Secure Service Orchestration

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto Zunino

Dipartimento di Informatica, Universita di Pisa

Abstract. We present a framework for designing and composing ser-
vices in a secure manner. Services can enforce security policies locally,
and can invoke other services in a “call-by-contract” fashion. This mech-
anism offers a significant set of opportunities, each driving secure ways to
compose services. We discuss how to correctly plan service orchestrations
in some relevant classes of services and security properties. To this aim,
we propose both a core functional calculus for services and a graphical
design language. The core calculus is called \™ [I0]. It features prim-
itives for selecting and invoking services that respect given behavioural
requirements. Critical code can be enclosed in security framings, with
a possibly nested, local scope. These framings enforce safety properties
on execution histories. A type and effect system over-approximates the
actual run-time behaviour of services. Effects include the actions with
possible security concerns, as well as information about which services
may be selected at run-time. A verification step on these effects allows
for detecting the viable plans that drive the selection of those services
that match the security requirements on demand.

1 Introduction

The Web service protocol stack (WSDL, UDDI, SOAP, WSBPEL) offers basic
support for the development of service-oriented architectures, including facilities
to publish, discover and orchestrate services. Although this has been extremely
valuable to highlight the key innovative features of the service-oriented approach,
experience has singled out several limiting factors of the service protocol stack,
mainly because of the purely “syntactic” nature of standards. This has lead to
the idea of extending the stack with higher level, “semantic” functionalities. For
instance, the design and exploitation of service ontologies is a first attempt to
address these concerns.

A challenging issue of the service approach is how to orchestrate existing
services into more complex ones, by properly selecting and configuring services
so to guarantee that their composition enjoys some desirable properties. These
properties may involve functional aspects, speaking about the goals attained by
a service, and also non-functional aspects, like e.g. security, availability, perfor-
mance, transactionality, quality of service, etc. [45].

In this paper we describe a semantics-based framework to model and orches-
trate services in the presence of both functional and non-functional constraints,
with a special concern for security properties. The formal foundation of our work

A. Aldini and R. Gorrieri (Eds.): FOSAD 2006/2007, LNCS 4677, pp. 24 2007.
© Springer-Verlag Berlin Heidelberg 2007

Secure Service Orchestration 25

is A™? [I0J6], a core calculus for securely orchestrating services. The A™? calculus
extends the A-calculus with primitive constructs to describe and invoke services
in a call-by-contract fashion. Services are modelled as functions with side effects.
These side effects represent the action of accessing security-critical resources, and
they are logged into histories. A run-time security monitor may inspect histories,
and forbids those executions that would violate the prescribed policies.

Unlike standard discovery mechanisms that match syntactic signatures only,
ours also implements a matchmaking algorithm based on service behaviour. This
algorithm exploits static analysis techniques to resolve the call-by-contract in-
volved in a service orchestration. The published interface of a service takes the
form of an annotated type, which represents both the signature of the service
(i.e. its input-output information) and a suitable semantic abstraction of the ser-
vice behaviour. In our call-by-contract selection, the client is required to know
neither the service name nor its location. Operationally, the service registry is
searched for a service with a functional type (the service signature) matching
the request type; also, the semantic abstraction must respect the non-functional
constraints imposed by the request. Our orchestration machinery constructs a
plan for the execution of services, e.g. a binding between requests and service
locations, guaranteeing that the properties on demand are always satisfied.

We envisage the impact of our approach on the service protocol stack as fol-
lows. First, it requires extending services description languages: besides the stan-
dard WSDL attributes, service description should include semantic information
about service behaviour. Moreover, the call-by-contract invocation mechanism
adds a further layer to the standard service protocol stack: the planning layer.
This layer provides the orchestrator with the plans guaranteeing that the orches-
trated services always respect the required properties. Hence, before starting the
execution of the orchestration, the orchestrator engines collects the relevant ser-
vice plans by inquiring the planning layer. These plans enable the orchestration
engine to resolve all the requests in the initiator service, as well as those in the
invoked services.

1.1 Service Interfaces and Contracts

In our approach, the published interface of a service is an annotated functional

type, of the form 7 EiR T9. When supplied with an argument of type 7y, the
service evaluates to an object of type mo. The annotation H is a history ez-
pression, a sort of context-free grammar that abstractly describes the possible
run-time histories of the service. Thus, H will be exploited to guide the selection
of those services that respect the requested properties about security or other
non-functional aspects. Since service interfaces are crucial in the implementation
of the call-by-contract primitive, they have to be certified by a trusted party,
which guarantees that the abstract behaviour is a sound over-approximation of
the actual service behaviour. For instance, service interfaces can be mechanically
inferred through a type and effect system, as shown in Section

A contract ¢ is a regular property of execution histories. We express contracts
as languages accepted by finite state automata. Although in this paper we mainly

26 M. Bartoletti et al.

focus on security policies, in the general case contracts can be arbitrary safety
properties (e.g. resource usage constraints [7]).
To select a service matching a given contract ¢, and with functional type

T1 — T2, a client issues a request of the form req (7 RN 72). The call-by-contract

mechanism ensures that the selected service, with interface 7 A, 7o, will always
respect the contract ¢, i.e. that all the histories represented by H are recognized
by the automaton defining .

Since service interactions may be complex, it might be the case that a local
choice for a service is not secure in a broader, “global” context. For instance,
choosing a low-security e-mail provider might prevent you from using a home-
banking service that exchanges confidential data through e-mail. In this case,
you should have planned the selection of the e-mail and bank services so to
ensure their compatibility. To cope with this kind of issues, we define a static
machinery that determines the viable plans for selecting services that respect all
the contracts, both locally and globally. A plan resolves a call-by-contract into a
standard service call, and it is formalized as a mapping from requests to services.

1.2 Planning Service Composition

Our planning technique acts as a trusted orchestrator of services. It provides a
client with the viable plans guaranteeing that the invoked services always respect
the required properties. Thus, in our framework the only trusted entity is the
orchestrator, and neither clients nor services need to be such. In particular,
the orchestrator infers functional and behavioural types of each service. Also,
it is responsible for certifying the service code, for publishing its interface, and
for guaranteeing that services will not arbitrarily change their code on the fly:
when this happens, services need to be certified again. When an application is
injected in the network, the orchestrator provides it with a viable plan (if any),
constructed by composing and analysing the certified interfaces of the available
services. The trustworthiness of the orchestrator relies upon formal grounds, i.e.
the soundness of our type and effect system, and the correctness of the static
analysis and model-checking technique that infers viable plans.

As said above, finding viable plans is not a trivial task, because the effect of
selecting a given service for a request is not always confined to the execution of
that service. Since each service selection may affect the whole execution, we can-
not simply devise a viable plan by selecting services that satisfy the constraints
imposed by the requests, only. We have then devised a two-stage construction for
extracting viable plans from a history expression. Let H be the history expres-
sion inferred for a client. A first transformation of H, called linearization, lifts
all the service choices to the top-level of H. This isolates from H the possible
plans, that will be considered one by one in the second stage: model-checking
for validity. Projecting the history expression H on a given plan 7 gives rise to
another history expression H’, where all the service choices have been resolved
according to 7. Validity of H' guarantees that the chosen plan 7 will drive ex-
ecutions that never go wrong at run-time (thus run-time security monitoring
becomes unneeded). To verify the validity of H’, we first smoothly transform it

Secure Service Orchestration 27

into a Basic Process Algebra. We then model-check this Basic Process Algebra
with a finite state automaton, specially tailored to recognize validity. The cor-
rectness of all these steps (type safety, linearization, model-checking) has been
formally proved in [6].

1.3 Contributions

We briefly summarize the key features of our approach.

1.

Taxonomy of security aspects. We discussed some design choices that affect
security in Web Services. These choices address rather general properties of
systems: whether services maintain a state across invocations or not, whether
they trust each other or not, whether they can pass back and forth mobile
code, and whether different threads may share part of their state or not. Each
of these choices deeply impacts the expressivity of the enforceable security
properties, and the compositionality of planning techniques.

. Design Methodology. We introduced a formal modelling language for design-

ing secure services. Our graphical formalism resembles UML activity dia-
grams, and it is used to describe the workflow of services. Besides the usual
workflow operators, we can express activities subject to security constraints.
The awareness of security from the early stages of development will foster
security through all the following phases of software production. Diagrams
have a formal operational semantics, that specifies the dynamic behaviour of
services. Also, they can be statically analysed, to infer the contracts satisfied
by a service. Our design methodology allows for a fine-grained characteri-
zation of the design choices that affect security (see Section Bl). We support
our approach with the help of some case study scenarios. The design of UML
profiles is currently under development.

Planning and recovering strategies. We identified several cases where design-
ers need to take a decision before proceeding with the execution. For instance,
when a planned service disappears unexpectedly, one can choose to replan,
so to adapt to the new network configuration. Depending on the boundary
conditions and on past experience, one can choose among different tactics.
We comment on the feasibility, advantages and costs of each of them.

Core calculus for services. We extended the A-calculus with primitives for
selecting and invoking services that respect given security requirements. Ser-
vice invocation is implemented in a call-by-contract fashion, i.e. you choose
a service for its (certified) behaviour, not for its name. Security policies are
arbitrary safety properties on execution histories. A key point is that our
policies are applied within a given scope, so we called them local policies.
They are more general than traditional global policies. Instead of having
a single, large, monolithic policy, simple requirements on security can be
naturally composed. Also, local policies are better than local checks. Pro-
grammers are not required to foresee the exact program points where security
violations may occur.

Planning secure orchestration. We defined a three-step static analysis that
makes secure orchestration feasible. An abstraction of the program behaviour

28 M. Bartoletti et al.

is first extracted, through a type and effect system. This abstract behaviour
is a history expression that over-approximates the possible run-time histories
of all the services involved in an orchestration. The second and third steps
put this history expression in a special form, and then model-checks it to
construct a correct orchestrator that securely coordinates the running ser-
vices. Studying the output of the model-checker may highlight design flaws,
suggesting how to revise the call-by-contract and the security policies. All
the above is completely mechanizable, and we have implemented a proto-
type to support our methodology. The fact that the tool is based on firm
theoretical grounds (i.e. A™7 type inference and verifier) positively impacts
the reliability to our approach.

The paper is organized as follows. In Section 2] we introduce a taxonomy of
security aspects in service-oriented applications. Sections Bl Ml and [l present our
design methodology. In particular, Section [introduces our design notation and
the operational semantics of diagrams; Section [] presents service contracts, and
outlines how they can be automatically inferred; Section [l illustrates how to se-
lect services under the call-by-contract assumption, and discusses some planning
and recovering strategies. A car repair scenario for secure service composition
is presented in Section [6 Sections [B and @ formally introduce the calculus
A" and the planning machinery. Specifically, Sections [1 formalizes the syntax
and the operational semantics of A™? ; Section [§] gives semantics to history ex-
pressions, defines a type and effect system for A", and states its type safety;
Section @ shows our model-checking technique for planning. We conclude the pa-
per with some remarks (Section [[1]) about the expected impact of our proposal.
Portions of this paper have appeared in [L0/6].

2 A Taxonomy of Security Aspects in Web Services

Service composition heavily depends on which information about a service is
made public, on how to choose those services that match the user’s requirements,
and on their actual run-time behaviour. Security makes service composition even
harder. Services may be offered by different providers, which only partially trust
each other. On the one hand, providers have to guarantee that the delivered
service respects a given security policy, in any interaction with the operational
environment, and regardless of who actually called the service. On the other
hand, clients may want to protect their sensitive data from the services invoked.

In the history-based approach to security, the run-time permissions depend on
a suitable abstraction of the history of all the pieces of code (possibly partially)
executed so far. This approach has been receiving major attention, at both levels
of foundations [B27/43] and of language design/implementation [1l24].

The observations of security-relevant activities, e.g. opening socket connec-
tions, reading and writing files, accessing memory critical regions, are called
events. Sequences of events are called histories. The class of policies we are
concerned with is that of safety properties of histories, i.e. properties that are

Secure Service Orchestration 29

expressible through finite state automata. The typical run-time mechanisms for
enforcing history-based policies are reference monitors, which observe program
executions and abort them whenever about to violate the given policy. Reference
monitors enforce exactly the class of safety properties [41].

Since histories are the main ingredient of our security model, our taxonomy
speaks about how histories are handled and manipulated by services. We focus
on the following aspects.

Stateless / Stateful Services

A stateless service does not preserve its state (i.e. its history) across distinct
invocations. Instead, a stateful service keeps the histories of all the past invoca-
tions. Stateful services allow for more expressive security policies, e.g. they can
bound the number of invocations on a per-client basis.

Local / Global Histories

Local histories only record the events generated by a service locally on its site.
Instead, a global history may span over multiple services. Local histories are the
most prudent choice when services do not trust other services, in particular the
histories they generate. In this case, a service only trusts its own history — but
it cannot constrain the past history of its callers, e.g. to prevent that its client
has visited a malicious site. Global histories instead require some trust relation
among services: if a service A trusts B, then the history of A may comprise that
of B, and so A may check policies on the behaviour of B.

First Order / Higher Order Requests

A request type 7 % 7/ is first order when both 7 and 7 are base types (Int,
Bool, etc.). Instead, if 7 or 7" are functional types, the request is higher order. In
particular, if the parameter (of type 7) is a function, then the client passes some
code to be possibly executed by the requested service. Symmetrically, if 7/ is a
function type, then the service returns back some code to the caller. Mobility
of code impacts the way histories are generated, and demands for particular
mechanisms to enforce security on the site where the code is run. A typical
protection mechanism is sandboxing, that consists in wrapping code within an
execution monitor that enforce a given security policy. When there is no mobile
code, more efficient mechanisms can be devised, e.g. local checks on security-
critical operations.

Dependent / Independent Threads

In a network of services, several threads may run concurrently and compete for
services. Independent threads keep histories separated, while dependent threads
may share part of their histories. Therefore, dependent threads may influence
each other when using the same service, while independent threads cannot. For

30 M. Bartoletti et al.

instance, consider a one-shot service that can be invoked only one time. If threads
are independent, the one-shot service has no way to enforce single use. It can
only check that no thread uses it more than once, because each thread keeps
its own history. Dependent threads are necessary to correctly implement the
one-shot service.

3 Designing Secure Services

The basic entity in our design formalism is that of services. A service is repre-
sented as a box containing its code. The four corners of the box are decorated
with information about the service interface and behaviour. The label ¢ : 7
indicates the location ¢ where the service is made available, and its certified
published interface T (discussed later on in Section H]). The other labels instead
are used to represent the state of a service at run-time.

l: . . .
T T {:71 service location ¢ + interface 7
T orchestration plan
n event history
(m,®) monitor flag m + sequence @ of active policies
B service code
n (m,P)

Fig. 1. Execution state of a service

The label n = a1 -+ - oy is an abstraction of the service execution history. In
particular, we are concerned with the sequence of security-relevant events «;
happened sometimes in the past, in the spirit of history-based security [I]. The
label (m, @) is a pair, where the first element is a flag m representing the on/off
status of the execution monitor, and the second element is the sequence 7 - - - i,
of active security policies. When the flag is on, the monitor checks that the service
history n adheres to the policy ¢; (written 7 = ¢;) for each i € 1..k. Security
policies are modelled as regular properties of event histories, i.e. properties that
are recognizable by a Finite State Automaton. Since our design notation does
not depend on the logic chosen for expressing regular properties of histories, we
shall not fix any logic here. However, in our examples (e.g. Fig. @ in Section [])
we find convenient to describe policies through the template usage automata
of [1].

The block B inside the box is an abstraction of the service code. Formally, it is
a special control flow graph [40] with nodes modelling activities, blocks enclosing
sets of nodes, and arrows modelling intra-procedural flow.

Nodes can be of two kinds, i.e. events or requests. Events «, 3, ... abstract
from some security-critical operation. An event can possibly be parametrized,

Secure Service Orchestration 31

e.g. aq(foo) for writing the file foo, sgn(f) for a certificate signed by ¢, etc. A
service request takes the form req, 7. The label r uniquely identifies the request
in a network, and the request type 7 is defined as:

Tou=bl15T

where b is a base type (Int, Bool, . ..). The annotation ¢ on the arrow is the query
pattern (or “contract”) to be matched by the invoked service. For instance, the
request type 7 2, 7/ matches services with functional type 7 — 7/, and whose
behaviour respects the policy ¢.

Blocks can be of two kinds: security blocks [B] enforce the policy ¢ on
B, i.e. the history must respect ¢ at each step of the evaluation of B; planning
blocks { B} construct a plan for the execution of B (see Section[d for a discussion
on some planning strategies). Blocks can be nested, and they determine the scope
of policies (hence called local policies [5]) and of planning.

The label 7 is the plan used for resolving future service choices. Plans may
come in several different shapes [9], but here we focus on a very simple form of
plans, mapping each request to a single service. A plan formalises how a call-
by-contract req, 7 is transformed into a call-by-name, and takes the form of a
function from request identifiers r to service locations ¢. Definition [I] gives the
syntax of plans.

Definition 1. Syntax of plans

m = 0 empty
r[f] service choice
r[?] unresolved choice
7 | ' composition

The plan 0 is empty; the plan r[¢] associates the service published at site £ with
the request labelled r. The plan r[?] models an unresolved choice for the request
r: we call a plan complete when it has no unresolved choices. Composition | on
plans is associative, commutative and idempotent, and its identity is the empty
plan 0. We require plans to have a single choice for each request, i.e. r[¢] | r[¢]
implies £ = /¢'.

Note that in this design language, we do not render all the features of A" (see
Section [)). In particular, we neglect variables, conditionals, higher-order func-
tions, and parameter passing. However, we feel free to use these features in the
examples, because their treatment can be directly inherited from A™?.

3.1 Graph Semantics

We formally define the behaviour of services through a graph rewriting seman-
tics [4]. In this section, we resort to an oracle that provides the initiator of a

32 M. Bartoletti et al.

computation with a viable plan. The oracle guarantees that the overall execution
satisfies all the contracts and the security policies on demand, unless services be-
come unavailable. In the following sections, we will discuss a static machinery
that will enable us to correctly implement the oracle, guaranteeing that an ex-
pression will never go wrong. We will also show some strategies to adopt when
services disappear unexpectedly.

The semantics is defined through graph rewriting. The graph semantics for
the case of dependent threads is depicted in Fig. 2] and in Fig. Bl We shall
briefly discuss the case of independent threads in Section All the remaining
axes in the taxonomy are covered by our semantics; in particular, Fig. [3 defines
the behaviour of requests and returns according to the possible choices in the
taxonomy.

An overlined block B means that the first node in B is going to be executed;
similarly, an underlined block B means that the last node in B has just been
executed. A service with a slashed box (rule FAIL) is unavailable, i.e. either is
down, unreachable or removed from the directory.

We now briefly discuss the graph rewritings in Fig.

— The evaluation of an event « (rule Ev) consists in appending « to the current
history. It is also required that the new history obeys all the policies ¢ in @
(denoted na = @), if the execution monitor is on.

— The rule SEQ says that, after a block B has been evaluated, the next instruc-
tion is chosen non-deterministically among the blocks intra-procedurally con-
nected with B. Note that branching is a special case of SEQ, where the block
B is a conditional or a switch.

— Entering a security block ¢[B] results in appending the policy ¢ to the
sequence of active policies. Leaving ¢[B] removes ¢ from the sequence. In
both cases, as soon as a history is found not to respect , the evaluation gets
stuck, to model a security exception (for simplicity, we do not model here
exceptions and exception handling. Extending our formalism in this direction
would require to define how to compensate from aborted computations, e.g.
like in Sagas [2820]).

— A request req,7 under a plan r[¢'] | w looks for the service at site ¢'. If the
service is available (rule REQ), then the client establishes a session with that
service (dashed arrow), and waits until it returns. Note that the meaning of
the labels " and @’ is left undefined in Fig.[2 since it depends on the choice
made on the security aspects discussed in Section 2l The actual values for
the undefined labels are shown in Fig.[3l In particular, the initial history of
the invoked service is: (i) empty, if the service is stateless with local history;
(ii) the invoker history, if the service has a global history; (iii) the service
past history, if the service is stateful, with local history.

— Returning from a request (rule RET) requires suitably updating the history
of the caller service, according to chosen axes in the taxonomy. The actual
values for " are defined in Fig.

Secure Service Orchestration 33

T l T l
Rzl
if m is on,
na =@
(m, @ nox (m, @) n
s 4 s l s 0 s

17 m’ o[olB] olB]
(m, ®) n (m, @) n (m, @) n (m, ®)
rl¢]| = v l rl¢] |~ v r[l] | =
Teq, 7T B req,T B
n',®" in Fig. 3
(m, @) 7 n (m, @) n (m, ")
m 4 w’ L ! v
req, T -~ B IE:F> req, T B
n” in Fig. 3
(m, @) n (m', ") n" (m’, @) n

Fig. 2. Semantics of services: events, branches, policies, requests and returns

Stateless services Stateful services
Local histories Global histories Local histories Global histories

/ / ! — !

n=e n =n n =1 n =n
REQ P —¢ = P —¢ e
R,ET 77//:77 77//:77 77//:77 77//:77/

Fig. 3. Histories and policies in four cases of the taxonomy

The cases FAIL, PLG IN and PLG OUT are defined in Fig. Bl and they have

many possible choices. When no service is available for a request (e.g. because
the plan is incomplete, or because the planned service is down), or when you
have to construct a plan for a block, the execution may proceed according to
one of the strategies discussed in Section (Bl

34 M. Bartoletti et al.

A plan is viable when it drives no stuck computations. Under a viable plan,
a service can always proceed its execution without attempting to violate some
security policy, and it will always manage to resolve each request.

3.2 Semantics of Independent Threads

To model independent threads, each service must keep separate histories of all
the initiators. Therefore, histories take the form ¢; : 1, {¢; : n;}, where the first
item represents the current thread (initiated at site £;) and its history 7, while
{¢; : m;} is the set of the histories associated with the other threads. The rule
depicted in Fig. @ for the case REQ shows that (stateful) services must maintain
all the histories of the various threads. The actual value of 7’ is defined as in
Fig.Bl The rule RET is dealt with similarly.

¢]| ¢ ¢ r[€'] | v]| =
req, T B req, T B
Lr:m {45 i n5} URRRURE £rim, {i i} Lrom' {45 75}

Fig. 4. Maintaining separate histories in the case of independent threads

4 Service Contracts

A service is plugged into a network by publishing it at a site £, together with its
interface 7. We assume that each site publishes a single service, and that inter-
faces are certified, e.g. they are inferred by the type and effect system defined
in Section B Also, we assume that services cannot invoke each other circularly,
since this is quite unusual in the SOC scenario. The functional types are anno-
tated with history expressions H that over-approximate the possible run-time

histories. When a service with interface 7 — 7 is run, it will generate one of
the histories denoted by H. Note that we overload the symbol 7 to range over
both service types and request types 7 - 7. The syntax of types and history
expressions is summarized in Definition [2

History expressions are a sort of context-free grammars. They include the
empty history e, events «, and H - H' that represents sequentialization of code,
H + H’ for conditionals and branching, security blocks ¢[H], recursion ph.H
(where p binds the occurrences of the variable h in H), localization ¢ : H, and
planned selection {my > Hy -« -y, > Hy}.

A history expression represents a set of histories 7, possibly carrying security
annotations in the form ¢[n]. We formally define the semantics of history expres-
sions in Section here we just give some intuition. The semantics of H - H’
(denoted by [H - H']) is the set of histories nn’ such that n € [H] and o’ € [H'].

Secure Service Orchestration 35

Definition 2. Service interfaces: types and history expressions

T, T = types
base type
2 annotated function
H H = history expressions
€ empty
h variable
« access event
H-H sequence
H+H choice
wlH]| security block
wh.H recursion
{:H localization

{7‘1’1[>H1-~-7Tkl>Hk}

planned selection

The semantics of H+ H' comprises the histories n such that n € [H]U[H']. The
last three constructs (recursion, localization and planned selection) will benefit
of some extra explanation.

— The semantics of a recursion ph. H is the usual fixed point construction. For

instance, the semantics of ph. (y+a-h-) consists of all the histories ™3™,
for n >0 (i.e. v, ayf, aayB,...).

— The construct ¢ : H localizes the behaviour H to the site . For instance,
£:a- (0 :ad)- B denotes two histories: a3 occurring at location ¢, and o/
occurring at location ¢’.

— A planned selection abstracts from the behaviour of service requests. Given a
plan 7, a planned selection {m;>H; - - - > Hy, } chooses those H; such that 7
includes ;. For instance, the history expression H = {r[¢1]>Hq,r[{2]>Ha} is
associated with a request req, 7 that can be resolved into either ¢; or £5. The
histories denoted by H depend on the given plan 7: if 7w chooses ¢ (resp. £2)
for r, then H denotes one of the histories represented by H; (resp. Hs). If w
does not choose either ¢; or {5, then H denotes no histories.

Typing judgments have the form H F B : 7. This means that the service

with code B has type 7, and has execution histories included in the semantics
of the effect H. Note that only the initiators of a computation may have H # ¢;

all the other services have typing judgments of the form ¢ - B : b Ty,
Typing judgments for our diagrams can be directly derived from those of the
A" calculus (see Section B3)).

In Section we will state two fundamental results about our type and ef-
fect system. First, it correctly over-approximates the actual run-time histories.
Second, it enjoys the following type safety property. We say that an effect H is

36 M. Bartoletti et al.

valid under a plan m when the histories denoted by H, under the plan 7, never
violate the security policies in H. Type safety ensures that, if (statically) a ser-
vice B is well-typed and its effect is valid under a plan 7, then (dynamically)
the plan 7 is viable for B, i.e. it only drives safe computations.

In Section [0 we will present a model-checking technique to verify the validity
of history expressions, and to extract the viable plans.

5 Service Selection

We now consider the problem of choosing the appropriate service for a block of
requests. While one might defer service selection as long as possible, thus only
performing it when executing a request, it is usually advantageous to decide
how to resolve requests in advance, i.e. to build a plan. This is because “early
planning” can provide better guarantees than late service selection. For instance,
consider a block with two consecutive requests 71 and ro. It might be that, if we
choose to resolve r; with a particular service £, later on we will not be able to
find safe choices for ro. In this case we get stuck, and we must somehow escape
from this dead-end, possibly with some expensive compensation (e.g. cancelling
a reservation). Early planning, instead, can spot this kind of problem and try to
find a better way, typically by considering also ro when taking a choice for r;.

More in detail, when we build a complete viable plan 7 for a block B, we ensure
that B can be securely executed, and we will never get stuck unless a service
mentioned in 7 becomes unavailable. Furthermore, we will need no dynamic
checks while executing B, and thus the execution monitor can be kept off, so
improving the overall performance. This is a consequence of the type safety result
for A7 | formally proved in [6]. When we cannot find a complete viable plan,
we could fall back to using an incomplete plan with unresolved requests r[?]. In
this case, we get a weaker guarantee than the one above, namely that we will
not get stuck until an unresolved request must actually be executed.

The rule PLN IN in Fig. [l defines the semantics for constructing plans. The
actual values for the labels «’, m' and @' are defined in Fig. [l To provide
graceful degradation in our model, the FAIL rule considers the unfortunate case
of executing a request r when either (¢) r is still unresolved in the plan, or (ii) r is
resolved with an unavailable service. Therefore, we will look for a way to continue
the execution, possibly repairing the plan as shown in Fig. [6l The rules DOwN
and UP say that a service may become unavailable, and then available again.
We assume that transitions from available to unavailable state (and viceversa)
can only happen when a service is not fulfilling a request.

Several strategies for constructing or repairing a plan are possible, and we
discuss some of them below. Note that no strategy is always better than the
others, since each of them has advantages and disadvantages, as we will point
out. The choice of a given strategy depends on many factors, some of which
lie outside of our formal model (e.g. availability of services, cost of dynamic
checking, etc.).

Secure Service Orchestration 37

l rll] |« ¢ l w’ v
req,T Teq, T
' m!,d
" (m. @) R A)
¢ T ¢ L l T ¢ T

{B}

&
&

7 m!

in Fig. 7

BE

=
3
&
Y
5

n (m, P)

=
3
&

)

~

o
~
x
o

n
L r[?] | m 14 r[?] | w l:T
HFB:T
e T {req, 7} ¢ fresh
7', m/, P
o ey e () :

Fig. 5. Semantics of services: failing, planning and becoming up/down

We devise four main classes of strategies:

Greyfriars BobbyEl Follow loyally a former plan. If a service becomes
unavailable, just wait until it comes back again. This strategy is always safe,
although it might obviously block the execution for an arbitrarily long time
— possibly forever.

! In 1858, a man named John Gray was buried in old Greyfriars Churchyard. For
fourteen years the dead man’s faithful dog kept constant watch and guard over the
grave until his own death in 1872. The famous Skye Terrier, Greyfriars Bobby was
so devoted to his master John Gray, even in death, that for fourteen years Bobby
lay on the grave only leaving for food.

38 M. Bartoletti et al.

Patch. Try to reuse as much as possible the current plan. Replace the un-
available services with available ones, possibly newly discovered. The new
services must be verified for compatibility with the rest of the plan.

Sandbox. Try to proceed with the execution monitor turned on. The new
plan only respects a weak form of compatibility on types ignoring the ef-
fect H, but it does not guarantee that contracts and security policies are
always respected. Turning on the execution monitor ensures that there will
not be security violations, but execution might get stuck later on, because
of attempted insecure actions.

Replan. Try to reconstruct the whole plan, possibly exploiting newly discov-
ered services. If a viable plan is found, then you may proceed running with
the execution monitor turned off. A complete plan guarantees that contracts
and security policies will be always respected, provided than none of the
services mentioned in the plan disappear.

In Fig. [6l we describe the effects of these strategies in the context of the FAIL
rule. There, we also make precise the recovered plan 7’ and the labels m’ and @&’
appearing in the rule. For the “Greyfiars Bobby” strategy, we patiently wait for
the service to reappear; on timeout, we will try another strategy. The Patch
strategy mends the current plan with a local fix. Note that the Patch strategy
is not always safe: in the general case, it is impossible to change just the way
to resolve the failing request r and have a new safe plan. We shall return on
this issue later on. However, as the figure shows, in some cases this is indeed
possible, provided that we check the new choice for resolving r, to ensure the
plan is valid again. The Replan strategy is safe when a suitable plan is found,
but it could involve statically re-analysing a large portion of the system. When
all else fails, it is possible to run a service under a Sandbox, hoping that we will
not get stuck.

From now onwards, we use the following abbreviations for the various alter-
natives described in Section[Z} stateless (1) / stateful (w), local (L) / global (G),
first order (F) / higher-order (H), dependent (D) / independent (I). For in-
stance, the case IFL1 in the figure is the one about independent threads, first
order requests, local histories, and stateless services.

In Fig. [d we list the strategies for the rule PLN IN, describing how to build a
plan for a block B. Note that, when we construct a new plan 7’ we already have
a plan 7 | 75, where 75 only plans the requests inside B. We can then reuse the
available information in 7 and 7p to build 7/. The former plan 7 | 75 can be
non-empty when using nested planning blocks, so reusing parts from it is indeed
possible. Since we can reuse the old plan, the strategies are exactly the same of
those for the FAIL case.

The “Greyfriars Bobby” strategy waits for all the services mentioned in the
old plan to be available at planning time. This is because it might be wise not
to start the block, if we know that we will likely get stuck later. Instead, if
some services keep on being unavailable, we should rather consider the other
strategies.

Secure Service Orchestration 39

STRATEGY STATE UPDATE CASE CONDITION
Greyfriars Bobby ; all The current plan 7 has a choice for r
IFL1 p[H;] is valid
7|] IFLw p[H;] is valid, and ¢; € 7
Patch @ IFG1 ne[H,) is valid
DFL1 p[H;] is valid
Sandbox (7:)7|1 Tg;]) all The service ¢; has type 7 — 7’
/
Replan (o ﬁﬂ By) all The new plan 7’ has a choice for r

Fig. 6. Failure handling strategies for a request req, 7 R

As for the FAIL rule, the Patch strategy is not always safe, but we can still
give some conditions that guarantee the safety of the plan update, which is local
to the block B. The Replan strategy, instead, can change the whole plan, even
for the requests outside B. If possible, we should always find a complete plan.
When this is not the case, we might proceed with some unresolved requests r[?],
deferring them to the FAIL rule. As a last resort, when no viable plan can be
found, or when we deem Replan to be too expensive, we can adopt the Sandbox
strategy that turns on the execution monitor.

We now show a situation where the Patch strategy is not safe. We consider
the case IFLw case (independent threads, first order requests, local histories,
stateful services). The initiator service, in the middle of Fig. B performs two
requests 1 and ro in sequence. The two requests have the same contract, and
thus they can be resolved with the stateful services ¢; and ¢5. The service at /o
performs an event «, within a security block ¢. If ¢ allows only a single «a, we

STRATEGY STATE UPDATE CASE CONDITION
Greyfriars Bobby m| ‘;B all The plan 7 has a choice for all r;
IFL1 p[H;] is valid, for all ¢
Patch m|rill:] | -+ IFLw ¢;[H;] are valid, ¢; are distinct, and all ¢; & 7
] IFG1 i H;] are valid, for all 4
DFL1 i[H;] are valid, for all i
m | rifl] | - orvices /. L
Sandbox (on, o) all The services ¢; have type 7; — 7;
nH valid under 7’ , where
’ . .
Replan T all 7 is the current history, and

(off, Pp) H approximates the future behaviour
(may need to refine the analysis)

Fig. 7. Planning strategies for a block B involving requests req, Ti RAN T

40 M. Bartoletti et al.

b7 s ri[] | mals]
req, T
req,,T

m Dy

Fig. 8. An unsafe use of the Patch strategy

should be careful and invoke the (stateful) service ¢ at most once. The current
plan m = r1[¢1] | r2[f2] is safe, since it invokes ¢5 exactly once.

Now, consider what happens if the service 1 becomes unavailable. The FAIL
rule is triggered: if we apply Patch and replace the current plan with r[¢2] |
r2[f2], then this patched plan is not viable. Indeed, the new plan invokes /o
twice, so violating ¢. The safety condition in Fig. [Al is false, because ¢o € 7
therefore, this dangerous patch is correctly avoided.

6 A Car Repair Scenario

To illustrate some of the features and design facilities made available by our
framework, we consider a car repair scenario, where a car may break and then
request assistance from a tow-truck and a garage.

In this scenario, we assume a car equipped with a diagnostic system that
continuously reports on the status of the vehicle. When the car experiences some
major failure (e.g. engine overheating, exhausted battery, flat tyres) the in-car
emergency service is invoked to select the appropriate tow-truck and garage
services. The selection may take into account some driver personalized policies,
and other constraints, e.g. the tow-truck should be close enough to reach both
the location where the car is stuck and the chosen garage.

The main focus here is not on the structure of the overall system architecture,
rather on how to design the workflow of the service orchestration, taking into
account the specific driver policies and the service contracts on demand.

The system is composed of three kinds of services: the CAR-EMERGENCY ser-
vice, that tries to arrange for a car tow-trucking and repair, the TOW-TRUCK
service, that picks the damaged car to a garage, and the GARAGE service, that
repairs the car. We assume that all the involved services trust each other’s his-
tory, and so we assume a shared global history, with independent threads. We
also design all the services to be stateful, so that, e.g. the driver can personalize
the choice of garages, according to past experiences.

We start by modelling the CAR-EMERGENCY service, i.e. the in-vehicle service
that handles the car fault. This service is invoked by the embedded diagnosis
system, each time a fault is reported. The actual kind of fault, and the geographic

Secure Service Orchestration 41

Fault x Location — Bool

¢BL | 1 (loc)
req, 1

1

e (fit)
— 51

req, 1

repair ok ?7

[no]

[yes] aBL

s

Fig. 9. The CAR-EMERGENCY service and the black-listing policy ¢nr

location where the car is stuck, are passed as parameters — named fit and loc.
The diagram of the CAR-EMERGENCY service is displayed on the left-hand side
of Fig.

The outer policy ¢pr, (black-list) has the role of enforcing a sort of “quality
of service” constraint. The CAR-EMERGENCY service records in its history the
list of all the garages used in past repair requests. When the selected garage ¢
completes repairing a car, it appends to the history its own signature sgn({g).
When the user is not satisfied with the quality (or the billl) of the garage,
the garage is black-listed (event apr). The policy ¢pr ensures that a black-
listed garage (marked by a signature sgn(¢g) followed by a black-listing tag
apr) cannot be selected for future emergencies. The black-listing policy ¢pr,
is formally defined by the template usage automaton [7] in Fig. [@ right-hand
side. Note that some labels in g, are parametric: sgn(z) and sgn(z) stands
respectively for “the signature of garage z” and “a signature of any garage
different from z”, where x can be replaced by an arbitrary garage identifier. If,
starting from the state qp, a garage signature sgn(z) is immediately followed
by a black-listing tag apr, then you reach the state ¢go. From ¢o, an attempt to
generate again sgn(x) will result in a transition to the non-accepting sink state gs.
For instance, the history sgn(f1)sgn(¢2)apr - - - sgn(f2) violates the policy ¢pr,.

The crucial part of the design is the planning block. It contains two requests:
rp (for the tow-truck) and rg (for the garage), to be planned together. The
contract oy, (loc) requires that the tow-truck is able to serve the location loc
where the car is broken down. The contract ¢ (flt) selects the garages that can
repair the kind of faults fit.

The planning block has the role of determining the orchestration plan for
both the requests. In this case, it makes little sense to continue executing with

42 M. Bartoletti et al.

Z1Pq---ZIP REPq---REP, - £
fp 1 1Tk lo: 1 1 noomla)
ZIPy vcz |
: REP;
ZIP), ‘
l REP,,

[available trucks 7 }

sgn(€c)
[yes] o]

Fig. 10. The Tow-TRUCK (left) and GARAGE (right) services

an incomplete plan or with sandboxing: you should perhaps look for a car rental
service, if either the tow-truck or the garage are unavailable. Therefore, a mean-
ingful planning strategy is trying to find a couple of services matching both rp
and rqg, and wait until both the services are available.

The diagram of the TOW-TRUCK service is displayed in Fig. [0, on the left.
The service will first expose the list of geographic locations ZIPy, ..., ZIPy it
can reach. Each zip code ZIP; is modelled as an event. The contract pr(loc)
imposed by the CAR-EMERGENCY service ensures that the location loc is covered
by the truck service. Formally, @7 (loc) checks if the zip code loc is contained in
the interface of the tow-truck service (we omit the automaton for pr(loc) here).
Then, the TOW-TRUCK may perform some internal activities (irrelevant in our

model), possibly invoking other internal services. The exposed interface is of the

form 1 22120k 1 where 1 is the void type.

The GARAGE service (Fig. [[0 right) exposes the kinds of faults REP, ...,
REP,, the garage can repair, e.g. tyres, engine, etc. The request contract pe(fit)
ensures that the garage can repair the kind of fault fit experienced by the car.
The GARAGE service may perform some internal bookkeeping activities to handle
the request (not shown in the figure), possibly using internal services from its
local repository. After the car repair has been completed, the garage ¢ signs
a receipt, through the event sgn(f¢). This signature can be used by the CAR-
EMERGENCY service to implement its black-listing policy.

The GARAGE service exploits the policy pgz (for Garage-Zip) to ensure that
the tow-truck can reach the garage address. If the garage is located in the area
identified by ZIPg, the policy ¢gz checks that the tow-truck has exposed the
event ZIP¢ among the locations it can reach. When both the contract ¢r(loc)
and the policy p¢z are satisfied, we have the guarantee that the tow-truck can
pick the car and deposit it at the garage.

Lo AR (Pisa, Tyres)

req,. .. 1

req, 1

[no]

es
vesl) o,

YBL eLIPpD)
RS Al < £2N

@ (REP yres) 1
E tyres)

sgn(LU)apr,

(om, ¢pL)

Secure Service Orchestration

43

£r1 ‘12
ZIP gy, ZIPpp
ZIP g
ZIPp; ZIPLu
peetlable trucks 7
[yes] [no] [ves] [no]
‘FL ‘Lu
PGz (FL) vGz (LU)
REP tyres REP cpgine
REPjqstery REP tyres
sgn(pr) sgn(Lru)

Fig.11. The CAR-EMERGENCY client ({car), two tow-truck services ({r1,fr2), and

two garages ({rr,lLU)

In Fig. Il we show a system composed by one car £cag, two TOW-TRUCK
services {71 and {79, and two GARAGE services gy, and £1y. The car has expe-
rienced a flat tyres accident in Pisa (ZIPpy), and it has black-listed the garage
in Lucca, as recorded in the history sgn(LU) agr,. The tow-truck service 71 can
reach Florence and Pisa, while {79 covers three zones: Pisa, Siena and Lucca.
The garage ¢y, is located in Florence, and it can repair tyres and batteries; the

garage (ry is in Lucca, and repairs engines and tyres.

We now discuss all the possible orchestrations:

— theplanrr[r1] | r¢[lLu]isnot viable, because it violates the policy ¢az (LU).
Indeed, the tow-truck can serve Florence and Pisa, but the garage is located in

Lucca.

— similarly, the plan ro[lrs] | rg[¢rL] violates oz (FL).

— the plan rp[ls] | rq[fry] is not viable, because it violates the black-listing
policy ¢pr,. Indeed, it would give rise to a history sgn(LU) apy, - - - sgn(LU),
not accepted by the automaton in Fig.

— finally, the plan rr[l11] | r¢[€r1] is viable. The tow-truck can reach both the
car, located in Pisa, and the garage in Florence, which is not black-listed.

44 M. Bartoletti et al.

7 A Core Calculus for Services

In this Section we describe A™7 | a core calculus for secure service orchestration.
The version of A™? we present here has stateless services, local histories, higher-
order requests, and independent threads. We first define the syntax of services
and the stand-alone operational semantics, i.e. the behaviour of a service in
isolation. We then define the syntax and operational semantics of networks.

7.1 Services

A service is modelled as an expression in a A-calculus enriched with primitives
for security and service requests. Security-relevant operations (i.e. the events)
are rendered as side-effects in the calculus. Roughly speaking, A\™? services e im-
plement the specification of blocks B in the graphical notation (Section). Note
that A™? augments the features of the design language with recursion (instead
of loops), parameter passing and higher-order functions.

The abstract syntax of services follows. To enhance readability, our calculus
comprises conditional expressions and named abstractions (the variable z in ¢/ =
A.x. e stands for €’ itself within e, so allowing for explicit recursion). We assume
as given the language for guards in conditionals, and we omit its definition here.

Definition 3. Syntax of services

e,e/ = variable
« access event
if bthenecelsee conditional
Az e abstraction
ee application
©le] safety framing
{e} planning
req, T service request
wait/ wait reply
N/A unavailable

The values v of our calculus are the variables, the abstractions, and the requests.
We write x for a distinguished value, and \.e for Az. e, for = not free in e. The
following abbreviation is standard: e;e’ = (A.¢’) e. Without loss of generality,
we assume that framings include at least one event, possibly dummy.

The stand-alone evaluation of a service is much alike the call-by-value seman-
tics of the A-calculus; additionally, it enforces all the policies within their fram-
ings. Since here services are considered in isolation, the semantics of requests
is deferred to Section The configurations are triples n,m,e. A transition
n,m,e — 1',m’ ¢ means that, starting from a history n and a monitor flag m,
the service e evolves to €', extends n to ', and sets the flag to m’. We assume
as given a total function B that evaluates the guards in conditionals.

Secure Service Orchestration 45

Definition 4. Service semantics (stand-alone)

n,m, (Ax.e)v — n,m,e{v/x, \x.e/z}

7,1, O — 0L, M, *

n,m,if btheney elseey — 1,m, ex)

n,m,C(e) —n',m',C(e) ifn,me—n",m' e andm' = off Vi & &)
1m,m, C(plv]) —n,m,C(v) if m = off Vi l=

where C is an evaluation context, of the following form:
C == o|Ce|vC|y[C]
and @(C) is the set of active policies of C, defined as follows:

P(Ce) =2(vC) =2(C) (p[C]) = {p} US(C)

The first rule implements [-reduction. Notice that the whole function body
A.x. e replaces the self variable z after the substitution, so giving an explicit
copy-rule semantics to recursive functions. The evaluation of an event a consists
in appending « to the current history, and producing the no-operation value .
A conditional if btheney elseegy evaluates to ey (resp. eg) if b evaluates to
true (resp. false). The form of contexts implies call-by-value evaluation; as usual,
functions are not reduced within their bodies. To evaluate a redex enclosed in
a set of active policies @(C), the extended history 7’ must obey each ¢ € &(C),
when the execution monitor is on. A value can leave the scope of a framing ¢ if
the current history satisfies . When the monitor is on and the history is found
not to respect an active policy ¢, the evaluation gets stuck.

7.2 Networks

A service e is plugged into a network by publishing it at a site ¢, together with
its interface 7. Hereafter, £{e : 7) denotes such a published service. Labels ¢ can
be seen as Uniform Resource Identifiers, and they are only known by the orches-
trator. We assume that each site publishes a single service, and that interfaces
are certified, i.e. they are inferred by the type system in Sect. Recall that
services cannot invoke each other circularly. A client is a special published ser-
vice £{e : unit). As we will see, this special form prevents anyone from invoking
a client. A network is a set of clients and published services.
The state of a published service (e : 7) is denoted by:

le:T):m>n,m,e

46 M. Bartoletti et al.

where 7 is the plan used by the current instantiation of the service, 7 is the his-
tory generated so far, m is the monitor flag, and ¢’ models the code in execution.
When unambiguous, we simply write ¢ for (e : 7) in states.

The syntax and the operational semantics of networks follows; the operator ||
is associative and commutative. Given a network {¢;(e; : 7;)}ic1. .k, a network
configuration N has the form:

by im g, ma, ey || oo || ks e D Nk, M, €

abbreviated as {¢; : m;>n;, m;, €, }ic1. k. To trigger a computation of the network,
we need to single out a set of initiators, and fix the plans m; for each of them. We
associate the empty plan to the other services. Then, for all i € 1..k, the initial
configuration has n; = ¢, m; = off, and e, = x if ¢; is a service, while e, = e; if
/; is an initiator.

We now discuss the semantic rules of networks in Definition 5l A transition of
a stand-alone service is localized at site £ (rule STA), regardless of a plan . The
rule NET specifies the asynchronous behaviour of the network: a transition of a
sub-network becomes a transition of the whole network. Rule PUB inserts a new
service in the network, by publishing its interface 7, certified by the type and
effect system. The rules DOwN/UP make an idle service unavailable/available.
The rules REQ and RET model successful requests and replies. A request r,
resolved by the current plan with the service ¢/, can be served if the service is
available, i.e. it is in the state £/ : 0 > €, *. In this case, a new activation of
the service starts: e is applied to the received argument v, under the plan 7/,
received as well from the invoker. The special event o signals that the service
has started. The invoker waits until £/ has produced a value. When this happens,
the service becomes idle again. Since we follow here the stateless approach, we
clear the history of a service at each activation (indeed, statefullness could be
easily obtained by maintaining the history n’ at ¢ in the last rule). Rule UNRES
triggers the construction of a new plan, in case of an unresolved choice. The rules
PLN and FAIL exploit the planning/failing strategies to obtain a plan in case of
a planned expression {e} and of a chosen service which has become unavailable.
The actual implementations of the auxiliary functions plan and fail may vary;
in Section [BH we shall show a simple case that mixes replan and sandboxing.

Note that each service has a single instance in network configurations. We
could easily model replication of services, by creating a new instance for each
request. Note also that a network evolves by interleaving the activities of its
components, which only synchronize when competing for the same service. It is
straightforward to derive a truly concurrent semantics from the above one, e.g.
using C/E Petri nets.

8 Static Semantics

In this Section we define a static analysis for our core calculus. The analysis
takes the form of a type and effect system [29I39/44] where the effects, called

Secure Service Orchestration 47

Definition 5. Network semantics

/ / /
n,m,e—1n,m,e

[STA]
L:m>nme—L:a>n,m e

N1 %N{

[NET| ,
Ni|[N2 — Ni|| N2
[PuB| N —= N le:71):0>¢,ff,* iflfreshandbse:7
[Down] le:T):0>e,m,x — Lle:T):0>¢e,m,N/A
[Up] Le:T):0>e,mN/A—lle:T):0>¢e,m,x*
[REQ] C:(r[l] | m)>n,m,C(req.pv) || £'{e:T): 0>e,m x —
C:(rll) | m)>n,m,C(waitl') || £'{e:7) : (r[l'] | ®) > o,m,ev

[RET] Cimn,mywaitl || a7’ >0, m/ v —

Limnm o]l :0>e,m *
(UNRES] €3 (7] | 7) B 5y, Clreap 0) — £ (r[2] | 7) & 1,m,C({zeq,p o})
[PLN] C:mn,m,{e} — L' >n,m' e if (x',m') = plan(m,m,e)

[FarL) C:(r[l'] | 7)>n,m,C(req.pv) || £'{e:T): 0>e,m" N/A —
L' >n,m C(req,pv) | {e:7): 0>e,m" ,N/A

if («',m’) = fail(r[€'] | 7, m, Teq,p)

history expressions, represent all the possible behaviour of services, while the
types extend those of the A-calculus.

In Section we formally give semantics to history expressions, introduced
in Section @ In Section we define walidity of history expressions: roughly,
a history expression is valid when the histories it represents do not violate any
security constraint. In Section we introduce our type and effect system, and
in Section B4 we establish type safety.

8.1 History Expressions

The denotational semantics of a history expression is a set, written (¢; : H;)er.
The intended meaning is that the behaviour of the service at location /¢; is
approximated by the set of histories H; (I is a finite set of indexes). Technically,
'H belongs to the lifted cpo of sets of histories [47], ordered by (lifted) set inclusion
C, (where L C; H for all H, and H C; H’' whenever H C H'). The least upper
bound between two elements of the cpo is standard set union U, assuming that
1 UH = H. The set of events is enriched with framing events of the form [,, |,,

48 M. Bartoletti et al.

Definition 6. Semantics of history expressions
(H)" ={L:{(n) IneH}|t:He[H]}

_n ifodn
here) = {<<no>>u<<m>> if 7= moom

[e]6 = (7: {e}) [ads = (7:{e}) [¢: H]§ = [H]5{¢/7}
[o[Hs = ¢l[HIE] [H-H']5 = [H]s © [H']E

[l =0(h) [H+H']; =[H]; ©[H']G

[uhH]5 = J £ ({6 - {1}}:) where f(X) = [H]5 x/n)

n>0

[{m > Hiomes HE = @@ [Hi}j
i€l k

[{o> A} =[H]E [molm > HIE = [{mo > H}]Z © [{m > H}[7

H]; ifr=r[f]|x
(?: 1) otherwise

[rie) > 235 = {

that denote the opening and closing of a framing ¢[- - - |. For example, the history
n = af,a’], represents a computation that (i) generates an event «, (ii) enters
the scope of ¢, (iii) generates o’ within the scope of ¢, and (iv) leaves the scope
of ¢. Also, a history may end with the truncation marker ! (bang). The history
n! represents a prefix of a possibly non-terminating computation that generates
the sequence of events 7. We assume that histories are indistinguishable after
truncation, i.e. n! followed by 7’ equals to n!. For notational convenience, we
feel free to omit curly braces when writing singleton sets, and we write p[H] for
{lenle Ine M}

The stateless semantics (H)™ of a closed history expression H depends on
the given evaluation plan 7, and is defined in two steps. In the first, we define the
stateful semantics [H]j (in an environment # binding variables), i.e. a semantics
in which services keep track of the histories generated by all the past invoca-
tions. A simple transformation then yields ({(H)™, in which each invocation is
instead independent of the previous ones, i.e. it always starts with the empty
history.

We first comment on the rules for [H]j. The meaning of an event « is the
pair (? : {a}), where 7 is dummy and will be bound to the relevant location.
The rule for localizing H at ¢ records the actual binding: the current location /¢
replaces “?”. The semantics of a sequence H - H' is a suitable concatenation of

Secure Service Orchestration 49
Definition 7. Auxiliary operators ® and @

Ui Hibro(?:L)=C:L)=": L)@ {li:Hi}s
{6 Hitr o - Hybo ={0i: HiHibrns ULl - Hit g UL« Hy oo

{f-b : Hz}[(&) {ZJ H;}J = {Zl :H; U’Hg}mJ U {Zl :H; U{E}}[\J U{f]‘ H; U {E}}J\I

the histories denoted by H and H' site by site (the operator ® is defined below).
Similarly for the semantics of choices H + H’, that joins the histories site by site
through the operator @. The semantics of ph. H is the least fixed point of the
operator f above, computed in the cpo obtained by coalesced sum of the cpos
of sets of histories H . The semantics of a planned selection {m; > H;};cr under
a plan 7 is the sum of the semantics of those H; such that 7 resolves ;.

The sequentialization ® of (¢; : H;)ier and (¢; : H;)je] comprises ¢; : HiH;
for all i = j (ie. &; : {mm' | n € Hiyn' € H.}), and it also comprises ¢; : H; and
£ Hj for alli ¢ J and j & I. As an example, ({o : {ao}, €1 : {1, B1}) © (41
{11}, b2 : {ao}) = (b : {0}, b1 : {11,817}, b2 : {az}). The choice operator
@ is pretty the same, except that union replaces language concatenation. For

example, (bo : {ao}) ® (lo : {Bo}, €1 : {B1}) = (bo : {@0, Bo}, €1 : {B1}). Note that
both ® and & are strict.

Example 1. Consider the history expression:
H=10ly:ap {rlli]>¥l1:0-a1,r[le] >l :0 a2} Bo
The stateful semantics of H under plan 7 = r[¢y] is:
[ag - {r[lr] > by :0-ay,r[la] >0l :0-az}- o] {lo/?}
=((7:{ao}) O[{r[ta] > b1 : 0 - o1, r[la] > lo: - a}]™
@ (?:{Bo})) {0/ 7}
(7 {aoD) @[t :o-ar]" O (7: {Bo}){lo/7}
((?:{ao}) © (b1 : {oar}) © (7 {Bo})){bo/?}
(7 {aofo}, b1 : {oar}){lo/?}
= by : {0}, t1: {oar})

In this case, the stateless semantics just removes the event o, i.e.:
(H)™ = (lo : {aoBo}, t1: {a1}) O
Ezxample 2. Consider the history expression:

H:fol(ﬂh.,@0+a0~{r[fl]bg120"@1}-h)

|
BN

50 M. Bartoletti et al.

This represents a service £y that recursively generates g and raises a request r
(which can be served by ¢; only). Let m = r[¢1]. Then:

[H]" =[to: ph.Bo+ o -{rla] >4t :0-aq}-Rh]™
= [[,U,hﬂo + g - {7’[61} >0 :0- Oq} . h]]ﬂ—{go/(?}
= (Unso L™l : {1} &2 - {1H]") {0/ ?}
where f(X) = [Bo+ ao - {r[ta] > {1 : 0o} k], The first approximation
Frlo : {1}, 01 : {1}) is:
[Bo+ao-{r[tr]>¥t1:0 a1} - h]]?{r(eo:{!},el:{!})/h}
= [Bo]™ ® ([ao]™ © [{r[lr] > b1 : - an }]™ © [A]F(y. 03.00-003)/03)
=(7: {,30}) © ((7 ta) © (4 {JOQ}) © (b : {!},fl : {'}))
=:{Bo})® (7 :{a'}, l1:{ocar!})
= (7 :{Bo, a0}, 1 : {e,001'})
The fixed point of f, after the substitution {¢y/7}, is:

(Lo = {Bo, !, o Po, anen!, oo o, voapey! . ..},

by :{e, o001, 001!, 001001, 001001),...})
The stateless semantics (H)™ is the set:
(Lo : {Bo, ap!, apfo, apag!, ...}, b1 {e, a1, a1l}) O
Example 3. Consider the history expression:
H = {r[to] > {o : o} - {r'[t1] > 3}
The stateful semantics of H under 7 = r[{y] | r'[¢2] is:
[H]™ = [{rlto] > o a}]™ O [{r'[ta] > B}]"

=(ly:{a})O(?:1)
=(7:1)

In this case there are no o, so the stateless and the stateful semantics coincide. O

8.2 Validity

We now define when histories are valid, i.e. they arise from viable computa-
tions that do not violate any security constraint. Consider for instance 7y =
O[], where @ requires that no write «a,, occurs after a read «,. Then,
1o is not valid according to our intended meaning, because the rightmost v,
occurs within a framing enforcing ¢, and ay,,-ay, does not obey ¢. To be valid,
a history n must obey all the policies within their scopes, determined by the
framing events in 7.

Secure Service Orchestration 51

Definition 8. Safe sets and validity

The safe sets S(n) of a history n are defined as:
Se)=0 Sma)=5m) Selml) = SMom) el 1)?
A history 7 is valid (= n in symbols) when:
pHl e S) = Vn'eM : 0 o
A history expression H is w-valid when:
(HY™ # (25 1) and Ve : Vne (H) @l :

where (fz : Hi)ie]@ Ej = Hj.

We formally define validity through the notion of safe set. For example, the
safe set of ng is @[{awar, awaray,}]. Intuitively, this means that the scope of
the framing o[- - - | spans over the histories o, and au,a;-q,,. For each safe set
©[H], validity requires that all the histories in H obey .

Some notation is now needed. Let 7 be the history obtained from 7 by eras-
ing all the framing events, and let n° be the set of all the prefixes of 7, in-
cluding the empty history . For example, if 79 = aya,¢[ay], then (nd)? =
((awaT[gpaw}g,)b)a = (Qpa,ay)? = {e, aw, @y, ayaray . Then, the safe set
S(n) and validity of histories and of history expressions are defined as in Def.

Note that validity of a history expression is parametric with the given evalua-
tion plan 7, and it is defined location-wise on its semantics. If the plan contains
unresolved choices for requests mentioned in H, then H is not w-valid, because
the operators ® and @ are strict on L.

Ezample 4. The safe sets of the history expression H = ¢[ag - {r[l1] > a1, r[l2] >
¢ [az]}] - a3, with respect to plans r[¢1] and r[fs], are:

SH)") = S([paoan]pas) = { ¢l[{e, a0, avan}] }
S(«H»T[ZZ]) = S([paolpras]ep]pas)
= { vl{&, 20, w2}], ¢'[{a0, w02} }

Let ¢ require “never a3”, and let ¢’ require “never ay”. Then, H is r[¢]-valid,
because the histories €, ag, and apay obey . Instead, H is not r[fz]-valid,
because the history apas in the safe set ¢’ [{ag, apasz}] does not obey ¢'. O

8.3 Type and Effect System

We now introduce a type and effect system for our calculus, building upon [§].
Types and type environments, ranged over by 7 and I', are mostly standard and

52 M. Bartoletti et al.

are defined in the following table. The history expression H in the functional

type T L, 7 describes the latent effect associated with an abstraction, i.e. one
of the histories represented by H is generated when a value is applied to an
abstraction with that type.

Definition 9. Types and Type Environments

=1L
rs=0|Tz:T where @ € dom(I")

For notational convenience, we assume that the request type p in req,p is a

special type. E.g. we use 1 2l (1 LGN 1) for the request type of a service

obeying ¢ and returning a function subject to the policy ¢’. Additionally, we put
some restrictions on request types. First, only functional types are allowed: this
models services being considered as remote procedures (instead, initiators have
type 1, so they cannot be invoked). Second, no constraints should be imposed
over pp in a request type po 2, p1, i.e. in po there are no annotations. This is
because the constraints on the selected service should not affect its argument.

A typing judgment I, H - e : 7 means that the service e evaluates to a value
of type 7, and produces a history denoted by the effect H. The auxiliary typing
judgment I H Fy e : 7 is defined as the least relation closed under the rules
below, and we write I', (¢ : H) F e : 7 when the service e at ¢ is typed by
I''H g e : 7. The effects in the rule for application are concatenated according
to the evaluation order of the call-by-value semantics (function, argument, latent
effect). The actual effect of an abstraction is the empty history expression, while
the latent effect is equal to the actual effect of the function body. The rule for
abstraction constraints the premise to equate the actual and latent effects, up to
associativity, commutativity, idempotency and zero of +, associativity and zero
of -, a-conversion, and elimination of vacuous p-binders. The next-to-last rule
allows for weakening of effects. Note that our type system does not assign any
type to wait expressions: indeed, waits are only needed in configurations, and
not in service code.

We stipulated that the services provided by the network have certified types.
Consequently, the typing relation is parametrized by the set W of services ¢{e : T)
such that 0, F, e : 7. We assume W to be fixed, and we write -, instead of
F¢.w. To enforce non-circular service composition, we require W to be partially
ordered by <, where ¢ < ¢’ if ¢ can invoke ¢'; initiators are obviously the least
elements of <, and they are not related to each other. Note that the up-wards
cone of < of an initiator represents the (partial) knowledge it has of the network.

Example 5. Consider the following A\"™? expression:

e = if b then \,z.«a else \,x.a/

Secure Service Orchestration 53
Definition 10. Typing services

I"HlFepe:T

if e is published at ¢
I¢:HbEe:T

Febgx:1 Nakja:l Iebgx: I'(x)

Taz:irz:r 7 Hbge:r F,Hl—gezr—>H” T IVH' bpe T
Tebodz.e:m 5 I'H -H -H'Fpee : 1
I'N'HbFpe:T I''Hbje:m IN'Hbpe :7 I'N'HbFpe:T

I o[H] Fe ple] : T I''Ht, if btheneelsee : 7 I''H+H' Fpe: T

T=W{pH 7 |Detpe:m L<0{e:T") p=T'} INHbtge:T
I'netyreqp:T I''Hbg{e}: 7

Let r=1,and I'={z: 7 otal, 7;x : 7}. Then, the following typing derivation

is possible:

INaktFa:t Iodko:7
I'a+dkFa:r ' +abkaod:71
’ ’
+
@,al—/\zax.azrﬂr etz o 7 25 7

(et ifbthen \,x.aelse N\, xz.a : T ate .

Note that we can equate the history expressions a+ o’ and o’ + «, because + is
commutative. The typing derivation above shows the use of the weakening rule
to unify the latent effects on arrow types. Let now:

¢ = A\pr.if V' then * elsew(ex)

Let I' = {w : 7 a, T,z : T}, where H is left undefined. Then, recalling that
e-H' = H' = H'- ¢ for any history expression H’', we have:
% F,e}—ezrﬂw' LekFxz:T
Letw:T—T
I'a+d Fex:7
I'(a+d)-HFrwlex): T
Ipllata) - H Fplw(ex)] : 7

I'e+o[(a+ o) H - if b/ then * elseplw(ex)] : T

Lebx:T

To apply the typing rule for abstractions, the constraint H = ¢ + p[(a+ ') - H]
must be solved. Let H = ph.c + ¢[(a+ ') - h]. It is easy to prove that:

(H] = [e+plla+a) hll g, = (e} Uela+a) - [H]]

54 M. Bartoletti et al.

We have then found a solution to the constraint above, so we can conclude that:

wh. +a’)-h
DebFe :r ph.e+ol(ata’)-h] .
Note in passing that a simple extension of the type inference algorithm of [43]
suffices for solving constraints as the one above. a

A service invocation req,p has an empty actual effect, and a functional type
7, whose latent effect is a planned selection that picks from the network those
services known by ¢ and matching the request type p.

To give a type to requests, we need some auxiliary technical notation. First
we introduce ~, B and U, with the help of a running example. We write p ~ T,
and say p, 7 compatible, whenever, omitting the annotations on the arrows, p
and 7 are equal. Formally:

1=1
@ H .

po — p1) = (o — 1) iff po=7and py =7

Example 6. Let p = (1 — 7) % (1 — 7), with 7 = 1, be the request type in

. . . hi i-hi i
req,p, and consider two services ¢;(e; : 7;) with 7, = (7 =% 1) 2% (7 s, 7),

for i € 1..2. We have that 71 & p & 79, i.e. both the services are compatible with
the request r. 0O

The operator H,[combines a request type p and a type 7, when they are

compatible. Given a request type p = po 2, p1 and a type 7 = 79 ELR 71, the

{r[t)>t:plo-H}

result of p B, 7 is 7o (p1 B, 71), where:

1837”[(]1 - 1

(po = p1) B (10 Lom)=

{rld>elH])
) ——(

(po B 170 p1H.g71)

Ezample 6 (cont.). The request type p is composed with the service types 71
and 79 as follows:

A hi {rlta]>ti:p[o-ai-hi]} {rlt:]>p1}
1= (1 —71) (r T)

A ha {r[l2]>La:p[c-az-ha]} {rlt2]>pB2}
To=(T —T) (r T)

where 71 = p EEr[zl] 71 and 73 = p EET[M T2 H

The top-level arrow carries a planned selection {r[¢]>¢ : ¢[o- H|}, meaning that,
if the service at ¢ is chosen for r, then it generates (at location ¢, and prefixed
by o) the behaviour H, subject to the policy ¢. This top-level choice induces a
dependency on the further choices for r recorded in p; B, 71- In the example

Secure Service Orchestration 55

0,ete, Teqp: 7 O,ebey A7) 7 L7

0 4r[a] > 1 < plo - an 7). rlla] D b = plo - o A1} Fey (req,p)(Ary) : 7 AP TP, o

0, {r[t] > 01 : plo-ar -], T[] > la: @lo-az -]} {rll] > B, T[l2] > B2} Fe, (Teq.p)(Ay)x: T
0,00 : {r[ti] > 01z o - a1 q], [la] > o ooz -]} {r[la] > B, r[l2] > B2} F (req,p)(Ay)x: T

Fig. 12. Typing derivation for Example [

above, the service at ¢1 returns a function whose (latent) effect {r[¢]> 81} means
that 1 occurs in the location where the function will be actually applied.

Note that combining functional types never affects the type of the argument.
This reflects the intuition that the type of the argument to be passed to the
selected service cannot be constrained by the request.

Eventually, the operator U unifies the types obtained by combining the request
type with the service types. Given two types 7 = 79 A orand 7 = 74 2, 1,

’

the result of 7U 7/ is 7/ 2R, (T1s U T{s), where ¢ unifies 79 and 7 (i.e. 705 =
Ths = 713)), and:

lul =1

(0 %5 T (15 25 1) = (R W) 25 (rw)
Ezample 6 (cont.). We now unify the combination of the request type p with
the service types, obtaining:

’ h {rlt1]>L1:p[o-aq-h], r[la2]>Lla:p[o-ca-h]}
T = (1 —=71)

{rle2]>By, rlba]>Ba)
(r 7)

where ¢ = {h/hy, h/hs} is the selected unifier between 7 25 7 and 7 22 7. O
The following example further illustrates how requests and services are typed.

Ezample 7. Consider the request and the services of Example[6 and consider the
initiator (req,.p)(A.y)* at site £y. Note that applying any service resulting from
the request r to the function A.y yields a new function, which we eventually apply
to the value *. We have the typing derivation in Fig. [l The stateful semantics
[H]™ under m = r[f1] is:
[{rita] > b2 glo - ar -], vl > Lo 2 plo - az - A}
© [{rlts] > Br, rlta] > B2}]"{lo/7}
= (b {ploar]}) © (7: {B:}){lo/7}
= (1 : {ploann]}, Lo : {4r}) =

8.4 Type Safety

We now state two central results about our type and effect system. In this
section we shall restrict our attention to the case where (i) services never become

56 M. Bartoletti et al.

unavailable, and (ii) planning is only performed at start-up of execution, i.e. there
is no dynamic replanning. Under these assumptions, rules PLN, FAIL and UNRES
are never used. In Section we shall come back on this issue.

A plan 7 is well-typed for a service at £, wtae(m), when, for each request req,.p,
the chosen service is compatible with p, while respecting the partial order <:

u}t@g(O)
wtag(m | 7') if wtae(r) and wtae(n’)
wtae(ri’]) i <, l{(e:7)and p=T

The next theorem states that our type and effect system correctly over-
approximates the actual run-time histories. Consider first a network with a sin-
gle initiator e at location ¢1, and let its computed effect be H, with (H)™ =
(b1 : Ha, ...,k : Hy) for a given plan 7. For each site ¢;, the run-time histories
occurring therein are prefixes of the histories in H; (without framing events).
Now, consider a network with n < k initiators at the first n sites, each with
its own plan 7; and effect H;. Since initiators cannot invoke each other, we
have <<Hj>>ﬂ—j = (61 : @7...7€j : Hj,...,gn : ®7€n+1 : HnJrl)j,...,gk : Hk,j)o For
each service ¢;, the run-time histories at ¢; belong to (the prefixes of) one of
the H,; ;, with 1 < j < n (see Ex.). As usual, precision is lost when reducing
the conditional construct to non-determinism, and when dealing with recursive
functions.

Theorem 1. Let {{;{e; : T;) }icr be a network, let Ny be its initial configuration
with all m; well-typed, and let O, H; & e; : 7. If No —* {€; : w, > n;, €5 }icr, then:

((H:)™@;)°9 if €; is an initiator

ni € if £; is a service,

H:)@/, bd
(o ()) for some initiator {;

Ezample 8. Consider an initiator e = ap; (req,.p)* at site £y, with p =1 — 1,
and a single service e; = A. a1; ¢[if bthen as else a3) at site £1, with ¢ requiring
“never ag”. Assume that the guard b always evaluates to true, and that the
execution monitor is off (we therefore omit it from configurations). Then, under
the plan mo = r[¢1], we have the following computation:

by:mo>e,eq || b1 :0D> €, %
— Ly 1 mo > ag,req.px* || £ :0D> €, *
— Lo :mo > ap,wait by || €1 : 0> 0,1
— Ly o > ap,waitly || 41 : 0> oaq, p[if -]
— Ly mo > ap,waitly || 41 : 0> oaq, plas]
— Ly mo D> ap,waitly || 41 1 0> oagag, @[]
— Lo : o > ap,waitly || £1: 0> cagag, *

—>€0:7T0DO[0,*||€120>€7*

Secure Service Orchestration 57

The history expression Hy extracted from e is:
by :ag-{r[bi] >l 0 aq - plag + as]}

Then, (Ho)™ = (b : {ao}, {1 : {au[pa2],, ai[pas],}), and the run-time his-
tories generated at site £; are strictly contained in the set (o (Hp)™@/¢;)*0 =
{oai[,a0)e, 000 [gpag]@}ba ={oaias,00103}? = {€,0, 001, 00100, 0013}, O

We can now state the type safety property. We say that a plan 7 is wviable for
e at ¢ when the evolution of e within a network, under plan 7w, does not go
wrong at £. A computation goes wrong at ¢ when it reaches a configuration
whose state at £ is stuck. A state £ : 7w > n,e is not stuck if either e = v, or
e = (req,p)v, or e =waitl,or {: w>n,e — £ : 7>, €. Note that we do not
consider requests and waits to be stuck. To see why, consider e.g. the network
configuration ¢1 : r[ls] > 01, (req,.p)v || lo : ™ > na,e || €3 : r[la] > 3, wait lo.
The initiator at ¢; is not stuck, because a fair scheduler will allow it to access
the service at £2, as soon as the initiator at £3 has obtained a reply.

Theorem 2 (Type Safety). Let {{;(e; : 7;) }icr be a network of services, and
let 0, H; &= e; . 7; for alli € 1. If H; is w;-valid for m; well-typed, then m; is viable
fore; at l;.

Ezample 9. Consider the network in Ex.[6 where we fix e, = Az. (a; (x%); (A.5:))
for i € 1..2. Assume the constraint ¢ on the request type p is true. Consider now
the initiator eg = po[(req,p(A.y))*] at £y, where ¢y requires “never (2”. Let
7 = r[f1]. The history expression Hy of ey (inferred as in Ex. [0 is 7-valid. In-

deed, (Ho)™ = (bo : {wolf1]}, £1 : {¢la1v]}), and both ¢g[F1] and plaivy] are
valid. As predicted by Theorem 2] the plan 7 is viable for eq at £y:

lo: 7> &, pol(rea,p(rn)s] || 10> &, »

— Ly > e, pol(waitly)x] || 41 : 0> 0,e1(A7)
(wait l1)*] || €1 : 0> o, y; (A.f1)

— Ly > e, pol(wait ly)*] || €1 : 0> oagy, (A1)

— Ly > e, 0o[(NPr)x] || €1 : 01> g, %

— Ly P, p0lx] || 61: 0> €, %

[
[
— Ly > e, 90
[
[

Note that we have not displayed the state of the execution monitor (always
off), nor the configurations at site f2, because irrelevant here. Consider now the
plan 7/ = r[ls]. Then Hy is not 7'-valid, because (Ho)™ = (o : {@olBa]}, l2
{¢[a27]}), and the event [violates ¢g. In this case the computation:

by > e,00[(req.p(Ay))x] || 2 : 0> e, *
—" Lo > €, 00[f2] | b2: 0> ¢, %

is correctly aborted, because 82 £ ¢q. O

58 M. Bartoletti et al.
8.5 A Planning Strategy

We now focus on the case where services may become unavailable, and planning
may be performed at run-time. To do that, we shall complete the definition of the
PLN and FAIL rules of the operational semantics of networks, by implementing
the functions plan and fail. To do that, we adopt a planning strategy that
mixes the replan and sandboxing strategies introduced in Section Bl To keep
our presentation simple, we resort to the Greyfriars Bobby strategy to cope
with disappearing services, and so we just wait that the disappeared services
become available again. Definition [IT] summarizes our planning and recovery
strategies.

Consider you want to replan an expression e, when the current plan is «
and the current state of the monitor flag is m. Our strategy constructs a new
plan 7" which is coherent with 7 on the choices already taken in the past (indeed,
modifying past choices could invalidate the viability of the new plan, as shown in
Ex.[I0). To do that, we first update the global history expression (i.e. that used to
compute the starting plan) with all the information about the newly discovered
services, possibly discarding the services become unavailable. The result of this
step is then analysed with the model-checker of Section [@ in search of viable
plans. If a viable plan is found, then it is substituted for the old plan, and the
execution proceeds with the execution monitor turned off. If no viable plan is
found, the service repository is searched for services that fulfill the “syntactical”
requirements of requests, i.e. for each req,p to replan, the contract type p is
compatible with the type of the chosen service. The execution then continues
with the so-constructed plan, but the monitor is now turned on, because there is
no guarantee that the selected services will obey the imposed constraints. If there
are no services in the repository that obey this weaker condition, we still try to
proceed with a plan with unresolved choices, keeping the execution monitor on
and planning “on demand” each future request.

Example 10. Consider the following initiator service at location fy:

eo = ¢[(let f=req.l — (1 — 1)in f*);

{let g =req,,1 — (1 — 1) in g*}]
The service obtains a function f through the first request r, applies it, then it
asks for a plan to get a second function g through r’ and apply it. The policy

o requires that neither v nor B are performed at fy. Suppose the network
repository consists just of the following two services, located at ¢ and /5:

GOy a:l—(151) bLedf:1— (131
The history expression of the initiator service is:

H =ty : o[{r[t1] > a,r[lz] > B} - {r'[(1] > o, 7' [l2] > 5]

Secure Service Orchestration 59
Definition 11. Planning and recovering strategies

Let 7 be the sub-plan of 7w containing all the already resolved choices.
Let H be the history expression of the initiator of the computation.

Let L be the set of newly-discovered available services.

Let Hy, be the update of H with the information about the services in L.
Let ©' = 7 | #”" be a plan coherent with 7 on the already resolved choices.

Then:

(', off) if Hy, is n’-valid
plan(m,m,e) = < (7', on) ifVreqpce : r[l'len ANl 7 = p=T

(m | m2,0n) otherwise, where 7 maps each r & 7 to ?

fail(m,m,e) = (w,m) (Greyfriars Bobby)

Assume that the execution starts with the viable plan m = 7[f1] | r/[¢2], which
would generate the history af at ¢y, so obeying the policy .

by e, 0ff e || b1 > e, Az y. || ba > e, Az \y. B
—* Ly > a,off,{let g =req., 1 — (1 — 1)in g*}
|| 64> e, Az y.a || b >, Az Ay B

Just after the function f has been applied, the service at £5 becomes unavailable:

—* Ly > a,off,{let g =req., 1 — (1 — 1)in g*}
|| 64> e, Az y.a || bo > e, N/A

Assume now that a new service is discovered at ¢35, with type 1 — (1 LN 1):

—* Ly >, off ,{let g =req.,1 — (1 — 1)in g*}
| 1> e, Az dy.a || ba>e,N/A || b > e, Az \y. B

The planning strategy in Def. [[T] determines that the plan 7’ = r[¢1] | '[(3] is
viable, and so the execution can safely proceed with 7/ and with the monitor
turned off. Observe that the plan ©” = r[¢3] | 7/[¢1] is also viable, but it changes
the choice already made for the request r. Using 7" instead of 7/ would lead to
a violation of the policy ¢, because of the history aa generated at £. O

It is possible to extend the Type Safety result of Theorem [2lin the more general
case that also the rules PLN, FAIL and UNRES can be applied. As before, as
long as none of the selected services disappear and the initial plan is complete,
we have the same static guarantees ensured by Theorem starting from a

60 M. Bartoletti et al.

viable plan will drive secure computations that never go wrong, so making the
execution monitor unneeded. The same property also holds when the dynamic
plan obtained through the rule PLN is a complete one, and the monitor is off.

Instead, when the new plan is not complete, we get a weaker property. The
execution monitor guarantees that security will never be violated, but now there
is no liveness guarantee: the execution may get stuck because of an attempted
unsecure action, or because we are unable to find a suitable service for an unre-
solved request.

In the following section, we shall present a verification technique that extracts
from a history expression the plans that make it valid.

9 Planning Secure Service Composition

Once extracted a history expression H from an expression e, we have to analyse
H to find if there is any viable plan for the execution of e. This issue is not trivial,
because the effect of selecting a given service for a request is not confined to the
execution of that service. For instance, the history generated while running a
service may later on violate a policy that will become active after the service
has returned (see Example [[1] below). Since each service selection affects the
whole execution of a program, we cannot simply devise a viable plan by selecting
services that satisfy the constraints imposed by the requests, only.

The first step of our planning technique (Section[01]) consists then in lifting all
the service choices r[f] to the top-level of H. This semantic-preserving transfor-
mation, called linearization, results in effects of the form {m; > Hy -+ -7, > H, },
where each H; is free of further planned selection. Its intuitive meaning is that,
under the plan m;, the effect of the overall service composition e is H;.

The other steps in our technical development allows for mechanically verifying
the validity of history expressions that, like the H; produced by linearization,
have no planned selections. Our technique is based on model checking Basic
Process Algebras (BPAs) with Finite State Automata (FSA). The standard de-
cision procedure for verifying that a BPA process p satisfies a w-regular prop-
erty ¢ amounts to constructing the pushdown automaton for p and the Biichi
automaton for the negation of ¢. Then, the property holds if it is empty the
(context-free) language accepted by the conjunction of the above, which is still
a pushdown automaton. This problem is known to be decidable, and several
algorithms and tools show this approach feasible [25].

Recall however that, as it is, our notion of validity is non-regular, because of the
arbitrary nesting of framings. As an example, consider again the history expres-
sion H = ph.a+ h-h+ ¢[h]. The language [H]™ is context-free and non-regular,
because it contains unbounded pairs of balanced [, and],,. Since context-free lan-
guages are not closed under intersection, the emptiness problem is undecidable.

To apply the procedure sketched above, we will first manipulate history ex-
pressions in order to make validity a regular property. This transformation, called
reqularization, is defined in Section[0.2] and it preserves validity of history expres-
sions. In Section [0.3] we make history expression amenable to model-checking, by

Secure Service Orchestration 61

transforming them into BPAs. In Section 0.4l we construct the FSAs A, | used
for model-checking validity, by suitably transforming the automata A, defining
security policies.

Summing up, we extract from an expression e a history expression H, we
linearize it into {m; > H; - - - > Hy }, and if some H; is valid, then we can deduce
that H is m;-valid. By Theorem [the plan m; safely drives the execution of e,
without resorting to any run-time monitor. To verify the validity of an history
expressions that, like the H; above, has no planned selections, we regularize H;
to remove redundant framings, we transform H; into a BPA BPA(H;), and we
model-check BPA(H;) with the FSAs A, .

9.1 Linearization of History Expressions

Ezample 11. Let e = (Az.(req,,p2)z) ((req, p1)*), be an initiator, p = 7 —
(1 —7) and py = (1 — 7) % 7, where 7 = 1 and ¢ requires “never =y after 3”.
Intuitively, the service selected upon the request r; returns a function, which is
then passed as an argument to the service selected upon r5. Assume the network
comprises exactly the following four services:

£1<€€1 . T i> (T i T)> £2<652 : (7’ i} 7-) h_’y> >
€/1<65/1:Ta—/>(7"6—>7-)> €/2<62’21(T£>T) »'[h] 7_>

where ¢’ requires “never 3'”. Since the request type p; matches the types of ey,
and ey, both these services can be selected for the request rq. Similarly, both
e, and ey can be chosen for ro. Therefore, we have to consider four possible
plans when evaluating the history expression H of e:

H={rnt>l0: 0 anlli]>0:0-a}-
{’I“sz] > 0o : (p[O’ : {Tl[fﬂ > 6,71 [flﬂ > ﬂ/} : ’Y],
rally] & £y plo - ' [{ri[1] > B,mi[61] > B'H]]}

Consider first H under the plan m = 71[f1] | r2[f2], yielding (H)™ = (€o : 0, 45 :
{a}, €3 : {¢[B7]}). Then, H is not m-valid, because the policy ¢ is violated at
ly. Consider now my = r1[€1] | r2[¢5], yielding (H)™ = (by : 0, ¢} : {'}, la :
{o[¢'[B']]})- Then, H is not me-valid, because the policy ¢’ is violated. Instead,
the remaining two plans, r1[¢1] | 72[¢5] and r1[¢}] | r2[¢2] are viable for e. O

As shown above, the tree-shaped structure of planned selections makes it diffi-
cult to determine the plans 7 under which a history expression is valid. Things
become easier if we “linearize” such a tree structure into a set of history expres-
sions, forming an equivalent planned selection {m; > Hy - - -7 > Hy }, where no
H; has further selections. E.g., the linearization of H in Example [Tl is:

{rilta] [ra2llo] > la o (Lo plo - B-7]),
rilla] | rolly] > by o (b 2 plo - '[B]]),
rillh] [rallo] >0y o al - (ba s plo - B2 7]),
rillh] [rollo] >4y ool (b plo - ©'[B]])}

62 M. Bartoletti et al.

Formally, we say that H is equivalent to H' (H = H' in symbols) when
(H)™ = (H')™, for each plan 7. The following properties of = hold.

Theorem 3. The relation = is a congruence, and it satisfies the following equa-
tions between planned selections:

H={0>H}

{mi> Hi}yier -{mj > Hi}jes = {mi | 7; > H; - Hj}ieq jes
{mi > Hi}ier +{m; > Hj}jes = {m | 7 > Hi + Hj }ier jes
o{mi > H;}ier] = {mi &> o[Hi] bier

ph.{mi> H;} = {7 > ph. Hi Yier

{mi> {ni ;> Hij}jertier = {mi | 7 ; > Hij}ier jes
Co{mi>Hi} ={m>{: H}icr

1)
2)
3)
4)
5)
6)
7)

N N N N~/

Ezample 12. Let H = ph. {r[t1] > a1, r[l3] > az} - h. Then, using equations (1),
(2) and (6) of Theorem Bl and the identity of the plan 0, we obtain:

H = ph.{rlt1] > o, m[la] > o} - {0 > h}
= ph {r/61] |0> a1 - h, 7[l2] | 0> a2 - h}
= ph.{rll1] > a1 - h, r[la] > as - h}
= {r[l1] > ph. a1 - h, 7[la] > ph.ag - h}

Note that the original H can choose a service among ¢1 and {5 at each iteration
of the loop. Instead, in the linearization of H, the request r will be resolved into
the same service at each iteration. O

Ezample 13. Let H = {r[l1]>aq - {r'[¢}] > B1,7'[65] > B2}, r[l2] > aa}. Applying
equations (1), (2) and (7) of Theorem [3, we obtain:

H={r[l1]>{0> ar} - {r'[0}] > 1,7 [t5] > Ba}, T[la] > as}
= {r[t1] > {0 | r'[l}] > a1 - B1,0 | 7'[65]) > a1 - Ba}, rlla] > as}
= {r[t1] > {r'[0}] > a1 - B1, 7' [05] > aq - Ba}, T[la] > s}
= {r[ty] | 7'[0)] > a1 - Br, T[] | P[] > aq - Ba, T[la] > as}]

We say that a history expression H is linear when H = {my > Hy - -7, > Hy },
the plans are pairwise independent (i.e. m; # m;|m for all i # j and 7) and no H;
has planned selections.

Given a history expression H, we obtain its linearization in three steps. First,
we apply the first equation of Theorem [to each event, variable and ¢ in H.
Then, we orient the equations of Theorem [B] from left to right, obtaining a
rewriting system that is easily proved finitely terminating and confluent — up
to the equational laws of the algebra of plans. The resulting planned selection
H' = {m > Hy -7 > Hi} has no further selections in H;, but there may be
non-independent plans (recall that we discard m; > H; when 7; is ill-formed).

Secure Service Orchestration 63

In the third linearization step, for each such pairs, we update H' by inserting
m; > H; + Hj, and removing 7; > H;.

The following result enables us to detect the viable plans for service composi-
tion: executions driven by any of them will never violate the security constraints
on demand.

Theorem 4. If H = {m > Hy --- 7, > Hy} is linear, and H; is valid for some
1 € 1.k, then H 1is m;-valid.

9.2 Regularization of Redundant Framings

History expressions can generate histories with redundant framings, i.e. nesting
of the same framing. For example, n = ap[a’¢’[p[a”]]] has an inner redundant
framing ¢ around «”. Since o is already under the scope of the outermost
p-framing, it happens that n is valid if and only if ap[a’¢’[a']] is valid. For-
mally, the S-sets of 1 comprise p[{a, ac’,ac’a”}] for the outer framing, and
pl{aa’,aa’a”}] for the inner one. Validity requires that all the histories in
{a,ad;ad/a”} and {ad’,aa’a”’} obey ¢. Since the second set is strictly in-
cluded in the first one, then the inner framing is redundant.

Removing redundant framings from a history preserves its validity. But one
needs the expressive power of a pushdown automaton, because framings openings
and closings are to be matched in pairs. For example, consider the history:

n m
I NI BN
n=oalple lolole

The last [, is redundant if n > m; it is not redundant if n = m.

Below, we define a transformation that, given a history expression H, yields a
H’ that does not generate redundant framings, and H’ is valid if and only if H
is such. Recall that there is no need for regularizing planned selections, because,

by Theorem Ml we will always verify the validity of history expressions with no
selections.

Ezample 1. Let H = gla-ho-¢'[o/ +h1]]-ho, and let H = pla-hg-¢'[o/ +]] - ho.
Then, H = H{hy/e}, and so hy is guarded by guard(H) = {¢, ¢'}. Similarly, hg
is guarded by {¢}, and ho is unguarded (i.e. guarded by 0). O

Let H be a (possibly non-closed) history expression. Without loss of generality,
assume that all the variables in H have distinct names. We define below H | ¢ o,
the history expression produced by the regularization of H against a set of
policies @ and a mapping §2 from variables to history expressions.

Intuitively, H|s o results from H by eliminating all the redundant framings,
and all the framings in @. The environment {2 is needed to deal with free variables
in the case of nested p-expressions. We feel free to omit the component {2 when
unneeded, and, when H is closed, we abbreviate H |y ¢ with H |.

64 M. Bartoletti et al.

Definition 12. Guards

Let H be a history expression with a hole e, and let H = H{H'/e} be a
history expression, for some H'. We say that H' is guarded by ¢ in H when
€ guard(H), defined as the smallest set satisfying the following equations.

guard(Hy - Hy)
guard(Hy + Hy)
guard(p[H])
guard(uh. H)

guard(H;) if e € H;
gquard(H;) if e € H;
{} U guard(H)
guard(H)

The last three regularization rules would benefit from some explanation. Con-
sider first a history expression of the form p[H] to be regularized against a set
of policies @. To eliminate the redundant framings, we must ensure that H has
neither p-framings, nor redundant framings itself. This is accomplished by reg-
ularizing H against ¢ U {¢}.

Consider a history expression of the form ph.H. Its regularization against @
and {2 proceeds as follows. Each free occurrence of h in H guarded by some
&' ¢ & is unfolded and regularized against @ U @'. The substitution §2 is used
to bind the free variables to closed history expressions. Technically, the i-th free
occurrence of h in H is picked up by the substitution {h/h;}, for h; fresh. Note
also that o(h;) is computed only if ¢’ (h;) = h;. As a matter of fact, regularization
is a total function, and its definition above can be easily turned into a finitely
terminating rewriting system.

Example 15. Consider the history expression Hy = ph. H, where H = a+h-h+
©[h]. Then, H can be written as H'{h/h;}ico..2, where H' = o+ hg - b1 + ¢[ha].
Since guard(H'{e/hs}) = guard(a + ho - h1 + p[e]) = {¢} Z 0, then:

Ho lg = ph. H'{h/ho,h/h1} lg {Ho l, /h2}
= ph.ao+h-h+@[Ho |,

To compute Hy |, note that no occurrence of h is guarded by @ Z {¢}. Then:
Hyl, = ph.(a+h-h+¢hl)], = ph.ao+h-h+h

Since [Hy |,] = {a}* has no ¢-framings, we have that [Ho || = ({a}*g@[{a}*])*
has no redundant framings. O

Ezample 16. Let Hy = ph. Hy, where Hy = ph'. Ho, and Hy = o+ h - p[h/].
Since guard(Hi{e/h}) = (), we have that:

Holgo = ph.(Hylo(mo/ny)

Secure Service Orchestration 65

Definition 13. Regularization of framings

clon=c¢ (H-H)|oo= Hloo -Hlsn
hleo=h ale o= o (H+H')|¢0o= Hlo,o +H |loo

Hlg 0 ifpecd

H e
olH] s 0 {@[Hléu{so}ﬂ] otherwise

(ph.H) e o= ph.(H'0' |6 ofuh.my2/m} 0)

where H = H'{h/h;}i, h; fresh, h & fv(H'), and

o (hi) = {h if guard(H'{s/h:}) C @

h; otherwise

Note that Hy can be written as Hj{h/ho}, where H) = a + h - ¢[hg]. Since
guard(Hj{e/ho}) = {¢} Z 0, it follows that:

Hi g (mo/ny = 1h'- Hy Lo (Ho/hmy (Ho /ny ey AH1I{Ho/h} Lo (ro/ny /ho}
= ph'.a+ h-plho] {(uh'. o+ Ho - o[h']) Lo t#o/n1 [0}
= ph'.a+h-o[Hs |y, (1/ny]
=a+h-o[Hzly (m/m]

where Hy = ph'. a+ Hy-p[h'], and the last step is possible because the outermost
o binds no variable. Since guard(a + Hp - ¢[o]) = {¢} C {p}:

Hsly, = ph'.(a+Ho-p[W])]l, = ph'.a+Holy -l

Since {¢} contains both guard(Hq,{e/h}) = 0, and guard(Hz{e/h'}) = {¢},
then:

Holy = ph. (' o+ h-g[h']) Ly = ph.ph!.(a+ b= o)) L,
= ph.ph’.a+h-h
Summing up, we have that:
Hylg = ph.a+h-@[Hs |,
Hsly=ph' .o+ (phoph’.a+h-1') - N a

We now establish the following basic properties of regularization, stating its
correctness.

66 M. Bartoletti et al.

Theorem 5. For all history expressions H :

— H | has no redundant framings.
— H | is valid if and only if H is valid.

9.3 From History Expressions to Basic Process Algebras

Basic Process Algebras [11] (BPAs) provide a natural characterization of history
expressions. BPA processes contain the terminated process 0, events «, that
may stand for an access or framing event, the operators - and + that denote
sequential composition and (non-deterministic) choice, and variables X. To allow
for recursion, a BPA is then defined as a process p and a set of definitions A for
the variables X that occur therein.

Definition 14. Syntax of BPA processes

/

pp = 0] alpp |p+p | X

Definition 15. LTS for Basic Process Algebras

The semantics [P] of a BPA P = (pg, 4) is the set of the histories labelling
finite computations:

{n=ai--a;|po “_1>...i>pi}
where a € EvU {¢}, and the relation = is inductively defined as:

0-p>p a0 p+rgop prgog

XSp f X2peA

We assume a finite set A = {X £ p} of definitions, such that, for each variable
X, X2peAand X £ p € Aimply p = p'. The operational semantics of
BPAs is in Def.

We now introduce a mapping from history expressions to BPAs, in the line
of [5l43]. Again, note that there is no need for transforming planned selections
into BPAs, because we are only interested in the validity of history expressions
with no selections.

Secure Service Orchestration 67

Definition 16. Mapping history expressions to BPAs

BPA(g,0) = (0,0)
BPA(a,0) = (a, D)
BPA(h,0) = (6(h), 0)
BPA(Hy - H1,0) = (po - p1, Ao U A1), where BPA(H;,0) = (p;, A;)
BPA(Ho + Hy,0) = (po + p1, Ao U Ay), where BPA(H;,0) = (pi, 4;)
BPA(p[H],0) = ([p-]p, A),where BPA(H,0) = (p, A)
BPA(ph.H,0) = (X, AU{X £ p}), where BPA(H,0{X/h}) = (p, A)

The mapping takes as input a history expression H and a mapping © from
history variables A to BPA variables X, and it outputs a BPA process p and
a finite set of definitions A. Without loss of generality, we assume that all the
variables in H have distinct names.

The rules that transform history expressions into BPAs are rather natural.
Events, variables, concatenation and choice are mapped into the corresponding
BPA counterparts. A history expression ¢[H| is mapped to the BPA for H,
surrounded by the opening and closing of the ¢-framing. A history expression
ph.H is mapped to a fresh BPA variable X, bound to the translation of H in
the set of definitions A.

We now state the correspondence between history expressions and BPAs.
The semantics of BPA(H) comprises all and only the prefixes of the histories
generated by H (i.e. [H]"?).

Theorem 6. For all history expressions H with no planned selection:
(1m1°)° = [BPA(H)]

9.4 Model-Checking Validity

Given a policy ¢, we are interested in defining a FSA A, | to be used in verifying
the validity of a history n with respect to security policies within their framings.
Since our histories are always finite and our properties are regular, FSA suffice.

The automaton Ay, is partitioned into two layers. The first layer is a copy of
A, where all the states are final. This models the fact that we are outside the
scope of ¢, i.e. the history leading to any state in this layer has balanced framings
of ¢ (or none). The second layer is reachable from the first one when opening a
framing for ¢, while closing the framing gets back. The transitions in the second
layer are a copy of those connecting accepting states in A,. Consequently, the
states in the second layer are exactly the final states in A,. Since Ay, is only
concerned with the verification of ¢, the transitions for opening and closing
framings ¢’ # ¢ are rendered as self-loops.

68 M. Bartoletti et al.

Fig. 13. Finite state automata A, (left) and Ay, (right)

Definition 17. Finite state automaton for ¢

Agy = (2,Q'q0, 0/, F')
E/:EU{L&”]W ‘90/ € Pol }
Q=F=QuU{jlqecF}
P =pU{(apd]ee FYU{(¢]pa) |laeQ}
U{ (¢ q;) | (gi,a,q5) €EpNg; € F}
U{(g: e U(g]eq) la€ QA # ¢}

For all histories 7, we write 1 = o) when 7 is accepted by A .

Example 17. Consider the policy ¢ saying that no event a. can occur after an ..
The FSA A, and Ay, are shown in Fig. [3, where the doubly-circled states are
the offending ones (i.e. those modelling violation of the policy). It is immediate
checking that the history [,a],ac obeys the policy represented by Ay, while
ar [y, does not. |

We require that the history n to be verified against A, , has no redundant
framings, i.e. 7 has been regularized. Hereafter, let the formula ¢ be defined
by the FSA A, = (X,Q,qo,p,F), which we assume to have a distinguished
non-final sink state. The FSA Ay, is constructed as in Def. [Tl

Although the policies enforced by the security framings can always inspect
the whole past history, we can easily limit the scope from the side of the past. It
suffices to mark in the history the point in time 3, from which checking a policy
¢ has to start. The corresponding automaton ignores all the events before 3,
and then behaves like the standard automaton enforcing ¢.

Theorem 7. Let n be a history with no redundant framings. Then, n is valid if
and only if n k= ¢y for all ¢ occurring in 1.

Secure Service Orchestration 69

Since finite state automata are closed under intersection, a valid history 7 is
accepted by the intersection of the automata Ay, for all ¢ in 7. Validity of a
closed history expression H with no planned selections can be decided by showing
that the BPA generated by the regularization of H satisfies the given regular
formula. Together with Theorem[2] the execution of an expression in our calculus
never violates security if its effect is verified valid. Thus we are dispensed from
using an execution monitor to enforce the security properties.

Theorem 8. Let H be a history expression H with no planned selections. Then,
H is valid if and only if:

[BPAH)] = N\ ¢

peH

10 Related Work

Process calculi techniques have been used to study the foundation of services.
The main goal of some of these proposals, e.g. [26]I832/35] is to formalise various
aspects of standards for the description, execution and orchestration of services
(WSDL, SOAP and WS-BPEL). The Global Calculus [2I] addresses the problem
of relating orchestration and choreography. As a matter of fact, our A™? builds
over the standard service infrastructure the above calculi formalise. Indeed, our
call-by-contract supersedes standard invocation mechanisms and allows for ver-
ified planning.

The secure composition of components has been the main concern underlying
the design of Sewell and Vitek’s box-7 [42], an extension of the 7m-calculus that
allows for expressing safety policies in the form of security wrappers. These are
programs that encapsulate a component to control the interactions with other
(possibly untrusted) components. The calculus is equipped with a type system
that statically captures the allowed causal information flows between compo-
nents. Our safety framings are closely related to wrappers, but in [42] there is
no analog of our liveness framings.

Gorla, Hennessy and Sassone [31] consider a calculus for mobile agents which
may migrate between sites in a controlled manner. Each site has a membrane,
representing both a security policy and a classification of external sites with
respect to their levels of trust. A membrane guards the incoming agents before
allowing them to execute. Three classes of membranes are studied, the most
complex being the class of policies enforceable by finite state automata. When
an agent comes from an untrusted site, all its code must be checked. Instead, an
agent coming from a trusted site must only provide the destination site with a
digest of its behaviour, so allowing for more efficient checks.

A different approach is Cook and Misra’s Orc [38], a programming model for
structured orchestration of services. The basic computational entities orchestrated
by Orc expressions are sites. A site computation can start other orchestrations, lo-
cally store the effects of a computation, and make them visible to clients. Orc pro-
vides three basic composition operators, that can be used to model some common
workflow patterns, identified by Van der Aalst et al. [23].

70 M. Bartoletti et al.

Another solution to planning service composition has been proposed in [36],
where the problem of achieving a given composition goal is expressed as a con-
straint satisfaction problem.

From a technical point of view, the work of Skalka and Smith [43] is the closest
to this paper. We share with them the use of a type and effect system and that
of model checking validity of effects. In [43], a static approach to history-based
access control is proposed. The A-calculus is enriched with access events and local
checks on the past event history. Local checks make validity a regular property, so
regularization is unneeded. The programming model and the type system of [43]
allow for access events parametrized by constants, and for let-polymorphism. We
have omitted these features for simplicity, but they can be easily recovered by
using similar techniques.

A related line of research addresses the issue of modelling and analysing re-
source usage. Igarashi and Kobayashi [34] introduce a type systems to check
whether a program accesses resources according to a user-defined usage policy.
Our model is less general than the framework of [34], but we provide a static ver-
ification technique, while [34] does not. Colcombet and Fradet [22] and Marriot,
Stuckey and Sulzmann [37] mix static and dynamic techniques to transform pro-
grams in order to make them obey a given safety property. Besson, de Grenier de
Latour and Jensen [12] tackle the problem of characterizing when a program can
call a stack-inspecting method while respecting a global security policy. Com-
pared to [22I37/12], our programming model allows for local policies, while the
other only considers global ones.

Recently, increasing attention has been devoted to express service contracts
as behavioural (or session) types. These synthetise the essential aspects of the
interaction behaviour of services, while allowing for efficient static verification
of properties of composed systems. Session types [33] have been exploited to
formalize compatibility of components [46] and to describe adaptation of web
services [19]. Security issues have been recently considered in terms of session
types, e.g. in [I7], which proves the decidability of type-checking in an extension
of the m-calculus with session types and correspondence assertions [4§]. Our
A2 has no explicit primitive for sessions. However, they can be suitably encoded,
via higher-order functions.

Other papers have proposed type-based methodologies to check security prop-
erties of distributed systems. For instance, Gordon and Jeffrey [30] use a type
and effect system to prove authenticity properties of security protocols. Web ser-
vice authentication has been recently modelled and analysed in [I3[14] through a
process calculus enriched with cryptographic primitives. In particular, [15] builds
security libraries using the WS-Security policies of [2]. These libraries are then
mechanically analysed with ProVerif [16].

11 Conclusions

We have described a formal framework for designing and implementing se-
cure service-oriented applications. The main features of our framework are its

Secure Service Orchestration 71

security-awareness, a call-by-contract service invocation, a formal semantics, and
a system verification machinery, as well as a graphical modelling language. All
the above items contribute to achieving static guarantees about planning, and
graceful degradation when services disappear.

The formal foundation of our work is A\™?, a core calculus for services with
primitives to express non-functional constraints on service composition. We fo-
cussed here on security properties, in particular on those expressible as safety
properties of service execution histories. In other papers [8I6], we have also ex-
plored liveness properties.

We have then defined a type and effect system to safely approximate the run-
time behaviour of services. These approximations are called history expressions.
They are a sort of context-free grammars with special constructs to describe the
(localized) histories produced by executing services, and the selection of services
upon requests.

Analysing these approximations allowed us to single out the viable plans that
drive secure service composition, i.e. those that achieve the task assigned while
respecting all the security constraints on demand. To do that, we exploited
model checking over Basic Process Algebras and Finite State Automata. This
verification step required some pre-processing on history expressions: technically,
we linearized and regularized them to expose the possible plans and to make
model checking feasible.

As a further contribution, we proposed a graphical modelling language for
services, supporting most of the features of A\™?. This calculus has a formal
operational semantics in the form of a graph rewriting system. Services described
in the graphical model can be naturally refined into more concrete A™? programs.
This can be done with the help of simple model transformation tools. One can
then reuse all the \™? tools, including its static machinery, and therefore rapidly
build a working prototype of a service-based system.

As usual, a prototype can help in the design phase, because one can per-
form early tests on the system, e.g. by providing as input selected data, one
can observe whether the outputs are indeed the intended ones. The call-by-
contract mechanism makes this standard testing practice even more effective,
e.g. one can perform a request with a given policy ¢ and observe the result-
ing plans. The system must then consider all the services that satisfy ¢, and
the observed effect is similar to running a class of tests. For instance, a de-
signer of an online bookshop can specify a policy such as “order a book with-
out paying” and then inspect the generated plans: the presence of viable plans
could point out an unwanted behaviour, e.g. due to an unpredicted interaction
between different special offers. As a matter of facts, standard testing tech-
niques are yet not sophisticated enough to spot such kind of bugs. Thus, a de-
signer may find the \™? prototype useful to check the system, since unintended
plans provide him with a clear description of the unwanted interactions between
services.

72

M. Bartoletti et al.

Acknowledgments

This research has been partially supported by EU-FETPI Global Computing
Project IST-2005-16004 SENSORIA (Software Engineering for Service-Oriented
Overlay Computers).

References

10.

11.

12.

13.

14.

15.

16.

. Abadi, M., Fournet, C.: Access control based on execution history. In: Proc. 10th

Annual Network and Distributed System Security Symposium (2003)

Atkinson, B., et al.: Web Services Security (WS-Security) (2002),
http://www.oasis-open.org

Banerjee, A., Naumann, D.A.: History-based access control and secure information
flow. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, Springer, Heidelberg (2005)

Barendregt, H.P., et al.: Term graph rewriting. In: Parallel Languages on PARLE:
Parallel Architectures and Languages Europe (1987)

Bartoletti, M., Degano, P., Ferrari, G.L.: History based access control with local
policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, Springer, Heidel-
berg (2005)

Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service compo-
sition. Technical Report TR-07-02, Dip. Informatica, Univ. of Pisa. (to appear in
Journal of Computer Security, 2007),
http://compass2.di.unipi.it/TR/Files/TR-07-02.pdf.gz

Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Types and effects for re-
source usage analysis. In: Proc. Foundations of Software Science and Computation
Structures (Fossacs) (to appear, 2007)

Bartoletti, M., Degano, P., Ferrari, G.L.: Enforcing secure service composition. In:
Proc. 18th Computer Security Foundations Workshop (CSFW) (2005)

Bartoletti, M., Degano, P., Ferrari, G.L.: Plans for service composition. In: Work-
shop on Issues in the Theory of Security (WITS) (2006)

Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service or-
chestration. In: Proc. 19th Computer Security Foundations Workshop (CSFW)
(2006)

Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37 (1985)

Besson, F., de Grenier de Latour, T., Jensen, T.: Interfaces for stack inspection.
Journal of Functional Programming 15(2) (2005)

Bhargavan, K., Corin, R., Fournet, C., Gordon, A.D.: Secure sessions for web ser-
vices. In: Proc. ACM Workshop on Secure Web Services (2004)

Bhargavan, K., Fournet, C., Gordon, A.D.: A semantics for web services authenti-
cation. In: Proc. ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL) (2004)

Bhargavan, K., Fournet, C., Gordon, A.D.: Verified reference implementations of
WS-security protocols. In: Bravetti, M., Ninez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, Springer, Heidelberg (2006)

Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Computer Security Foundations Workshop (CSFW) (2001)

http://www.oasis-open.org
http://compass2.di.unipi.it/TR/Files/TR-07-02.pdf.gz

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Secure Service Orchestration 73

Bonelli, E., Compagnoni, A., Gunter, E.: Typechecking safe process synchroniza-
tion. In: Proc. Foundations of Global Ubiquitous Computing. ENTCS, vol. 138(1)
(2005)

Boreale, M., et al.: SCC: a service centered calculus. In: Bravetti, M., Nuafez, M.,
Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, Springer, Heidelberg (2006)
Brogi, A., Canal, C., Pimentel, E.: Behavioural types and component adaptation.
In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
Springer, Heidelberg (2004)

Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: Proc. of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages (POPL) (2005)

Carbone, M., Honda, K., Yoshida, N.: Structured global programming for commu-
nicating behaviour. In: European Symposium in Programming Languages (ESOP)
(to appear, 2007)

Colcombet, T., Fradet, P.: Enforcing trace properties by program transformation.
In: Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (2000)

Van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(1) (2003)

Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for mobile
code. In: Vitek, J. (ed.) Secure Internet Programming. LNCS, vol. 1603, Springer,
Heidelberg (1999)

Esparza, J.: On the decidability of model checking for several p-calculi and Petri
nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, Springer, Heidelberg (1994)
Ferrari, G.L., Guanciale, R., Strollo, D.: JSCL: A middleware for service coordina-
tion. In: Najm, E., Pradat-Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, Springer, Heidelberg (2006)

Fong, P.W.: Access control by tracking shallow execution history. In: IEEE Sym-
posium on Security and Privacy (2004)

Garcia-Molina, H., Salem, K.: Sagas. In: Proc. ACM SIGMOD, ACM Press, New
York (1987)

Gifford, D.K., Lucassen, J.M.: Integrating functional and imperative programming.
In: ACM Conference on LISP and Functional Programming (1986)

Gordon, A., Jeffrey, A.: Types and effects for asymmetric cryptographic protocols.
In: Proc. IEEE Computer Security Foundations Workshop (CSFW) (2002)

Gorla, D., Hennessy, M., Sassone, V.: Security policies as membranes in systems
for global computing. Logical Methods in Computer Science 1(3) (2005)

Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, Springer, Heidelberg (2006)

Honda, K., Vansconcelos, V., Kubo, M.: Language primitives and type discipline
for structures communication-based programming. In: Hankin, C. (ed.) ESOP 1998
and ETAPS 1998. LNCS, vol. 1381, Springer, Heidelberg (1998)

Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Proc. 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL)
(2002)

Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services.
In: European Symposium in Programming Languages (ESOP) (to appear, 2007)
Lazovik, A., Aiello, M., Gennari, R.: Encoding requests to web service composi-
tions as constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, Springer,
Heidelberg (2005)

74

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

M. Bartoletti et al.

Marriott, K., Stuckey, P.J., Sulzmann, M.: Resource usage verification. In: Ohori,
A. (ed.) APLAS 2003. LNCS, vol. 2895, Springer, Heidelberg (2003)

Misra, J.: A programming model for the orchestration of web services. In: 2nd
International Conference on Software Engineering and Formal Methods (SEFM
2004) (2004)

Nielson, F., Nielson, H.R.: Type and effect systems. In: Correct System Design
(1999)

Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and System Security (TISSEC) 3(1) (2000)

Sewell, P., Vitek, J.: Secure composition of untrusted code: box-m, wrappers and
causality types. Journal of Computer Security 11(2) (2003)

Skalka, C., Smith, S.: History effects and verification. In: Chin, W.-N. (ed.) APLAS
2004. LNCS, vol. 3302, Springer, Heidelberg (2004)

Talpin, J.P., Jouvelot, P.: The type and effect discipline. Information and Compu-
tation 2(111) (1994)

Toma, 1., Foxvog, D.: Non-functional properties in Web Services. WSMO Deliver-
able (2006)

Vallecillo, A., Vansconcelos, V., Ravara, A.: Typing the behaviours of objects and
components using session types. In: Proc. of FOCLASA (2002)

Winskel, G.: The Formal Semantics of Programming Languages. The MIT Press,
Cambridge (1993)

Woo, T.Y.C., Lam, S.S.: A semantic model for authentication protocols. In: IEEE
Symposium on Security and Privacy (1993)

	Secure Service Orchestration
	Introduction
	Service Interfaces and Contracts
	Planning Service Composition
	Contributions

	A Taxonomy of Security Aspects in Web Services
	Designing Secure Services
	Graph Semantics
	Semantics of Independent Threads

	Service Contracts
	Service Selection
	A Car Repair Scenario
	A Core Calculus for Services
	Services
	Networks

	Static Semantics
	History Expressions
	Validity
	Type and Effect System
	Type Safety
	A Planning Strategy

	Planning Secure Service Composition
	Linearization of History Expressions
	Regularization of Redundant Framings
	From History Expressions to Basic Process Algebras
	Model-Checking Validity

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

