Skip to main content

Distinguish Different Acupuncture Manipulations by Using Idea of ISI

  • Conference paper
  • 1599 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4689))

Abstract

As well-known, the science of acupuncture and moxibustion is an important component of Traditional Chinese Medicine with a long history. Although there are a number of different acupuncture manipulations, the method for distinguishing them is rarely investigated. With the idea of the interspike interval (ISI), we study the electrical signal time series at the spinal dorsal horn produced by three different acupuncture manipulations in Zusanli point and present an effective way to distinguish them. Comparing with the traditional analysis methods, like phase space reconstruction and largest Lyapunov exponents, this new method is more efficiently and effective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jianxue, X., Yunfan, G., Wei, R., Sanjue, H., Fuzhou, W.: Propagation of periodic and chaotic action potential trains along nerve fibers. Physica D: Nonlinear Phenomena 100(1-2), 212–224 (1997)

    Article  MATH  Google Scholar 

  2. Eugene, M.: Izhikevich, Resonate-and-fire neurons. Neural Networks 14(6-7), 883–894 (2001)

    Article  Google Scholar 

  3. Masuda, N., Aihara, K.: Filtered interspike interval encoding by class. Neurons Physics Letters A 311, 485–490 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gedeon, T., Holzer, M., Pernarowski, M.: Attractor reconstruction from interspike intervals is incomplete. Physica D: Nonlinear Phenomena 178(3-4), 149–172 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Racicot, D.M., Longtin, A.: Interspike interval attractors from chaotically driven neuron models. Physica D: Nonlinear Phenomena 104(2), 184–204 (1997)

    Article  MATH  Google Scholar 

  6. Jin, W.-y., Xu, J.-x., Wu, Y., Hong, L., Wei, Y.-b.: Crisis of interspike intervals in Hodgkin-Huxley model. Chaos, Solitons & Fractals 27(4), 952–958 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Tuckwell Henry, C.: Spike trains in a stochastic Hodgkin-Huxley system. Biosystems 80(1), 25–36 (2005)

    Article  Google Scholar 

  8. Horikawa, Y.: A spike train with a step change in the interspike intervals in the FitzHugh-Nagumo model. Physica D: Nonlinear Phenomena 82(4), 365–370 (1995)

    Article  MATH  Google Scholar 

  9. Rasouli, G., Rasouli, M., Lenz, F.A., Verhagen, L., Borrett, D.S., Kwan, H.C.: Fractal characteristics of human parkinsonian neuronal spike trains. Neuroscience 139(3), 1153–1158 (2006)

    Article  Google Scholar 

  10. Canavier, C.C., Perla, S.R., Shepard, P.D.: Scaling of prediction error does not confirm chaotic dynamics underlying irregular firing using interspike intervals from midbrain dopamine neurons. Neuroscience 129(2), 491–502 (2004)

    Article  Google Scholar 

  11. Gu, H., Ren, W., Lu, Q., Wu, S., Yang, M., Chen, W.: Integer multiple spiking in neuronal pacemakers without external periodic stimulation. Physics Letters A 285(1-2), 63–68 (2001)

    Article  MathSciNet  Google Scholar 

  12. Yang, Z., Lu, Q., Gu, H., Ren, W.: Integer multiple spiking in the stochastic Chay model and its dynamical generation mechanism. Physics Letters A 299(5-6), 499–506 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Takens, F.: Detecting strange attractors in turbulence. Lecture Notes in Mathematicsb, vol. 898, pp. 336–381 (1981)

    Google Scholar 

  14. Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. Journal of Statistical Physics 65, 579–616 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Xuemin, S.: Acupuncture. China Press of Traditional Chinese Medicine, Beijing (2004)

    Google Scholar 

  16. Ke, Q., Wang, Y., Zhao, Y.: Acupuncture abirritation and its mechanism. Sichuan Journal of Anatomy 10(4), 224–230 (2003)

    Google Scholar 

  17. Yin, L., Jun, H., Qizhong, M.: Advance in Research on Abstinence from Narcotin Drugs by Acupuncture. Shanghai J. Acu-mox. 18(3), 43–45 (1999)

    Google Scholar 

  18. Zhang, J., Jin, Z., Lu, B., Chen, S., Cai, H., Jing, X.: Responses of Spinal Dorsal-horn Neurons to Gastric Distention and Electroacupuncture of ”Zusanli” Point. Acupuncture Research 26(4), 268–273 (2001)

    Google Scholar 

  19. Wan, Y.-H., Jian, Z., Wen, Z.-H., Wang, Y.-Y., Han, S., Duan, Y.-B., Xing, J.-L., Zhu, J.-L., Hu, S.-J.: Synaptic transmission of chaotic spike trains between primary afferent fiber and spinal dorsal horn neuron in the rat. Neuroscience 125(4), 1051–1060 (2004)

    Article  Google Scholar 

  20. Cheng, S.: Chinese Acupuncture 1998. People’s Medical Publishing House

    Google Scholar 

  21. Takens, F.: Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics, vol. 898, pp. 366–381 (1981)

    Google Scholar 

  22. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a Time Series. Phys. Rev. Lett. 45, 712–716 (1980)

    Article  Google Scholar 

  23. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  Google Scholar 

  24. Liangyue, C.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica 110D, 43–50 (1997)

    Google Scholar 

  25. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica 16D, 285–317 (1985)

    MathSciNet  Google Scholar 

  26. Yong, X., Jian-Xue, X.: Phase-space reconstruction of ECoG time sequences and extraction of nonlinear characteristic quantities. Acta Phys Sinica 51(2), 205–214 (2002)

    Google Scholar 

  27. Wang, Z.S., Zhenya, H., Chen, J.D.Z.: Chaotic behavior of gastric migrating myoelectrical complex. IEEE Trans. on Biome. Eng. 51(8), 1401–1406 (2004)

    Article  Google Scholar 

  28. Matjaz, P.: Nonlinear time series analysis of the human electrocardiogram. Eur. J. Phys. 26, 757–768 (2005)

    Article  Google Scholar 

  29. Small, M., Yu, D.J., Simonotto, J., Harrison, R.G., et al.: Uncovering non-linear structure in human ECG recordings. Chaos, Solitons & Fractals 13(8), 1755–1762 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kang Li Xin Li George William Irwin Gusen He

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Si, W., Zhong, L., Dong, F. (2007). Distinguish Different Acupuncture Manipulations by Using Idea of ISI. In: Li, K., Li, X., Irwin, G.W., He, G. (eds) Life System Modeling and Simulation. LSMS 2007. Lecture Notes in Computer Science(), vol 4689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74771-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74771-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74770-3

  • Online ISBN: 978-3-540-74771-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics