEW 43, 525–546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Szmolyan, P., Wechselberger, M.: Canards in R3. Journal of Differential Equations 177(2), 419–453 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kang Li Xin Li George William Irwin Gusen He

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Li, X., Feng, D. (2007). Comparisons of Chemical Synapses and Gap Junctions in the Stochastic Dynamics of Coupled Neurons. In: Li, K., Li, X., Irwin, G.W., He, G. (eds) Life System Modeling and Simulation. LSMS 2007. Lecture Notes in Computer Science(), vol 4689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74771-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74771-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74770-3

  • Online ISBN: 978-3-540-74771-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics