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Abstract. The paper addresses the problem of agents compatibility and
their conformance to protocols. We assume that the specification of pro-
tocols is given in an action theory by means of temporal constraints and,
in particular, communicative actions are defined in terms of their effects
and preconditions on the social state of the protocol. We show that the
problem of verifying the conformance of an agent with a protocol can
be solved by making use of an automata based approach, and that the
conformance of a set of agents with a protocol guarantees that their in-
teraction cannot produce deadlock situations and it only gives rise to
runs of the protocol.

1 Introduction

One of the central problems in the area of multi-agent systems, as well as in
the area of web services, concerns the interoperability of software agents in an
open environment. Agents are usually loosely coupled, as they are written by
different organizations, and their interoperability with other agents cannot be
guaranteed a-priori. This has raised the problem of introducing conditions which
enforce that a set of agents can interact properly, thus leading to the introduction
of different notions of compatibility among agents [5] as well as to the definition
of notions of conformance of an agent with a protocol [13,3,6]. The fact that an
agent conforms with a protocol must guarantee that all the interactions of the
agent with other conformant agents are correct: they produce executions of the
protocol and do not lead to deadlock situations.

In our proposal, the interaction protocol which rules the communications
among agents is specified in an action theory based on a temporal logic, namely
dynamic linear time temporal logic (DLTL) [11]. In this framework, as described
in the next section, protocols are given a declarative specification consisting of:
(i) specification of communicative actions by means of their effects and precon-
ditions on the social state which, in particular, includes commitments; (ii) a set
of temporal constraints, which specify the wanted interactions (under this re-
spect, our approach to protocol specification is similar to the one proposed in
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DecSerFlow [1]). Protocols with nonterminating computations, modeling reac-
tive services [7], can also be captured in this framework. Communication among
agents is assumed to be synchronous and, in this concern, we diverge from [7]
and [13], where asynchronous message passing is considered.

In [9,10], we have shown that several verification problems can be modelled as
satisfiability and validity problems in the logic, by making use of an automata
based approach and, in particular, by working on the Büchi automaton which
can be extracted from the logical specification of the protocol. In this paper
we focus on the problem of agent interoperability and we define a notion of
conformance of an agent with a protocol which guarantees interoperability. In
the verification of conformance, we make use of the protocol automaton.

In Section 3, we introduce a notion of conformance of an agent with a protocol
by comparing the runs of the agent and the runs of protocol. Then, in Section
4, we define an algorithm which verifies the conformance of an agent with a
protocol, assuming that both the agent and the protocol are represented as Büchi
automata. The protocol automaton obtained from the temporal specification is
a general (non deterministic) Büchi automaton, while agents are assumed to be
modelled by deterministic Büchi automata. The non deterministic behaviors of
agents can however be modelled through the “non deterministic choice” among
different actions.

In the general case, the verification algorithm works in exponential time in the
size of the automata. However, when the protocol automaton is deterministic,
conformance can be checked in polynomial time.

For lack of space, in the paper we only address in detail the case of protocols
with two participants. We shortly discuss the general problem in the conclusions.

2 Protocol Specification

The specification of interaction protocols [9,10] is based on Dynamic Linear Time
Temporal Logic (DLTL) [11], a linear time temporal logic which extends LTL by
allowing the until operator to be indexed by programs in Propositional Dynamic
Logic (PDL) as follows: αUπβ, where π is a program (a regular expression), built
from a set Σ of atomic actions.

As for LTL, DLTL models are infinite linear sequences of worlds (propositional
interpretations), each one reachable from the initial one by a finite sequence τ of
actions in Σ. A valuation function V , defines the interpretation of propositions
at each world τ .

A formula αUπβ is true at a world τ if “α until β” is true on a finite stretch
of behavior which is in the linear time behavior of the program π. The derived
modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ �Uπα and [π]α ≡
¬〈π〉¬α. When π is Σ∗, we replace 〈π〉 with � and [π] with �. As shown in
[11], DLTL(Σ) is strictly more expressive than LTL(Σ). The satisfiability and
validity problems for DLTL are PSPACE complete problems [11].

We illustrate how a protocol can be specified in this framework trough the
specification of a Purchase protocol. We have two roles: the merchant (mr) and
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the customer (ct). The customer sends a request to the merchant, the merchant
replies with an offer or by saying that the requested good is not available, and, if
the customer receives the offer, it may accept or refuse it. If the customer accepts
the offer, then the merchant delivers the goods. After receiving the goods, the
customer sends the payment.

The two agents share all the communicative actions, which are: sendOffer,
sendNotAvail, sendGoods whose sender is the merchant; sendRequest, sendAc-
cept, sendRefuse, sendPayment, whose sender is the customer. Communication
is synchronous: the agents communicate by synchronizing on the execution of
communicative actions.

The Purchase protocol Pu is specified by a domain description DPu, which
is a pair (Π, C), where Π is a set of formulas describing the action theory, and
C is a set of constraints.

We adopt a social approach where an interaction protocol is specified by de-
scribing the effects of communicative actions on the social state. The social state
contains the domain specific fluents describing observable facts concerning the
execution of the protocol. Examples of fluents are: requested (the customer has
requested a quote), accepted (the customer has accepted the quote), goods (the
merchant has sent the goods). Also special fluents are introduced to model com-
mitments among the agents [15]: C(i, j, α), means that agent i is committed to
agent j to bring about α. Furthermore, a conditional commitments CC(i, j, β, α)
means that agent i is committed to agent j to bring about α, if the condition β
is brought about.

The action theory Π consists of action laws, causal laws, precondition laws,
and an initial state.

Action laws. AL in Π have the form: �(α → [a]l), with a ∈ Σ, l a fluent literal1

and α a conjunction of literals, meaning that executing action a in a state where
precondition α holds causes the effect l to hold.

Although the framework has been extended in [12] to model incomplete infor-
mation by including epistemic operators, for simplicity here we do not consider
the epistemic extension of the formalism. Also, actions are assumed to be deter-
ministic, i.e. executing an action in a state gives a unique successor state.

Some of the effects of communicative actions in protocol Pu are the following:

�([sendOffer]CC(mr, ct, accepted, goods))
when the merchant sends the quote for the good, then he commits to send the
goods if the customer accepts the request,

�(requested → [sendOffer]¬requested)
when the merchant sends the quote for the good, if there is a request, the request
is cancelled.

Causal laws. CL in Π have the form: �((α∧©β) → ©l) (where l a fluent literal
and α, β conjunctions of literals), meaning that if α holds in a state and β holds
in the next state, then l also holds in the next state. Such laws are intended to
expresses “causal” dependencies among fluents. For instance, the causal law:
1 A fluent literal l stands for a fluent name f or its negation ¬f .
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�(©α → ©¬C(i, j, α))

says that a commitment to bring about α is cancelled when α holds. Other causal
laws are needed for dealing with conditional commitments.

Precondition laws. PL have the form: �(α → [a]⊥), meaning that the execution
of an action a is not possible if α holds (i.e. there is no resulting state following
the execution of a if α holds). The precondition laws for the actions of the
customer are the following ones:

�(¬offer → [sendAccept]⊥)
�(¬offer → [sendRefuse]⊥)
�(¬goods → [sendPayment]⊥).

meaning that: the customer may send an accept or refuse only if an offer has been
done. The customer may send a payment for the goods only if he has received
the goods (all other actions are always executable for the customer).

The initial state IS of the protocol defines the initial value of all the fluents.
Here, differently from [12], we assume that the initial state is complete.

Action laws and causal laws describe the changes to the state. All other fluents
which are not changed by the actions are assumed to persist unaltered to the
next state. To cope with the frame problem [14] we use a completion construction
Comp, which is applied to the action laws and to the causal laws [10]. Thus Π
is defined as:

Π = Comp(AL ∧ CL) ∧ PL ∧ IS
The second component C of the domain description DPu defines constraints

as arbitrary temporal formulas of DLTL. For instance, to model the fact that,
for each request, the customer answers only once sending an Offer or NotAvail,
we introduce the following constraint:

¬� < sendOffer + sendNotAvail > � < sendOffer + sendNotAvail > �

where + is the nondeterministic choice among actions. It is not possible that the
merchant sends an offer or informs that good is not available, and then, later
on, he sends again one of these two messages.

We are interested in those execution of the purchase protocol in which all
commitments have been fulfilled. Hence, we add, for each commitment C(i, j, α)
the constraint:

�(C(i, j, α) → �α).

Given the domain description DPu = (Π, C) of Purchase protocol, the runs
of the protocol are the linear models of Π ∧ C.

Note that protocol “runs” are always infinite, as logic DLTL is characterized
by infinite models. When we want to model terminating protocols, as the one
above, we assume the domain description of the protocol to be suitably extended
with an action noop which does nothing and which can be executed forever after
termination of the protocol.
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Once the specification of a protocol has been given, several kinds of verification
can be performed on it, including the verification of properties of the protocol
per-se, as well as the verification that a set of agents are compliant with a given
interaction protocol at runtime. We refer to [9,10] for a description of these
verification problems which can be modelled as satifiability or validity problems
in the temporal logic.

3 Conformance

Given a protocol P with two roles i and j, and an agent Si (playing the role of
i), we want to define a notion of conformance of Si with the protocol P which
guarantees that the interactions of Si with any other conformant agent Sj gives
rise to legal runs of the protocol and it does not produce deadlock situations.

Consider for instance a customer agent Sct whose behavior differs from that
of the role “customer” of protocol Pu as follows: whenever it receives an offer
from the merchant, it always accepts it; after accepting the offer it expects to
receive from the merchant either the goods or a warning that the delivery has
been cancelled.

Although the behavior of the customer agent and that of the corresponding
role of the protocol are different, we can consider however the agent to be com-
pliant with the protocol, according to the following observations. The customer,
is not forced to send all the messages that could be sent according to the pro-
tocol. For instance, it can always accepts an offer, and never send the message
sendRefuse. On the other hand, an agent can receive more messages than those
it should actually receive according to the protocol (an agent can serve more
requests than expected from the protocol). The customer Sct can also receive
the message that the delivery has been cancelled, even if no merchant confor-
mant with the protocol will ever send it (for further comments on this notion of
conformance see [5,3]). Informally, a protocol Si conforms with a protocol P if
the following conditions hold:

(i) The messages sent from Si are correct: that is, if Si sends a message
m at some stage, then, the role i of the protocol can send message m at
that stage.
(ii) Si must receive all the messages which it could receive according to
the protocol. This is a completeness requirement for Si.
(iii) If, in a state of the protocol, role i is expected to send a message, in
the corresponding state of agent Si, it must send at least a message. This
condition is required to avoid deadlock situations when the two agents
Si and Sj interact: they cannot be both waiting to receive a message.

The third condition is needed because our notion of conformance includes also
interoperability of interacting agents.

Notice again that we are considering in two different ways the nondeterministic
choices concerning emissions (the customer can accept or refuse an offer) and
those concerning receptions (the customer receives the messages sendOffer or
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sendNotAvail). As usual in agent applications, we assume that, in the first case,
the choice is internal to the agent (internal non determinism), while, in the
second case, the choice is of the partner agents, here, the merchant (external non
determinism). We refer to [13] for a distinction between internal and external
non-determinism.

In the following, we define a notion of conformance of an agent with respect
to a protocol by comparing the runs of the agents and the runs of the protocol.
In particular, in this definition, we will not consider the value of fluents at
the different worlds in the runs, but only the sequences of actions that can be
executed according to the protocol and to the agent.

Let us consider a protocol P involving two roles, i and j.

Definition 1. An agent Si is conformant with a protocol P if, whenever there
are two runs, σS of Si and σP of P , with a common prefix π, the following
conditions are satisfied:

(1) if the action sendi,j is executed after the prefix π in σS, then there exist a
run σ common to P and Si with prefix πsendi,j ;

(2) if the action sendj,i is executed after the prefix π in σP , then there is a run
σ common to P and Si with prefix πsendj,i;

(3) if the action sendi,j is executed after the prefix π in σP , then there is a run
σ common to P and Si with prefix πsend′i,j, with send′i,j possibly different
from sendi,j.

Item (1) says that the messages sent by agent Si are correct. It corresponds to
condition (i). Item (2) says that Si receives all the messages he can get according
to its role, and corresponds to condition (ii). Finally, item (3) corresponds to
condition (iii).

We can prove that if two agents Si and Sj are conformant with respect to a
protocol P , then the interaction of Si and Sj cannot produce deadlock situations
and it only gives rise to runs of the protocol P .

Theorem 1. Let P be a protocol with a nonempty set of runs. Let Si and Sj be
two agents that are conformant with P . If there are two runs σi of Si and σj of
Sj that have a common prefix π, then there are two runs σ′

i of Si and σ′
j of Sj,

that have a common prefix πa, for some action a. Moreover, πa is a prefix of a
run of P .

Proof. Let π be the prefix common to σi and σj . First, we show that there is a
run of P with prefix π. We prove it by induction on the length l of the prefix π.
For l = 1, let π = a. Let us assume that action a is sendi,j . As there is a run
of P with a common prefix ε with σi, by the conformance of Si with P , case
(1), there is a run σ common to P and Si with prefix sendi,j . In case action a is
sendj,i, we proceed similarly, using conformance of Sj with P . For the inductive
case l + 1, let π = π′a. By inductive hypothesis we know that there is as run of
P starting with π′. From the hypothesis, the runs σi of Si and σj of Sj have a
common prefix π, and hence π′. Let us assume that a = sendi,j . Then, by the
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conformance of Si with P , case (1), there is a run σ common to P and Si with
prefix π′sendi,j of length l + 1. Hence, there is a run of P with prefix π. For
a = sendj,i, we proceed similarly.

We can now prove the thesis. Let us now consider, for a given π, the different
actions that can be executed in σi and σj after π.

Case 1. Assume that in σi action sendi,j is executed after π. As there is a run
of P starting with π, by the conformance of Si with P , case (1), there is a run
σ′

i common to P and Si with prefix πsendi,j . By the conformance of Sj to P ,
case (2), there is a run σ′

j common to P and Sj with prefix πsendi,j . And the
thesis follows.

Case 2. If in σj action sendj,i is executed after π, the proof is as in case 1.
Case 3. Assume that in σi action sendj,i is executed after π and in σi action

sendi,j is executed after π (both Si and Sj execute a receive after π). As there is
a run σP of P with prefix π, let sendi,j be the action executed on σP after π (in
case the action is sendj,i, we proceeds similarly). Then, by the conformance of
Si, case (3), there is a run σ′

i common to P and Si with prefix πsend′i,j . By the
conformance of Sj , case (2), there is a run σ′

j common to P and Sj with prefix
πsend′i,j . And the thesis follows.

Corollary 1. Let S and J be two agents that are conformant with P . The in-
teraction of S and P does not produce deadlock situations and it only produces
executions of the protocol P .

The proof is omitted for lack of space.

4 Verifying the Conformance of an Agent with a Protocol

4.1 Reasoning About Protocols Using Automata

Verification and satisfiability problems can be solved by extending the standard
approach for verification of Linear Time Temporal Logic, based on the use of
Büchi automata. We recall that a Büchi automaton has the same structure as
a traditional finite state automaton, with the difference that it accepts infinite
words. More precisely a Büchi automaton over an alphabet Σ is a tuple B =
(Q, →, Qin, F ) where:

• Q is a finite nonempty set of states;
• →⊆ Q × Σ × Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf (σ) → Q such that:

• ρ(ε) ∈ Qin

• ρ(τ) a→ ρ(τa) for each τa ∈ prf (σ)

The run ρ is accepting iff inf(ρ)∩F = ∅, where inf(ρ) ⊆ Q is given by q ∈ inf (ρ)
iff ρ(τ) = q for infinitely many τ ∈ prf (σ).
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As described in [11], the satisfiability problem for DLTL can be solved in
deterministic exponential time, as for LTL, by constructing for each formula α ∈
DLTL(Σ) a Büchi automaton Bα such that the language of ω-words accepted
by Bα is non-empty if and only if α is satisfiable.

The construction given in [11] is highly inefficient since it requires to build an
automaton with an exponential number of states, most of which will not be reach-
able from the initial state. A more efficient approach for constructing on-the-fly a
Büchi automaton from a DLTL formula has been proposed in [8], by generalizing
the tableau-based algorithm for LTL. Given a formula ϕ, the algorithm builds a
labelled Büchi automaton, i.e. a Büchi automaton extended with a labeling func-
tion L : S → 2F , which associates a set of fluents with each state. Given an
accepting run of the automaton, a model of the given formula ϕ can be obtained
by completing the label of each state of the run in a consistent way.

For a given a domain description Π ∧ C specifying a protocol, the above
algorithm can be used to construct the corresponding labelled Büchi automaton,
such that all runs accepted by the automaton represent runs of the protocol.

Here, we adopt a technique similar to the one adopted for model checking,
i.e. by building separately the two Büchi automata corresponding to Π and C
and by making their synchronous product. The Büchi automaton for C can be
constructed with the general algorithm mentioned above. In the following we
will call this non-deterministic automaton MC .

Instead, the Büchi automaton corresponding to Π can be easily obtained
by means of a more efficient technique, exploiting the fact that in our action
theory we assume to have complete states and deterministic actions. We can
obtain from the domain description a function next statea(S), for each action
a, for transforming a state to the next one, and then build the automaton by
repeatedly applying these functions to all states where the preconditions of the
action hold, starting from the initial state. In the following we will call this
deterministic automaton MP

det.
The runs of the deterministic automaton MP

det are all possible executions of
the protocol according to the action theory, while the runs of MC describe all
possible executions satisfying the constraints in C.

The Büchi automaton MP describing all runs of the protocol can thus be
obtained as follows:

1. Build a labelled Büchi automaton MP
det obtained from the action and causal

laws, precondition laws and the initial state, as described above. This au-
tomaton is deterministic, all states can be considered as accepting states,
and the labels are complete.

2. Build a labelled Büchi automaton MC obtained from the set of DLTL formu-
las expressing constraints [8]. This automaton will, in general, be nondeter-
ministic. It is well-known that not every Büchi automaton has an equivalent
deterministic Büchi automaton.

3. Build the product of the two automata MP = MP
det ⊗ MC . MP will be

a labelled nondeterministic Büchi automaton. Since all states of MP
det are

accepting, MP is a standard Büchi automaton (not a generalized one).
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4.2 An Automata-Based Verification Algorithm

In this section we define an algorithm to verify the conformance of an agent S
with a protocol P . The specification of the protocol is given by the non deter-
ministic automaton MP , defined in the previous section. In the following, we
disregard state labels of MP , and consider it as a standard non-deterministic
Büchi automaton. The behavior of the agent S is given by a deterministic Büchi
automaton MS , whose accepted runs provide all the possible executions of the
agent. Observe that, although MS is deterministic, the non deterministic behav-
iors of the agent can be modelled through the “nondeterministic choice” among
different actions.

We assume that the automata MP and MS have been pruned by eliminating
all the states which do not occur on any accepted run. This can be achieved by
starting from the accepting states, and by propagating backwards the informa-
tion on the states for which a path to an accepting state exists.

In order to verify the conformance of agent an S with a protocol P , we define
the synchronous product between MP and MS , M = MP ⊗MS, whose runs are
all the runs of S which are also runs of P . M is a non-deterministic generalized
Büchi automaton.

The states of M are triples < qD, qC , qS >, where qD ∈ MP
det, qC ∈ MC and

qS ∈ MS . We assume that all the states of M which are on an accepting run
are marked as alive.

In order to verify the conformance we must be able to consider all states of
M which are reachable with the same prefix. Unfortunately we know that it is
not possible to transform M into an equivalent deterministic Büchi automaton.
Therefore, we proceed as follows.

Let M′ = (Q, Δ, Q0) be a non-deterministic finite state automaton obtained
by deleting the accepting states from M. We can now apply to M′ the clas-
sical powerset construction for obtaining a deterministic automaton MPS =
(QPS , ΔPS , q0

PS), where

– QPS = 2Q

– (qPS , a, q′PS) ∈ ΔPS iff q′PS = {q′ ∈ Q : ∃q ∈ qPS and (q, a, q′) ∈ Δ}
– q0

PS = Q0

– FPS = QPS .

Let QR
PS ⊂ QPS be the subset of states of MPS reachable from the initial

state q0
PS . Let qR

PS = {q1, . . . , qn} be a state of QR
PS , and let σ be a prefix with

which this state can be reached from the initial state. By construction of MPS ,
the states in qR

PS are all the states which are reachable in M from an initial
state through the prefix σ. As pointed out before, every state qi ∈ qR

PS has the
form < qi

D, qi
C , qi

S >. Since the first and third component of qi are states of a
deterministic automaton, all qi

D of all states in qi will be equal, and the same
for qi

S .
For verifying the conformance of an agent S with a protocol P (P involving

two roles i and j and S playing role i), we will refer to the automaton M, but
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we will also make use of the states of the automaton MPS to reason on the set
of states of M reachable with the same prefix. We give the following algorithm.

Algorithm (for verifying the conformance of S with P )
For each state qR

PS = {< qD, q1
C , qS >, . . . , < qD, qn

C , qS >} of QR
PS , verify the

following conditions:

– If in MS there is an outgoing action sendi,j from qS , then there must be a
state (qD, qk

C , qS) of M with an outgoing edge labelled with action sendi,j ,
leading to an alive state.

– For all the states (qD, qk
C) of MP , if there is an outgoing action sendj,i from

(qD, qk
C), then there must be a state < qD, ql

C , qS > of qR
PS , so that in M

there is an outgoing edge from < qD, ql
C , qS > labelled with action sendj,i,

leading to an alive state.
– For all the states (qD, qk

C) of MP , if there is an outgoing action sendi,j from
(qD, qk

C), then there must be a state < qD, ql
C , qS > of qR

PS , so that in M
there is an outgoing edge from < qD, ql

C , qS > labelled with action send′i,j ,
leading to an alive state.

We want to evaluate the complexity of the algorithm with respect to the size n
of the protocol automaton. We assume that the size of the agent automaton MS

is O(n). Although the size of the product automaton is polynomial in n (namely,
O(n2)), the size of the automaton MPS is exponential in the size of M. Hence,
the algorithm requires exponential time in n. It has to be observed, however,
that, when the protocol automaton is deterministic, the automaton MPS is
useless (each state, qR

PS of QR
PS contains a single triple) and the complexity of

the algorithm becomes polynomial in n.

5 Conclusions and Related Work

In this paper we have addressed the problem of conformance between an agent and
a protocol, assuming that the specification of the protocol is given in a temporal
action logic. We have addressed the case when the protocol involves two agents and
we have defined an algorithm which verifies the conformance of an agent with a
protocol, by making use of automata-based techniques. The notion of conformance
we have defined guarantees the interoperability among the agents.

In [3] a similar approach is used for conformance verification, by taking into
account the asymmetry between messages that are sent and messages that are
received. Agents and protocols are represented as deterministic finite automata,
and protocols are limited to protocols with only two roles. The results of that
paper have been extended in [4], where conformance of web services is considered.
First of all, protocols can contain an arbitrary number of roles. Furthermore, by
referring to nondeterministic automata, the proposed approach also accounts for
the case of agents and roles producing the same interactions but having different
branching structures. This case cannot be handled in the framework in [3] as
well as in our framework, due to the fact that they are exclusively based on a
trace semantics.
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A similar approach is also used in [2], where an abductive framework is used
to verify the conformance of agents to a choreography with any number of roles.

The notions of conformance, coverage and interoperability are defined in a
different way in [6]. A distinctive feature of that formalization is that the three
notions are orthogonal to each other. Conformance and coverage are based on
the semantics of runs (a run being a sequence of states), whereas interoperability
among agents is based upon the idea of blocking.

In [5], several notions of compatibility among agents have been analyzed, in
which agents are modelled by Labelled Transition Systems, communication is
synchronous, and models are deterministic (no two actions labelled by the same
name can be applied in a given state). While compatibility is concerned with the
interoperablility of agents, in [5] a notion of substitutability is introduced, which
is related to the notion of conformance. The problem of substitutability is that
of determining if an agent A′ can substitute an agent A, while preserving the
compatibility with all the agents B with whom A is compatible. [5] introduces
two distinct notions of substitutability: the first one requires that A′ at each
state can have less emissions and more receptions than A, and this, in essence,
corresponds to requirements (1) and (2) in our definition of conformance. This
notion of substitutability does not preserves deadlock-freeness. The second no-
tion of substitutability is more restrictive and requires that A′ and A have the
same emissions and receptions in the corresponding states. As a difference with
our proposal, in [5] agent executions are always terminating.

In [13] a notion of conformance is defined to check if an implementation model
I extracted from a message-passing program conforms with a signature S. Both
I and S are CCS processes, communication is asynchronous, and the paper, in
particular, focuses on stuck-freeness of communication.

The approach presented in the paper can be generalized to an arbitrary num-
ber n of agents, although the generalization is not straightforward. More pre-
cisely, in the general case, we would like to show that, given a protocol P with
k roles and a set of agents S1, . . . , Sk, if the behavior of each agent Si is confor-
mant with the protocol P , then the interaction of the agents does not lead to
deadlock situations and it gives rise only to executions of the protocol P .

The main difficulty in generalizing the proposed approach to an arbitrary
number of agents comes from the fact that, given a protocol P involving k agents,
it is not guaranteed that the constraints in P (which declaratively define which
are the wanted executions) can be enforced directly on the agents S1, . . . , Sk.
Consider, for instance, a protocol involving four agents A, B, C, D containing
the constraint:

[m1(A, B)] < m2(C, D) > T

meaning that message m2, sent from C to D has to be executed after m1, sent
from A to B. Assume that A and B do not exchange messages with C and D. It
is clear that this constraint cannot be enforced by agents A or B alone, as they
do not see message m2, nor by agents C or D alone, as they do not see message
m1, while both the messages are involved in the constraint. Intuitively, only con-
straints which are defined on the language (fluents and actions) of single agents
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should be allowed, as they can be enforced by single agents. A full discussion of
the general problem and its solutions will be subject of further work.
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