Skip to main content

Real-Time Trajectory Generation for Mobile Robots

  • Conference paper
Book cover AI*IA 2007: Artificial Intelligence and Human-Oriented Computing (AI*IA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4733))

Included in the following conference series:

Abstract

This paper presents a computationally effective trajectory generation algorithm for omni-directional mobile robots. This method uses the Voronoi diagram to find a sketchy path that keeps away from obstacles and then smooths this path with a novel use of Bezier curves. This method determines velocity magnitude of a robot along the curved path to meet optimality conditions and dynamic constrains using Newton method. The proposed algorithm has been implemented on real robots, and experimental results in different environments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kalmar-Nagy, T., D’Andrea, R., Ganguly, P.: Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robotics and Autonomous Systems 46, 47–64 (2004)

    Article  Google Scholar 

  2. Lavalle, S.M.: Planning Algorithms. Available Online

    Google Scholar 

  3. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  4. Athans, M., Falb, P.L.: Optimal Control: An Introduction to the Theory and its Applications. McGraw-Hill, New York (1966)

    Google Scholar 

  5. Mitchell, J.S.B., Rote, G., Woeginger, G.J.: Minimum-Link Paths Among Obstacles in the Plane. Algorithmica 8, 431–459 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. LaValle, S.M., Gonzalez-Banos, H.H., Becker, C., Latombe, J.C.: Motion strategies for maintaining visibility of a moving target. In: Proc. IEEE Int’l Conf. on Robotics and Automation, pp. 731–736. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  7. Guibas, L.J., Latombe, J.C., LaValle, S.M., Lin, D., Motwani, R.: A visibility-based pursuit-evasion problem. International Journal of Computational Geometry and Applications 9, 471–494 (1999)

    Article  MathSciNet  Google Scholar 

  8. He, Z., Lin, L., Ma, X.: Design, modeling and trajectory generation of a kind of four wheeled omni-directional vehicle. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 7, pp. 6125–6130 (2004)

    Google Scholar 

  9. Bobrow, J.E.: Optimal robot path planning using the minimum-time criterion. IEEE Transactions on Robotics and Automation 4, 443–450 (1988)

    Article  Google Scholar 

  10. Fiorini, P., Shiller, Z.: Time optimal trajectory planning in dynamic environments. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1553–1558 (1996)

    Google Scholar 

  11. de Berg, M., van Krefeld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry Algorithms and Applications. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  12. Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Buss, S.R.: 3D Computer Graphics A Mathematical Introduction with OpenGL. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Manzuri, M.T., Sahraei, A., Miremadi, S., Khoshbakht, S., Tajfard, M.: Team Description paper of the robocup small-size league sharif CESR (2005)

    Google Scholar 

  15. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5, 90–98 (1986)

    Google Scholar 

  16. Feder, H.J.S., Slotine, J.J.E.: Real-time path planning using harmonic potentials in dynamic environments. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 874–881 (1997)

    Google Scholar 

  17. Khatib, M., Chatila, R.: An extended potential field approach for mobile robot sensor-based motions. In: Proc. Int. Conf. on Intelligent Autonomous Systems, pp. 490–496 (1995)

    Google Scholar 

  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. McGraw-Hill, New York (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Basili Maria Teresa Pazienza

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sahraei, A., Manzuri, M.T., Razvan, M.R., Tajfard, M., Khoshbakht, S. (2007). Real-Time Trajectory Generation for Mobile Robots. In: Basili, R., Pazienza, M.T. (eds) AI*IA 2007: Artificial Intelligence and Human-Oriented Computing. AI*IA 2007. Lecture Notes in Computer Science(), vol 4733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74782-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74782-6_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74781-9

  • Online ISBN: 978-3-540-74782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics