Skip to main content

A 3D Virtual Model of the Knee Driven by EMG Signals

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4733))

Abstract

A 3D virtual model of the human lower extremity has been developed for the purpose of examining how the neuromuscular system controls the muscles and generates the desired movement. Our virtual knee currently incorporates the major muscles spanning the knee joint and it is used to estimate the knee joint moment. Beside that we developed a graphical interface that allows the user to visualize the skeletal geometry and the movements imparted to it. The purpose of this paper is to describe the design objectives and the implementation of our EMG-driven virtual knee. We finally compared the virtual knee behavior with the torque performed by the test subject in order to obtain a qualitative validation of our model. Within the next future our aim is to develop a real-time EMG-driven exoskeleton for knee rehabilitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BIOPAC Systems Inc., http://www.biopac.com/

  2. Department of Anatomy of the University of Brussels. The ULB Virtual Human, http://homepages.ulb.ac.be/~anatemb/the_ulb_virtual_man.htm

  3. The SENIAM Project, http://www.seniam.org/

  4. Surface Electromyograms. Slovenian Ministry of Education, Science, and Sport. European Shared Cost Project Neuromuscular Assessment in the Elderly Worker (NEW), http://www.storm.uni-mb.si/semg/index.htm

  5. The MathWorks Inc., http://www.mathworks.com

  6. Neuroanatomy and Neuropathology on the Internet (2005), http://www.neuropat.dote.hu/

  7. Banala, S.K., Agrawal, S.K.: Gait Rehabilitation with an Active Leg Othosis. In: Proceedings of IDETC/CIE 2005, ASME 2005, International Design Engineering Technical Conferences and Computers and Information in Engineering, Long Beach, California, USA, September 24–28 2005, vol. 74, pp. 102–108 (2005)

    Google Scholar 

  8. Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements from Neural Command. Journal of Applied Biomechanics 20, 367–395 (2004)

    Google Scholar 

  9. Clauser, C.E., McConville, J.T., Young, J.W.: Volume and Center of Mass of Segments of the Human Body. Ohio (August 1969). Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force System Command

    Google Scholar 

  10. Cluss, M., Laws, K., Martin, N., Nowicki, T.S.: The Indirect Measurement of Biomechanical Forces in the Moving Human Body. American Journal of Physics 74, 102–108 (2006)

    Article  Google Scholar 

  11. Day, S.: Important Factors in urface EMG Measurement. Bortec Biomedical Ltd., www.bortec.ca/Images/pdf/EMG%20measurement%20and%20recording.pdf

  12. Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopedic Surgical Procedures. IEEE Transactions on Biomedical Engineering 32, 757–767 (1990)

    Article  Google Scholar 

  13. Fleischer, C., Hommel, G.: Embedded Control System for a Powered Leg Exoskeleton. In: Proc. 7th Intern. Workshop Embedded Systems-Modeling, Technology and Applications, Berlin, pp. 177–185. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Fleischer, C., Hommel, G.: Calibration of an EMG-Based Body Model with Six Muscles to Control a Leg Exoskeleton. In: ICRA 2007. IEEE International Conference on Robotics and Automation, Roma, Italy, April 10–14 2007, IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  15. Fleischer, Ch., Kondak, K., Reinicke, Ch., Hommel, G.: Online Calibration of the EMG to Force Relationship. In: Proc. IROS 2004, Sendai, Japan, vol. 20, pp. 1305–1310. IEEE Robotics and Automation Society (2004)

    Google Scholar 

  16. Fleischer, Ch., Reinicke, Ch., Hommel, G.: Predicting the Intended Motion with EMG-Signals for an Exoskeleton Orthosis Controller . In: IROS. Proc. of the 2005 IEEE/RSJ Int. Conf. On Intelligent Robots and Systems, Edmonton, Alberta, Canada, 02.-06.08.2005, pp. 3449–3454 (2005)

    Google Scholar 

  17. Harwin, W.S., Patton, J.L., Edgerton, V.R.: Challenges and Opportunities for Robot-Mediated Neurorehabilitation. Proceedings of the IEEE 94, 1717–1726 (2006)

    Article  Google Scholar 

  18. Herzog, W., Read, L.J.: Lines of Action and Moment Arms of the Major Force-Carrying Structures Crossing the Human Knee Joint. Journal of Anatomy 182, 213–220 (1992)

    Google Scholar 

  19. Manal, K., Gonzalez, R.V., Lloyd, D.G., Buchanan, T.S.: A Real-Time EMG Driven Virtual Arm. Comp. Biol. Med. 32, 25–36 (2002)

    Article  Google Scholar 

  20. Pasqualino, A., Panattoni, G.L.: Anatomia Umana. In: UTET (2002)

    Google Scholar 

  21. Patton, J.L., Wei, Y., Scharver, C., Kenyon, R.V., Scheidt, R.: Motivating Rehabilitation by Distorting Reality. In: The first IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2006), Pisa, Italy, 20–22 February 2006, IEEE Robotics and Automation Society (2006)

    Google Scholar 

  22. Yamaguchi, G.T., Sawa, A.G., Moran, D.W., Fessler, M.J., Winters, J.M.: A Survey of Human Musculotendon Actuator Parameters. In: Winters, J., Woo, S.L.-Y. (eds.) Multiple Muscle Systems: Biomechanics and Movement Organization, pp. 717–773. Springer, Heidelberg (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Basili Maria Teresa Pazienza

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sartori, M., Chemello, G., Pagello, E. (2007). A 3D Virtual Model of the Knee Driven by EMG Signals . In: Basili, R., Pazienza, M.T. (eds) AI*IA 2007: Artificial Intelligence and Human-Oriented Computing. AI*IA 2007. Lecture Notes in Computer Science(), vol 4733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74782-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74782-6_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74781-9

  • Online ISBN: 978-3-540-74782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics