
Low-Level Software Security:
Attacks and Defenses

Úlfar Erlingsson

Microsoft Research, Silicon Valley
and

Reykjav́ık University, Iceland

Abstract. This tutorial paper considers the issues of low-level software
security from a language-based perspective, with the help of concrete
examples. Four examples of low-level software attacks are covered in full
detail; these examples are representative of the major types of attacks on
C and C++ software that is compiled into machine code. Six examples of
practical defenses against those attacks are also covered in detail; these
defenses are selected because of their effectiveness, wide applicability,
and low enforcement overhead.

1 Introduction

Computers are often subject to external attacks that aim to control software
behavior. Typically, such attacks arrive as data over a regular communication
channel and, once resident in program memory, trigger pre-existing, low-level
software vulnerabilities. By exploiting such flaws, these low-level attacks can
subvert the execution of the software and gain control over its behavior.

The combined effects of these attacks make them one of the most pressing
challenges in computer security. As a result, in recent years, many mechanisms
have been proposed for defending against these attacks. However, these defenses,
as well as the attacks, are strongly dependent on low-level minutiae, such as the
exact semantics of high-level language constructs, the precise syntax of machine-
code opcodes, and the layout of code and data into memory. Therefore, in the
literature, it is rare to find the full details of concrete attacks, or precisely how
particular defenses prevent those attacks. This tutorial paper aims to partially
remedy this situation.

The remainder of this introductory section gives more background about low-
level software security, as well as notes on the presentation of low-level details.
Next, Section 2 gives four examples that represent some of the important classes
of low-level software attacks. These attacks apply to software written in C and
C++, or similar languages, and compiled into executable machine-code for com-
modity, x86 hardware. These attacks are described in enough detail to be under-
stood even by readers without a background in software security, and without
a natural inclination for crafting malicious attacks. Then, Section 3 explains in
detail the motivation, detailed mechanisms, and limitations of six important,
practical defenses. A final Section 4 offers a brief summary and discussion.

A. Aldini and R. Gorrieri (Eds.): FOSAD 2006/2007, LNCS 4677, pp. 92–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Low-Level Software Security: Attacks and Defenses 93

Throughout, the attacks and defenses are placed in perspective by showing
how they are both facilitated by the gap between the semantics of the high-level
language of the software under attack, and the low-level semantics of machine
code and the hardware on which the software executes.

1.1 Low-Level Software Security in Languages Other Than C and
C++

It is not only in languages such as C and C++ that the issues of low-level soft-
ware security must be considered. Low-level attacks may be possible whenever
software is translated from a higher-level language into a lower-level language,
without a guarantee that this translation preserves the higher-level abstractions.

Software programmers express their intent using the abstractions of the
higher-level language. If these abstractions are not preserved in low-level exe-
cution, then this discrepancy can cause the software to behave in unexpected
ways. Often, an attacker will be able to exploit this discrepancy, and divert
the low-level execution of the software to perform arbitrary functionality of the
attackers choosing.

Unfortunately, in practice, compilers from high-level to low-level languages do
not guarantee full abstraction. This is true even for type-safe languages, such as
Java and Microsoft’s C#. As a result, low-level software attacks are also possible
in such languages.

For instance, in Java, variables can be declared to be “private” to classes, in
such a way that only the code in the declaring class is able to access the variables.
In the Java language, this is a strong guarantee that a programmer might rely
on—e.g., to implement a bank account whose sum can be updated only through
well-defined deposit and withdraw operations in the declaring class.

However, Java is executed indirectly through compilation into a lower-level
language, “JVML bytecode”, whose semantics are different, As a result, when a
class declares nested classes its private variables are actually not private, but are
accessible to all the code in a set of classes. Often, this set may be dynamically
extended by the Java virtual machine that executes JVML bytecode; these new
classes may originate from third parties, as long as the type safety of the JVML
bytecode can be verified.

As a result, attackers may be able to directly craft low-level JVML bytecode
that pretends to be in the set of nested classes, and thereby circumvents the high-
level Java language semantics of the software [1]. In this case, private variables
may be subject to arbitrary modification by code written by attackers—e.g.,
artificially inflating a bank-account sum that is stored in a private variable.

Similarly, C# code is compiled into “CLR bytecode” with different semantics
that create possibilities for low-level attacks. For instance, it is impossible in C#
to invoke object constructors more than once, so a variable initialized during
construction, and not modified from then on, may be assumed to be immutable
in C# software—and it is easy to see how programmers might depend on this
property. However, at the lower level of CLR bytecode, an object constructor is
just another function that may be invoked multiple times [28]. Thus, in fact, a

94 Ú. Erlingsson

int unsafe(char* a, char* b)
{

char t[MAX_LEN];
strcpy(t, a);
strcat(t, b);
return strcmp(t, "abc");

}

(a) An unchecked C function

int safe(char* a, char* b)
{

char t[MAX_LEN] = { ’\0’ };
strcpy_s(t, _countof(t), a);
strcat_s(t, _countof(t), b);
return strcmp(t, "abc");

}

(b) A safer version of the function

Fig. 1. Two C functions that both compare whether the concatenation of two input
strings is the string “abc”. The first, unchecked function contains a security vulnera-
bility if the inputs are untrusted. The second function is not vulnerable in this manner,
since it uses new C library functions that perform validity checks against the lengths of
buffers. Modern compilers will warn about the use of older, less safe library functions,
and strongly suggest the use of their newer variants.

“C# immutable” variable may be modified arbitrarily often by an attack that
operates at the lower level of CLR bytecode. Here, as in the case of Java, the
semantic gap between languages allows attackers to introduce valid, type-safe
low-level code that can invalidate properties of the high-level software.

Low-level software security can also be relevant in the context of very dif-
ferent high-level languages, such as the scripting languages embedded within
Web pages. For instance, consider a Web application that prompts the user for
her name and sends a greeting back to the Web browser. To perform this task,
a statement like response.println("<p>Hello, " + userName + ".</p>");
might be executed by the Web server. This statement may well be written in a
high-level programming language that requires explicit declaration of all scripts
to be executed in the Web browser. However, scripts are just text strings, and
if the string userName can be chosen by an attacker, then that attacker may be
able to cause arbitrary behavior. The low-level execution in the Web browser
will ignore the intent of the higher-level language and execute script code found
anywhere, even embedded within userName [34].

Therefore, the concepts discussed in this tutorial are applicable more broadly
than might appear. Of course, since low-level software security is closely bound to
system particulars, the details will be different in contexts other than C and C++
software compiled into machine code. However, in those other contexts there
may still be a direct relationship to the attacks and defenses in this tutorial.
For instance, defenses based on randomization and secrets much like those in
Section 3 have recently been successfully used to prevent low-level attacks on
scripting languages in Web applications [26].

1.2 The Difficulty of Eliminating Low-Level Vulnerabilities

Figure 1 is representative of the attacks and defenses presented in this tutorial.
The attacks in Section 2 all exploit vulnerabilities similar to that in Figure 1(a),

Low-Level Software Security: Attacks and Defenses 95

where a buffer overflow may be possible. For the most part, the defenses in
Section 3 use techniques like those in Figure 1(b) and prevent exploits by main-
taining additional information, validating that information with runtime checks,
and halting execution if such a check fails.

Unfortunately, unlike in Figure 1, it is often not so straightforward to modify
existing source code to use new, safer methods of implementing its functionality.
For most code there may not be a direct correspondence between well-known,
unsafe library functions and their newer, safer versions. Indeed, existing code
can easily be unsafe despite not using any library routines, and vulnerabilities
are often obscured by pointer arithmetic or complicated data-structure traversal.
(To clarify this point, it is worth comparing the code in Figure 1 with the code
in Figure 3, on page 98, where explicit loops implement the same functionality.)

Furthermore, manual attempts to remove software vulnerabilities may give
a false sense of security, since they do not always succeed and can sometimes
introduce new bugs. For example, a programmer that intends to eliminate buffer
overflows in the code of Figure 1(a) might change the strcpy and strcat func-
tion calls as in Figure 1(b), but fail to initialize t to be the empty string at the
start of the function. In this case, the strcmp comparison will be against the
unmodified array t, if both strings a and b are longer than MAX_LEN.

Thus, a slight omission from Figure 1(b) would leave open the possibility
of an exploitable vulnerability as a result of the function reporting that the
concatenation of the inputs strings is "abc", even in cases when this is false. In
particular, this may occur when, on entry to the function, the array t contains
"abc" as a residual data value from a previous invocation of the function.

Low-level software security vulnerabilities continue to persist due to technical
reasons, as well as practical engineering concerns such as the difficulties involved
in modifying legacy software. The state of the art in eliminating these vulner-
abilities makes use of code review, security testing, and other manual software
engineering processes, as well as automatic analyses that can discover vulnerabil-
ities [23]. Furthermore, best practice also acknowledges that some vulnerabilities
are likely to remain, and make those vulnerabilities more difficult to exploit by
applying defenses like those in this tutorial.

1.3 The Assumptions Underlying Software, Attacks, and Defenses

Programmers make many assumptions when creating software, both implicitly
and explicitly. Some of these assumptions are valid, based on the semantics of
the high-level language, as discussed in Section 1.1. For instance, C or C++
programmers may assume that execution does not start at an arbitrary place
within a function, but at the start of that function.

Programmers may also make questionable assumptions, such as about the
execution environment of their software. For instance, software may be written
without concurrency in mind, or in a manner that is dependent on the address
encoding in pointers, or on the order of heap allocations. Any such assumptions
hinder portability, and may result in incorrect execution when the execution
environment changes even slightly.

96 Ú. Erlingsson

Finally, programmers may make invalid, mistaken assumptions. For example,
in C or C++, programmers may assume that the int type behaves a true, mathe-
matical integer, or that a memory buffer is large enough for the size of the content
it may ever need to hold. All of the above types of assumptions are relevant to
low-level software security, and each may make the software vulnerable to attack.

At the same time, attackers also make assumptions, and low-level software
attacks rely on a great number of specific properties about the hardware and
software architecture of their target. Many of these assumptions involve details
about names and the meaning of those names, such as the exact memory ad-
dresses of variables or functions and how they are used in the software. These
assumptions also relate to the software’s execution environment, such as the
hardware instruction set architecture and its machine-code semantics.

For example, the Internet Worm of 1988 was successful in large part because
of an attack that depended on the particulars of the commonly-deployed VAX
hardware architecture, the 4 BSD operating system, and the fingerd service. On
other systems that were popular at the time, that same attack failed in a manner
that only crashed the fingerd service, due to the differences in instruction sets
and memory layouts [43]. In this manner, attack code is often fragile to the point
where even the smallest change prevents the attacker from gaining control, but
crashes the target software—effecting a denial-of-service attack.

Defense mechanisms also have assumptions, including assumptions about the
capabilities of the attacker, about the likelihood of different types of attacks,
about the properties of the software being defended, and about its execution
environment. In the attacks and defenses that follow, a note will be made of the
assumptions that apply in each case. For instance, of the defenses in Section 3,
Defense 1 assumes that attacks make use of a contiguous stack-based buffer
overflow, and Defense 4 provides strong guarantees by assuming that Defense 3
is also in place. Also, many defenses (including most of the ones in this tutorial)
assume that denial-of-service is not the attacker’s goal, and halt the execution
of the target software upon the failure of runtime validity checks.

1.4 The Presentation of Technical Details in This Tutorial

The presentation in this tutorial paper assumes a basic knowledge of program-
ming languages like C and C++, and their compilation, as might be acquired
in an introductory course on compilers. For the most part, relevant technical
concepts are introduced when needed. In fact, a large fraction of the technical
content is shown in numbered figures whose captions are written to be under-
standable independent of the main text and without much prior knowledge of
low-level software security issues.

As well as giving a number of examples of vulnerable C and C++ software,
this tutorial shows many details relating to software execution, such as machine
code and execution stack content. Throughout, the details shown will reflect
software execution on one particular hardware architecture—a 32-bit x86, such
as the IA-32 [11]—but demonstrate properties that also apply to most other
hardware platforms.

Low-Level Software Security: Attacks and Defenses 97

The examples show many concrete, hexadecimal values and—in order to avoid
confusion—the reader should remember that on the little-endian x86, when four
bytes are displayed as a 32-bit integer value, their printed order will be reversed
from the order of the bytes in memory. Thus, if the hexadecimal bytes 0xaa,
0xbb, 0xcc, and 0xdd occur in memory, in that order, then those bytes encode
the 32-bit integer 0xddccbbaa.

2 A Selection of Low-Level Attacks on C and C++
Software

This section presents four low-level software attacks in full detail and explains
how each attack invalidates a property of target software written in the C or
C++ languages. The attacks are carefully chosen to be representative of four
major classes of attacks: stack-based buffer overflows, heap-based buffer over-
flows, jump-to-libc attacks, and data-only attacks.

No examples are given below of a “format-string attack” or of an “integer-
overflow vulnerability”. Format-string vulnerabilities are particularly simple to
eliminate [12]; therefore, although they have received a great deal of attention
in the past, they are no longer a significant, practical concern in well-engineered
software. Integer-overflow vulnerabilities [8] do still exist, and are increasingly
being exploited, but only as a first step towards attacks like those described
below. In this section, Attack 4 is one example where an integer overflow might
be the first step in the exploit crafted by the attacker.

As further reading, the survey of Pincus and Baker gives a good general
overview of low-level software attacks like those described in this section [38].

2.1 Attack 1: Corruption of a Function Return Address on the Stack

It is natural for C and C++ programmers to assume that, if a function is invoked
at a particular call site and runs to completion without throwing an exception,
then that function will return to the instruction immediately following that same,
particular call site.

Unfortunately, this may not be the case in the presence of software bugs. For
example, if the invoked function contains a local array, or buffer, and writes into
that buffer are not correctly guarded, then the return address on the stack may
be overwritten and corrupted. In particular, this may happen if the software
copies to the buffer data whose length is larger than the buffer size, in a buffer
overflow.

Furthermore, if an attacker controls the data used by the function, then the
attacker may be able to trigger such corruption, and change the function return
address to an arbitrary value. In this case, when the function returns, the attacker
can direct execution to code of their choice and gain full control over subsequent
behavior of the software. Figure 2 and Figure 3 show examples of C functions
that are vulnerable to this attack.

98 Ú. Erlingsson

int is_file_foobar(char* one, char* two)
{

// must have strlen(one) + strlen(two) < MAX_LEN
char tmp[MAX_LEN];
strcpy(tmp, one);
strcat(tmp, two);
return strcmp(tmp, "file://foobar");

}

Fig. 2. A C function that compares the concatenation of two input strings against
“file://foobar”. This function contains a typical stack-based buffer overflow vulnera-
bility: if the input strings can be chosen by an attacker, then the attacker can direct
machine-code execution when the function returns.

int is_file_foobar_using_loops(char* one, char* two)
{

// must have strlen(one) + strlen(two) < MAX_LEN
char tmp[MAX_LEN];
char* b = tmp;
for(; *one != ’\0’; ++one, ++b) *b = *one;
for(; *two != ’\0’; ++two, ++b) *b = *two;
*b = ’\0’;
return strcmp(tmp, "file://foobar");

}

Fig. 3. A version of the C function in Figure 2 that copies and concatenates strings
using pointer manipulation and explicit loops. This function is also vulnerable to the
same stack-based buffer overflow attacks, even though it does not invoke strcpy or
strcat or other C library functions that are known to be difficult to use safely.

This attack, sometimes referred to as return-address clobbering, is probably
the best known exploit of a low-level software security vulnerability; it dates back
to before 1988, when it was used in the fingerd exploit of the Internet Worm.
Indeed, until about a decade ago, this attack was seen by many as the only
significant low-level attack on software compiled from C and C++, and “stack-
based buffer overflow” were widely considered a synonym for such attacks. More
recently, this attack has not been as prominent, in part because other methods
of attack have been widely publicized, but also in part because the underlying
vulnerabilities that enable return-address clobbering are slowly being eliminated
(e.g., through the adoption of newer, safer C library functions).

To give a concrete example of this attack, Figure 4 shows a normal execution
stack for the functions in Figures 2 and 3, and Figure 5 shows an execution stack
for the same code just after a overflow of the local array—potentially caused by
an attacker that can choose the contents of the two string provided as input.

Of course, an attacker would choose their input such that the buffer overflow
would not caused by “asdfasdfasdfasdf”, but another string of bytes. In particu-
lar, the attacker might choose 0x48, 0xff, and 0x12, in order, as the final three

Low-Level Software Security: Attacks and Defenses 99

address content
0x0012ff5c 0x00353037 ; argument two pointer
0x0012ff58 0x0035302f ; argument one pointer
0x0012ff54 0x00401263 ; return address
0x0012ff50 0x0012ff7c ; saved base pointer
0x0012ff4c 0x00000072 ; tmp continues ’r’ ’\0’ ’\0’ ’\0’
0x0012ff48 0x61626f6f ; tmp continues ’o’ ’o’ ’b’ ’a’
0x0012ff44 0x662f2f3a ; tmp continues ’:’ ’/’ ’/’ ’f’
0x0012ff40 0x656c6966 ; tmp array: ’f’ ’i’ ’l’ ’e’

Fig. 4. A snapshot of an execution stack for the functions in Figures 2 and 3, where the
size of the tmp array is 16 bytes. This snapshot shows the stack just before executing the
return statement. Argument one is “file://”, and argument two is “foobar”, and the
concatenation of those strings fits in the tmp array. (Stacks are traditionally displayed
with the lowest address at the bottom, as is done here and throughout this tutorial.)

address content
0x0012ff5c 0x00353037 ; argument two pointer
0x0012ff58 0x0035302f ; argument one pointer
0x0012ff54 0x00666473 ; return address ’s’ ’d’ ’f’ ’\0’
0x0012ff50 0x61666473 ; saved base pointer ’s’ ’d’ ’f’ ’a’
0x0012ff4c 0x61666473 ; tmp continues ’s’ ’d’ ’f’ ’a’
0x0012ff48 0x61666473 ; tmp continues ’s’ ’d’ ’f’ ’a’
0x0012ff44 0x612f2f3a ; tmp continues ’:’ ’/’ ’/’ ’a’
0x0012ff40 0x656c6966 ; tmp array: ’f’ ’i’ ’l’ ’e’

Fig. 5. An execution-stack snapshot like that in Figure 4, but where argument one is
“file://” and argument two is “asdfasdfasdfasdf”. The concatenation of the argument
strings has overflowed the tmp array and the function return address is now determined
by the last few characters of the two string.

character bytes of the two argument string—and thereby arrange for the func-
tion return address to have the value 0x0012ff48. In this case, as soon as the
function returns, the hardware instruction pointer would be placed at the second
character of the two argument string, and the hardware would start executing
the data found there (and chosen by the attacker) as machine code.

In the example under discussion, an attacker would choose their input data
so that the machine code for an attack payload would be present at address
0x0012ff48. When the vulnerable function returns, and execution of the attack
payload begins, the attacker has gained control of the behavior of the target
software. (The attack payload is often called shellcode, since a common goal of
an attacker is to launch a “shell” command interpreter under their control.)

In Figure 5, the bytes at 0x0012ff48 are those of the second to fifth characters
in the string “asdfasdfasdfasdf”, namely ’s’, ’d’, ’f’, and ’a’. When executed
as machine code, those bytes do not implement an attack. Instead, as described
in Figure 6, an attacker might choose 0xcd, 0x2e, 0xeb, and 0xfe as a very
simple attack payload. Thus, an attacker might call the operating system to

100 Ú. Erlingsson

machine code
opcode bytes assembly-language version of the machine code
0xcd 0x2e int 0x2e ; system call to the operating system
0xeb 0xfe L: jmp L ; a very short, direct infinite loop

Fig. 6. The simple attack payload used in this tutorial; in most examples, the attacker’s
goal will be to execute this machine code. Of these four bytes, the first two are a x86
int instruction which performs a system call on some platforms, and the second two
are an x86 jmp instruction that directly calls itself in an infinite loop. (Note that, in
the examples, these bytes will sometimes be printed as the integer 0xfeeb2ecd, with
the apparent reversal a result of x86 little-endianness.)

enable a dangerous feature, or disable security checks, and avoid detection by
keeping the target software running (albeit in a loop).

Return-address clobbering as described above has been a highly successful
attack technique—for example, in 2003 it was used to implement the Blaster
worm, which affected a majority of Internet users [5]. In the case of Blaster, the
vulnerable code was written using explicit loops, much as in Figure 3. (This was
one reason why the vulnerability had not been detected and corrected through
automatic software analysis tools, or by manual code reviews.)

Attack 1: Constraints and Variants

Low-level attacks are typically subject to a number of such constraints, and must
be carefully written to be compatible with the vulnerability being exploited.

For example, the attack demonstrated above relies on the hardware being
willing to execute the data found on the stack as machine code. However, on
some systems the stack is not executable, e.g., because those systems implement
the defenses described later in this tutorial. On such systems, an attacker would
have to pursue a more indirect attack strategy, such as those described later, in
Attacks 3 and 4.

Another important constraint applies to the above buffer-overflow attacks:
the attacker-chosen data cannot contain null bytes, or zeros—since such bytes
terminate the buffer overflow and prevent further copying onto the stack. This
is a common constraint when crafting exploits of buffer overflows, and applies to
most of the attacks in this tutorial. It is so common that special tools exist for
creating machine code for attack payloads that do not contain any embedded
null bytes, newline characters, or other byte sequences that might terminate the
buffer overflow (one such tool is Metasploit [18]).

There are a number of attack methods similar to return-address clobber-
ing, in that they exploit stack-based buffer overflow vulnerabilities to target the
function-invocation control data on the stack. Most of these variants add a level
of indirection to the techniques described above.

One notable attack variant corrupts the base pointer saved on the stack (see
Figures 4 and 5) and not the return address sitting above it. In this variant,
the vulnerable function may return as expected to its caller function, but, when

Low-Level Software Security: Attacks and Defenses 101

typedef struct _vulnerable_struct
{

char buff[MAX_LEN];
int (*cmp)(char*,char*);

} vulnerable;

int is_file_foobar_using_heap(vulnerable* s, char* one, char* two)
{

// must have strlen(one) + strlen(two) < MAX_LEN
strcpy(s->buff, one);
strcat(s->buff, two);
return s->cmp(s->buff, "file://foobar");

}

Fig. 7. A C function that sets a heap data structure as the concatenation of two input
strings, and compares the result against “file://foobar” using the comparison function
for that data structure. This function is vulnerable to a heap-based buffer overflow
attack, if an attacker can choose either or both of the input strings.

that caller itself returns, it uses a return address that has been chosen by the at-
tacker [30]. Another notable variant of this attack targets C and C++ exception-
handler pointers that reside on the stack, and ensures that the buffer overflow
causes an exception—at which point a function pointer of the attacker’s choice
may be executed [32].

2.2 Attack 2: Corruption of Function Pointers Stored in the Heap

Software written in C and C++ often combines data buffers and pointers into the
same data structures, or objects, with programmers making a natural assump-
tion that the data values do not affect the pointer values. Unfortunately, this may
not be the case in the presence of software bugs. In particular, the pointers may
be corrupted as a result of an overflow of the data buffer—regardless whether
the data structures or objects reside on stack, or in heap memory. Figure 7 shows
C code with a function that is vulnerable to such an attack.

To give a concrete example of this attack, Figure 8 shows the contents of the
vulnerable data structure after the function in Figure 7 has copied data into
the buff array using the strcpy and strcmp library functions. Figure 8 shows
three instances of the data structure contents: as might occur during normal
processing, as might occur in an unintended buffer overflow, and, finally, as
might occur during an attack. These instances can occur both when the data
structure is allocated on the stack, and also when it is allocated on the heap.

In the last instance of Figure 8, the attacker has chosen the two input strings
such that the cmp function pointer has become the address of the start of the data
structure. At that address, the attacker has arranged for an attack payload to
be present. Thus, when the function in Figure 7 executes the return statement,
and invokes s->cmp, it transfers control to the start of the data structure, which
contains data of the attacker’s choice. In this case, the attack payload is the

102 Ú. Erlingsson

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: 0x656c6966 0x662f2f3a 0x61626f6f 0x00000072 0x004013ce

(a) A structure holding “file://foobar” and a pointer to the strcmp function

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: 0x656c6966 0x612f2f3a 0x61666473 0x61666473 0x00666473

(b) After a buffer overflow caused by the inputs “file://” and “asdfasdfasdf”

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: 0xfeeb2ecd 0x11111111 0x11111111 0x11111111 0x00353068

(c) After a malicious buffer overflow caused by attacker-chosen inputs

Fig. 8. Three instances of the vulnerable data structure pointed to by s in Figure 7,
where the size of the buff array is 16 bytes. Both the address of the structure and
its 20 bytes of content are shown. In the first instance, the buffer holds “file://foobar”
and cmp points to the strcmp function. In the second instance, the pointer has been
corrupted by a buffer overflow. In the third instance, an attacker has selected the input
strings so that the buffer overflow has changed the structure data so that the simple
attack payload of Figure 6, page 100, will be executed.

four bytes of machine code 0xcd, 0x2e, 0xeb, and 0xfe described in Figure 6,
page 100, and used throughout this tutorial.

It is especially commonplace for C++ code to store object instances on the
heap and to combine—within a single object instance—both data buffers that
may be overflowed and potentially exploitable pointers. In particular, C++ ob-
ject instances are likely to contain vtable pointers : a form of indirect function
pointers that allow dynamic dispatch of virtual member functions. As a result,
C++ software may be particularly vulnerable to heap-based attacks.

As a concrete example of vulnerable C++ code, Figure 9 shows the body
and supporting classes for a function that performs string concatenation and
comparison that should, by now, be familiar.

The C++ code in Figure 9 is vulnerable in much the same manner as the code
in Figure 7. In particular, the memory layout of Vulnerable objects mirrors that
of the vulnerable data structure: an array bytes followed by a pointer to allow
for different types of string comparison. However, in this case, the pointer is
a not a direct function pointer, but a pointer to the vtables of one of the two
Comparer classes.

The extra level of indirection to a function pointer requires the attacker to
slightly change their attack. As shown in Figure 10, the attacker can place the
attack payload four bytes into the overflowed buffer, place the payload address
at the start of the buffer, and place in the vtable pointer the address of the start
of the buffer. Thereby, the attack payload will be executed when the function in

Low-Level Software Security: Attacks and Defenses 103

Figure 9 invokes s->cmp, and makes use of the m_cmp member of the Vulnerable
class. (However, note that, in Figure 10, if the object instance were located at
a memory address that contained embedded null bytes, then the attacker would
have difficulty writing that address in the buffer overflow.)

class Comparer
{
public:

virtual int compare(char* a, char* b) { return stricmp(a,b); }
};

class CaseSensitiveComparer : public Comparer
{
public:

virtual int compare(char* a, char* b) { return strcmp(a,b); }
};

class Vulnerable
{

char m_buff[MAX_LEN];
Comparer m_cmp;

public:
Vulnerable(Comparer c) : m_cmp(c) {}
void init(char* str) { strcpy(m_buff, str); }
void append(char* str) { strcat(m_buff, str); }
int cmp(char* str) {

return m_cmp.compare(m_buff, str);
}

};

int is_file_foobar_using_cpp(Vulnerable* s, char* one, char* two)
{

// must have strlen(one) + strlen(two) < MAX_LEN
s->init(one);
s->append(two);
return s->cmp("file://foobar");

}

Fig. 9. A C++ version of the code in Figure 7, which uses virtual methods to allow
for different types of string comparison. This code is also vulnerable to a heap-based
attack, using one level of indirection more than the attack on the code in Figure 7.

m_buff (char array at start of the object) m_cmp (vtable)
address: 0x05101010 0x05101014 0x05101018 0x0510101c 0x05101020
content: 0x05101014 0xfeeb2ecd 0x11111111 0x11111111 0x05101010

Fig. 10. The address and contents of a Vulnerable object, with a 16 byte buffer, in the
case of a buffer overflow attack designed to execute the attack payload from Figure 6.
This attack payload is found at address 0x05101014, four bytes into the buffer.

104 Ú. Erlingsson

Attack 2: Constraints and Variants

Heap-based attacks are often constrained by their ability to determine the ad-
dress of the heap memory that is being corrupted, as can be seen in the exam-
ples above. This constraint applies in particular, to all indirect attacks, where
a heap-based pointer-to-a-pointer is modified—such as in the C++ attack ex-
ample above. Furthermore, the exact bytes of those addresses may constrain
the attacker, e.g., if the exploited vulnerability is that of a string-based buffer
overflow, in which case the address data cannot contain null bytes.

The examples above demonstrate attacks where heap-based buffer overflow
vulnerabilities are exploited to corrupt pointers that reside within the same data
structure or object as the data buffer that is overflowed. There are two important
attack variants, not described above, where heap-based buffer overflows are used
to corrupt pointers that reside in other structures or objects, or in the heap
metadata.

In the first variant, two data structures or objects reside consecutively in
heap memory, the initial one containing a buffer that can be overflowed, and the
subsequent one containing a direct, or indirect, function pointer. Heap objects
are often adjacent in memory like this when they are functionally related and are
allocated in order, one immediately after the other. Whenever these conditions
hold, attacks similar to the above examples may be possible, by overflowing the
buffer in the first object and overwriting the pointer in the second object.

In the second variant, the attack is based on corrupting the metadata of the
heap itself through a heap-based buffer overflow, and exploiting that corruption
to write an arbitrary value to an arbitrary location in memory. This is possible
because heap implementations contain code such as p->prev->next = p->next;
to manage doubly-linked lists in their metadata. An attacker that can corrupt
the metadata can choose the values of p->prev and p->next, and thereby choose
what is written where. The attacker can then use this capability to write a pointer
to the attack payload in the place of any soon-to-be-used function pointer sitting
at a known address. For example, in a published attack on the GDI+ JPEG flaw
in Windows the attacker overwrote the C++ vtable pointer of a global object
whose virtual destructor was invoked as part of error recovery [16].

2.3 Attack 3: Execution of Existing Code Via Corrupt Pointers

If software does not contain any code for certain functionality—such as per-
forming floating-point calculations, or making system calls to interact with the
network—then the programmers may naturally assume that execution of the
software will not result in this behavior, or functionality.

Unfortunately, for C or C++ software, this assumption may not hold in the
face of bugs and malicious attacks, as demonstrated by attacks like those in this
tutorial. As in the previous two examples of attacks, the attacker may be able
to cause arbitrary behavior by direct code injection: by directly modifying the
hardware instruction pointer to execute machine code embedded in attacker-
provided input data, instead of the original software. However, there are other

Low-Level Software Security: Attacks and Defenses 105

int median(int* data, int len, void* cmp)
{

// must have 0 < len <= MAX_INTS
int tmp[MAX_INTS];
memcpy(tmp, data, len*sizeof(int)); // copy the input integers
qsort(tmp, len, sizeof(int), cmp); // sort the local copy
return tmp[len/2]; // median is in the middle

}

Fig. 11. A C function that computes the median of an array of input integers by
sorting a local copy of those integers. This function is vulnerable to a stack-based
buffer overflow attack, if an attacker can choose the set of input integers.

means for an attacker to cause software to exhibit arbitrary behavior, and these
alternatives can be the preferred mode of attack.

In particular, an attacker may find it preferable to craft attacks that execute
the existing machine code of the target software in a manner not intended by its
programmers. For example, the attacker may corrupt a function pointer to cause
the execution of a library function that is unreachable in the original C or C++
source code written by the programmers—and should therefore, in the compiled
software, be never-executed, dead code. Alternatively, the attacker may arrange
for reachable, valid machine code to be executed, but in an unexpected order,
or with unexpected data arguments.

This class of attacks is typically referred to as jump-to-libc or return-to-libc
(depending on whether a function pointer or return address is corrupted by the
attacker), because the attack often involves directing execution towards machine
code in the libc standard C library.

Jump-to-libc attacks are especially attractive when the target software sys-
tem is based on an architecture where input data cannot be directly executed
as machine code. Such architectures are becoming commonplace with the adop-
tion of the defenses such as those described later in this tutorial. As a result,
an increasingly important class of attacks is indirect code injection: the selective
execution of the target software’s existing machine code in a manner that en-
ables attacker-chosen input data to be subsequently executed as machine code.
Figure 11 shows a C function that is vulnerable to such an attack.

The function in Figure 11 actually contains a stack-based buffer overflow
vulnerability that can be exploited for various attacks, if an attacker is able to
choose the number of input integers, and their contents. In particular, attackers
can perform return-address clobbering, as described in Attack 1. However, for
this particular function, an attacker can also corrupt the comparison-function
pointer cmp before it is passed to qsort. In this case, the attacker can gain
control of machine-code execution at the point where qsort calls its copy of the
corrupted cmp argument. Figure 12 shows the machine code in the qsort library
function where this, potentially-corrupted function pointer is called.

To give a concrete example of a jump-to-libc attack, consider the case when
the function in Figure 11 is executed on some versions of the Microsoft Windows

106 Ú. Erlingsson

...
push edi ; push second argument to be compared onto the stack
push ebx ; push the first argument onto the stack
call [esp+comp_fp] ; call comparison function, indirectly through a pointer
add esp, 8 ; remove the two arguments from the stack
test eax, eax ; check the comparison result
jle label_lessthan ; branch on that result
...

Fig. 12. Machine code fragment from the qsort library function, showing how the
comparison operation is called through a function pointer. When qsort is invoked in
the median function of Figure 11, a stack-based buffer overflow attack can make this
function pointer hold an arbitrary address.

machine code
address opcode bytes assembly-language version of the machine code
0x7c971649 0x8b 0xe3 mov esp, ebx ; change the stack location to ebx
0x7c97164b 0x5b pop ebx ; pop ebx from the new stack
0x7c97164c 0xc3 ret ; return based on the new stack

Fig. 13. Four bytes found within executable memory, in a system library. These bytes
encode three machine-code instructions that are useful in the crafting of jump-to-libc
attacks. In particular, in an attack on the median function in Figure 11, these three
instructions may be called by the qsort code in Figure 12, which will change the stack
pointer to the start of the local tmp buffer that has been overflowed by the attacker.

operating system. On these systems, the qsort function is implemented as shown
in Figure 12 and the memory address 0x7c971649 holds the four bytes of exe-
cutable machine code, as shown in Figure 13.

On such a system, the buffer overflow may leave the stack looking like that
shown in the “malicious overflow contents” column of Figure 14. Then, when
the qsort function is called, it is passed a copy of the corrupted cmp function-
pointer argument, which points to a trampoline found within existing, executable
machine code. This trampoline is the code found at address 0x7c971649, which
is shown in Figure 13. The effect of calling the trampoline is to, first, set the
stack pointer esp to the start address of the tmp array, (which is held in register
ebx), second, read a new value for ebx from the first integer in the tmp array,
and, third, perform a return that changes the hardware instruction pointer to
the address held in the second integer in the tmp array.

The attack subsequently proceeds as follows. The stack is “unwound” one
stack frame at a time, as functions return to return addresses. The stack holds
data, including return addresses, that has been chosen by the attacker to encode
function calls and arguments. As each stack frame is unwound, the return in-
struction transfers control to the start of a particular, existing library function,
and provides that function with arguments.

Figure 15 shows, as C source code, the sequence of function calls that occur
when the stack is unwound. The figure shows both the name and address of
the Windows library functions that are invoked, as well as their arguments.

Low-Level Software Security: Attacks and Defenses 107

normal benign malicious
stack stack overflow overflow

address contents contents contents
0x0012ff38 0x004013e0 0x1111110d 0x7c971649 ; cmp argument
0x0012ff34 0x00000001 0x1111110c 0x1111110c ; len argument
0x0012ff30 0x00353050 0x1111110b 0x1111110b ; data argument
0x0012ff2c 0x00401528 0x1111110a 0xfeeb2ecd ; return address
0x0012ff28 0x0012ff4c 0x11111109 0x70000000 ; saved base pointer
0x0012ff24 0x00000000 0x11111108 0x70000000 ; tmp final 4 bytes
0x0012ff20 0x00000000 0x11111107 0x00000040 ; tmp continues
0x0012ff1c 0x00000000 0x11111106 0x00003000 ; tmp continues
0x0012ff18 0x00000000 0x11111105 0x00001000 ; tmp continues
0x0012ff14 0x00000000 0x11111104 0x70000000 ; tmp continues
0x0012ff10 0x00000000 0x11111103 0x7c80978e ; tmp continues
0x0012ff0c 0x00000000 0x11111102 0x7c809a51 ; tmp continues
0x0012ff08 0x00000000 0x11111101 0x11111101 ; tmp buffer starts
0x0012ff04 0x00000004 0x00000040 0x00000040 ; memcpy length argument
0x0012ff00 0x00353050 0x00353050 0x00353050 ; memcpy source argument
0x0012fefc 0x0012ff08 0x0012ff08 0x0012ff08 ; memcpy destination arg.

Fig. 14. The address and contents of the stack of the median function of Figure 11,
where tmp is eight integers in size. Three versions of the stack contents are shown, as it
would appear just after the call to memcpy: a first for input data of the single integer zero,
a second for a benign buffer overflow of consecutive integers starting at 0x11111101,
and a third for a malicious jump-to-libc attack that corrupts the comparison function
pointer to make qsort call address 0x7c971649 and the machine code in Figure 13.

// call a function to allocate writable, executable memory at 0x70000000
VirtualAlloc(0x70000000, 0x1000, 0x3000, 0x40); // function at 0x7c809a51

// call a function to write the four-byte attack payload to 0x70000000
InterlockedExchange(0x70000000, 0xfeeb2ecd); // function at 0x7c80978e

// invoke the four bytes of attack payload machine code
((void (*)())0x70000000)(); // payload at 0x70000000

Fig. 15. The jump-to-libc attack activity caused by the maliciously-corrupted stack
in Figure 14, expressed as C source code. As the corrupted stack is unwound, instead
of returning to call sites, the effect is a sequence of function calls, first to functions in
the standard Windows library kernel32.dll, and then to the attack payload.

The effect of these invocations is to create a new, writable page of executable
memory, to write machine code of the attacker’s choice to that page, and to
transfer control to that attack payload.

After the trampoline code executes, the hardware instruction pointer address
is 0x7c809a51, which is the start of the Windows library function VirtualAlloc,
and the address in the stack pointer is 0x0012ff10, the third integer in the tmp
array in Figure 14. As a result, when VirtualAlloc returns, execution will

108 Ú. Erlingsson

continue at address 0x7c80978e, which is the start of the Windows library func-
tion InterlockedExchange. Finally, the InterlockedExchange function returns
to the address 0x70000000, which at that time holds the attack payload machine
code in executable memory.

(This attack is facilitated by two Windows particulars: all Windows processes
load the library kernel32.dll into their address space, and the Windows calling
convention makes library functions responsible for popping their own arguments
off the stack. On other systems, the attacker would need to slightly modify the
details of the attack.)

Attack 3: Constraints and Variants

A major constraint on jump-to-libc attacks is that the attackers must craft each
such attack with a knowledge of the addresses of the target-software machine
code that is useful to the attack. An attacker may have difficulty in reliably
determining these addresses, for instance because of variability in the versions of
the target software and its libraries, or because of variability in the target soft-
ware’s execution environment. Artificially increasing this variability is a useful
defense against many types of such attacks, as discussed later in this tutorial.

Traditionally, jump-to-libc attacks have targeted the system function in the
standard system libraries, which allows the execution of an arbitrary command
with arguments, as if typed into a shell command interpreter. This strategy can
also be taken in the above attack example, with a few simple changes. However,
an attacker may prefer indirect code injection, because it requires launching no
new processes or accessing any executable files, both of which may be detected
or prevented by system defenses.

For software that may become the target of jump-to-libc attacks, one might
consider eliminating any fragment of machine code that may be useful to the
attacker, such as the trampoline code shown in Figure 13. This can be difficult
for many practical reasons. For instance, it is difficult to selectively eliminate
fragments of library code while, at the same time, sharing the code memory of
dynamic libraries between their instances in different processes; however, elim-
inating such sharing would multiply the resource requirements of dynamic li-
braries. Also, it is not easy to remove data constants embedded within executable
code, which may form instructions useful to an attacker. (Examples of such data
constants include the jump tables of C and C++ switch statements.)

Those difficulties are compounded on hardware architectures that use
variable-length sequences of opcode bytes for encoding machine-code instruc-
tions. For example, on some versions of Windows, the machine code for a system
call is encoded using a two-byte opcode sequence, 0xcd, 0x2e, while the five-byte
sequence 0x25, 0xcd, 0x2e, 0x00, and 0x00 corresponds to an arithmetic oper-
ation (the operation and eax, 0x2ecd, in x86 assembly code). Therefore, if an
instruction for this particular and operation is present in the target software,
then jumping to its second byte can be one way of performing a system call.
Similarly, any x86 instruction, including those that read or write memory, may

Low-Level Software Security: Attacks and Defenses 109

be executed through a jump into the middle of the opcode-byte sequence for
some other x86 machine-code instruction.

Indeed, for x86 Linux software, it has been recently demonstrated that it
is practical for elaborate jump-to-libc attacks to perform arbitrary function-
ality while executing only machine-code found embedded within other instruc-
tions [40]. Much as in the above example, these elaborate attacks proceed
through the unwinding of the stack, but they may also “rewind” the stack in
order to encode loops of activity. However, unlike in the above example, these
elaborate attacks may allow the attacker to achieve their goals without adding
any new, executable memory or machine code to target software under attack.

Attacks like these are of great practical concern. For example, the flaw in the
median function of Figure 11 is in many ways similar to the recently discovered
“animated cursor vulnerability” in Windows [22]. Despite existing, deployed de-
fenses, that vulnerability is subject to a jump-to-libc attack similar to that in
the above example.

2.4 Attack 4: Corruption of Data Values That Determine Behavior

Software programmers make many natural assumptions about the integrity of
data. As one example, an initialized global variable may be assumed to hold the
same, initial value throughout the software’s execution, if it is never written by
the software. Unfortunately, for C or C++ software, such assumptions may not
hold in the presence of software bugs, and this may open the door to malicious
attacks that corrupt the data that determine the software’s behavior.

Unlike the previous attacks in this tutorial, data corruption may allow the
attacker to achieve their goals without diverting the target software from its
expected path of machine-code execution—either directly or indirectly. Such
attacks are referred to as data-only, or non-control-data, attacks [10]. In some
cases, a single instance of data corruption can be sufficient for an attacker to
achieve their goals. Figure 16 shows an example of a C function that is vulnerable
to such an attack.

As a concrete example of a data-only attack, consider how the function in
Figure 16 makes use of the environment string table by calling getenv routine
in the standard C library. This routine returns the string that is passed to
another standard routine, system, and this string argument determines what
external command is launched. An attacker that is able to control the function’s
two integer inputs is able to write an arbitrary data value to a nearly-arbitrary
location in memory. In particular, this attacker is able to corrupt the table of
the environment strings to launch an external command of their choice.

Figure 17 gives the details of such an attack on the function in Figure 16,
by selectively showing the address and contents of data and code memory. In
this case, before the attack, the environment string table is an array of pointers
starting at address 0x00353610. The first pointer in that table is shown in Fig-
ure 17, as are its contents: a string that gives a path to the “all users profile”. In
a correct execution of the function, some other pointer in the environment string

110 Ú. Erlingsson

void run_command_with_argument(pairs* data, int offset, int value)
{

// must have offset be a valid index into data
char cmd[MAX_LEN];
data[offset].argument = value;
{

char valuestring[MAX_LEN];
itoa(value, valuestring, 10);
strcpy(cmd, getenv("SAFECOMMAND"));
strcat(cmd, " ");
strcat(cmd, valuestring);

}
data[offset].result = system(cmd);

}

Fig. 16. A C function that launches an external command with an argument value,
and stores in a data structure that value and the result of the command. If the offset
and value can be chosen by an attacker, then this function is vulnerable to a data-only
attack that allows the attacker to launch an arbitrary external command.

address attack command string data as integers as characters
0x00354b20 0x45464153 0x4d4d4f43 0x3d444e41 0x2e646d63 SAFECOMMAND=cmd.
0x00354b30 0x20657865 0x2220632f 0x6d726f66 0x632e7461 exe /c "format.c
0x00354b40 0x63206d6f 0x3e20223a 0x00000020 om c:" >

address first environment string pointer
0x00353610 0x00353730

address first environment string data as integers as characters
0x00353730 0x554c4c41 0x53524553 0x464f5250 0x3d454c49 ALLUSERSPROFILE=
0x00353740 0x445c3a43 0x6d75636f 0x73746e65 0x646e6120 C:\Documents and
0x00353750 0x74655320 0x676e6974 0x6c415c73 0x7355206c Settings\All Us
0x00353760 0x00737265 ers

address opcode bytes machine code as assembly language
0x004011a1 0x89 0x14 0xc8 mov [eax+ecx*8], edx ; write edx to eax+ecx*8

Fig. 17. Some of the memory contents for an execution of the function in Figure 16,
including the machine code for the data[offset].argument = value; assignment. If the
data pointer is 0x004033e0, the attacker can choose the inputs offset = 0x1ffea046
and value = 0x00354b20, and thereby make the assignment instruction change the
first environment string pointer to the “format” command string at the top.

table would be to a string, such as SAFECOMMAND=safecmd.exe, that determines
a safe, external command to be launched by the system library routine.

However, before reading the command string to launch, the machine-code
assignment instruction shown in Figure 17 is executed. By choosing the offset
and value inputs to the function, the attacker can make ecx and edx hold

Low-Level Software Security: Attacks and Defenses 111

arbitrary values. Therefore, the attacker can make the assignment write any value
to nearly any address in memory, given knowledge of the data pointer. If the data
pointer is 0x004033e0, then that address plus 8∗0x1ffea046 is 0x00353610, the
address of the first environment string pointer. Thus, the attacker is able to write
the address of their chosen attack command string, 0x00354b20, at that location.
Then, when getenv is called, it will look no further than the first pointer in the
environment string table, and return a command string that, when launched,
may delete data on the “C:” drive of the target system.

Several things are noteworthy about this data-only attack and the function in
Figure 16. First, note that there are multiple vulnerabilities that may allow the
attacker to choose the offset integer input, ranging from stack-based and heap-
based buffer overflows, through integer overflow errors, to a simple programmer
mistake that omitted any bounds check. Second, note that although 0x1ffea046
is a positive integer, it effectively becomes negative when multiplied by eight,
and the assignment instruction writes to an address before the start of the data
array. Finally, note that this attack succeeds even when the table of environment
strings is initialized before the execution starts, and the table is never modified
by the target software—and when the table should therefore logically be read-
only given the semantics of the target software.

Attack 4: Constraints and Variants

There are two major constraints on data-only attacks. First, the vulnerabilities
in the target software are likely to allow only certain data, or a certain amount
of data to be corrupted, and potentially only in certain ways. For instance,
as in the above example, a vulnerability might allow the attacker to change a
single, arbitrary four-byte integer in memory to a value of their choice. Such
vulnerabilities exist in some heap implementations, as described on page 104;
there, an arbitrary write is possible through the corruption of heap metadata,
most likely caused by the overflow of a buffer stored in the heap. Many real-world
attacks have exploited this vulnerability, including the GDI+ JPEG attack in
Windows [16,10].

Second, even when an attacker can replace any amount of data with arbi-
trary values, and that data may be located anywhere, a data-only attack will be
constrained by the behavior of the target software when given arbitrary input.
For example, if the target software is an arithmetic calculator, a data-only at-
tack might only be able to cause an incorrect result to be computed. However,
if the target software embeds any form of an interpreter that performs poten-
tially dangerous operations, then a data-only attack could control the input to
that interpreter—allowing the attacker to perform the dangerous operations.
The system standard library routine is an example of such an interpreter; many
applications, such as Web browsers and document viewers, embed other inter-
preters for scripting languages.

To date, data-only attacks have not been prominent. Rather, data corrup-
tion has been most frequently utilized as one step in other types of attacks, such

112 Ú. Erlingsson

as direct code injection, or an jump-to-libc attack. This may change with the
increased deployment of defenses, including the defenses described below.

3 Defenses That Preserve C and C++ Language
Properties

This section presents, in detail, six effective, practical defenses against low-level
software attacks on x86 machine-code software, and explains how each defense
is based on preserving a property of target software written in the C or C++
languages. These defenses are stack canaries, reordering of stack variables, non-
executable data, control-flow integrity, encrypted pointers, and address-space
layout randomization. They have been selected based on their efficiency, and
ease-of-adoption, as well as their effectiveness.

In particular, this section describes neither defenses based on instruction-set
randomization [27], nor defenses based on dynamic information flow tracking, or
tainting, or other forms of data-flow integrity enforcement [9,36]. Such techniques
can offer strong defenses against all the attacks in Section 2, although, like the
defenses below, they also have limitations and counterattacks. However, these
defenses have drawbacks that make their deployment difficult in practice.

For example, unless they are supported by specialized hardware, they incur
significant overheads. On unmodified, commodity x86 hardware, defenses based
on data-flow integrity may double the memory requirements, and may make
execution up to 37 times slower [36]. Because these defenses also double the
number of memory accesses, even the most heavily optimized mechanism is still
likely to run software twice as slow [9]. Such overheads are likely to be unaccept-
able in many scenarios, e.g., for server workloads where a proportional increase
in cost may be expected. Therefore, in practice, these defenses may never see
widespread adoption—especially since equally good protection may be achiev-
able using a combination of the below defenses.

This section does not attempt a comprehensive survey of the literature on
these defenses. However, related material can be found with a search based on
the papers referenced in this section, and their discussion of other work.

3.1 Defense 1: Checking Stack Canaries on Function Return
Addresses

The C and C++ languages do not specify how function return addresses are
represented in stack memory. Rather, these, and many other programming lan-
guages, hold abstract most elements of a function’s invocation stack frame in
order to allow for portability between hardware architectures and to give com-
pilers flexibility in choosing an efficient low-level representation. This flexibility
enables an effective defense against some attacks, such as the return-address
clobbering of Attack 1.

In particular, on function calls, instead of storing return addresses directly
onto the stack, C and C++ compilers are free to generate code that stores

Low-Level Software Security: Attacks and Defenses 113

address content
0x0012ff5c 0x00353037 ; argument two pointer
0x0012ff58 0x0035302f ; argument one pointer
0x0012ff54 0x00401263 ; return address
0x0012ff50 0x0012ff7c ; saved base pointer
0x0012ff4c 0x00000000 ; all-zero canary
0x0012ff48 0x00000072 ; tmp continues ’r’ ’\0’ ’\0’ ’\0’
0x0012ff44 0x61626f6f ; tmp continues ’o’ ’o’ ’b’ ’a’
0x0012ff40 0x662f2f3a ; tmp continues ’:’ ’/’ ’/’ ’f’
0x0012ff3c 0x656c6966 ; tmp array: ’f’ ’i’ ’l’ ’e’

Fig. 18. A stack snapshot like that shown in Figures 4 where a “canary value” has been
placed between the tmp array and the saved base pointer and return address. Before
returning from functions with vulnerabilities like those in Attack 1, it is an effective
defense to check that the canary is still zero: an overflow of a zero-terminated string
across the canary’s stack location will not leave the canary as zero.

return addresses in an encrypted and signed form, using a local, secret key.
Then, before each function return, the compiler could emit code to decrypt
and validate the integrity of the return address about to be used. In this case,
assuming that strong cryptography is used, an attacker that did not know the
key would be unable to cause the target software to return to an address of their
choice as a result of a stack corruption—even when the target software contains
an exploitable buffer overflow vulnerability that allows such corruption.

In practice, it is desirable to implement an approximation of the above defense,
and get most of the benefits without incurring the overwhelming cost of executing
cryptography code on each function call and return.

One such approximation requires no secret, but places a public canary value
right above function-local stack buffers. This value is designed to warn of danger-
ous stack corruption, much as a coal-mine canary would warn about dangerous
air conditions. Figure 18 shows an example of a stack with an all-zero canary
value. Validating the integrity of this canary is an effective means of ensuring that
the saved base pointer and function return address have not been corrupted—
given the assumption that attacks are only possible through stack corruption
based on the overflow of a string buffer. For improved defenses, this public ca-
nary may contain other bytes, such as newline characters, that frequently ter-
minate the copying responsible for string-based buffer overflows. For example,
some implementations have used the value 0x000aff0d as the canary [14].

Stack-canary defenses may be improved by including in the canary value some
bits that should be unknown to the attacker. For instance, this may help defend
against return-address clobbering with an integer overflow, such as is enabled
by the memcpy vulnerability in Figure 11. Therefore, some implementations of
stack canary defenses, such as Microsoft’s /GS compiler option [7], are based on
a random value, or cookie.

Figure 19 shows the machine code for a function compiled with Microsoft’s
/GS option. The function preamble and postamble each have three new instruc-
tions that set and check the canary, respectively. With /GS, the canary placed

114 Ú. Erlingsson

function_with_gs_check:
; function preamble machine code
push ebp ; save old base pointer on the stack
mov ebp, esp ; establish the new base pointer
sub esp, 0x14 ; grow the stack for buffer and cookie
mov eax, [__security_cookie] ; read cookie value into eax
xor eax, ebp ; xor base pointer into cookie
mov [ebp-4], eax ; write cookie above the buffer
...
; function body machine code
...
; function postamble machine code
mov ecx, [ebp-4] ; read cookie from stack, into ecx
xor ecx, ebp ; xor base pointer out of cookie
call __security_check_cookie ; check ecx is cookie value
mov esp, ebp ; shrink the stack back
pop ebp ; restore old, saved base pointer
ret ; return

__security_check_cookie:
cmp ecx, [__security_cookie] ; compare ecx and cookie value
jnz ERR ; if not equal, goto an error handler
ret ; else return

ERR: jmp __report_gsfailure ; report failure and halt execution

Fig. 19. The machine code for a function with a local array in a fixed-size, 16-byte stack
buffer, when compiled using the Windows /GS implementation of stack cookies in the
most recent version of the Microsoft C compiler [7,24]. The canary is a random cookie
value, combined with the base pointer. In case the local stack buffer is overflowed, this
canary is placed on the stack above the stack buffer, just below the return address and
saved base pointer, and checked before either of those values are used.

on the stack is a combination of the function’s base pointer and the function’s
module cookie. Module cookies are generated dynamically for each process, using
good sources of randomness (although some of those sources are observable to
an attacker running code on the same system). Separate, fresh module cookies
are used for the executable and each dynamic library within a process address
space (each has its own copy of the __security_cookie variable in Figure 19).
As a result, in a stack with multiple canary values, each will be unique, with
more dissimilarity where the stack crosses module boundaries.

Defense 1: Performance, Limitations, Variants, and Counterattacks

The is little enforcement overhead from stack canary defenses, since they are
only required in functions with local stack buffers that may be overflowed. (An
overflow in a function does not affect the invocation stack frames of functions it
calls, which are lower on the stack; that function’s canary will be checked before
any use of stack frames that are higher on the stack, and which may have been

Low-Level Software Security: Attacks and Defenses 115

corrupted by the overflow.) For most C and C++ software this overhead amounts
to a few percent [14,15]. Even so, most implementations aim to reduce this over-
head even further, by only initializing and checking stack canaries in functions
that contain a local string char array, or meet other heuristic requirements. As a
result, this defense is not always applied where it might be useful—as evidenced
by the recent ANI vulnerability in Windows [22].

Stack canaries can be an efficient and effective defense against Attack 1, where
the attacker corrupts function-invocation control data on the stack. However,
stack canaries only check for corruption at function exit. Thus, they offer no
defense against Attacks 2, 3, and 4, which are based on corruption of the heap,
function-pointer arguments, or global data pointers.

Stack canaries are a widely deployed defense mechanism. In addition to Mi-
crosoft’s /GS, StackGuard [14] and ProPolice [15] are two other notable im-
plementations. Given its simple nature, it is somewhat surprising that there is
significant variation between the implementations of this defense, and these im-
plementations have varied over time [7,21]. In part, this reflects the ongoing arms
race between attackers and defenders; however, it is also because stack-canaries
have been combined with other defenses, such as Defense 2 below.

Stack canary defenses are subject to a a number of counterattacks. Most
notably, even when the only exploitable vulnerability is a stack-based buffer
overflow, the attackers may be able to craft an attack that is not based on
return-address clobbering. For example, the attack may corrupt a local variable,
an argument, or some other value that is used before the function exits.

Also, the attacker may attempt to guess, or learn the stack-canary values,
which can lead to a successful attack given enough luck or determination. The
success of this counterattack will depend on the exploited vulnerability, the at-
tacker’s access to the target system, and the particulars of the target software.
(For example, if stack canaries are based on random cookies, then the attacker
may be able to exploit certain format-string vulnerabilities to learn which canary
values to embed in the data of the buffer overflow.)

3.2 Defense 2: Moving Function-Local Variables Below Stack Buffers

Most details about the function-invocation stack frame are left unspecified in the
C and C++ languages, to give flexibility in the compilation of those language
aspects down to a low-level representation. In particular, the compiler is free to
lay out function-local variables in any order on the stack, and to generate code
that operates not on function arguments, but on copies of those arguments. This
flexibility enables an efficient defense against attacks based on stack corruption,
such as Attacks 1 and 3.

In this defense, the compiler places arrays and other function-local buffers
above all other function-local variables on the stack. Also, the compiler makes
copies of all function arguments into new, function-local variables that also sit
below any buffers in the function. As a result, these variables and arguments
are not subject to corruption through an overflow of those buffers. Figure 20
shows an example of how this defense might prevent the stack-based exploit in

116 Ú. Erlingsson

stack stack overflow
address contents contents
0x0012ff38 0x004013e0 0x1111110d ; cmp argument
0x0012ff34 0x00000001 0x1111110c ; len argument
0x0012ff30 0x00353050 0x1111110b ; data argument
0x0012ff2c 0x00401528 0x1111110a ; return address
0x0012ff28 0x0012ff4c 0x11111109 ; saved base pointer
0x0012ff24 0x00000000 0x11111108 ; tmp final 4 bytes
0x0012ff20 0x00000000 0x11111107 ; tmp continues
0x0012ff1c 0x00000000 0x11111106 ; tmp continues
0x0012ff18 0x00000000 0x11111105 ; tmp continues
0x0012ff14 0x00000000 0x11111104 ; tmp continues
0x0012ff10 0x00000000 0x11111103 ; tmp continues
0x0012ff0c 0x00000000 0x11111102 ; tmp continues
0x0012ff08 0x00000000 0x11111101 ; tmp buffer starts
0x0012ff04 0x004013e0 0x004013e0 ; local copy of cmp argument
0x0012ff00 0x00000004 0x00000040 ; memcpy length argument
0x0012fefc 0x00353050 0x00353050 ; memcpy source argument
0x0012fef8 0x0012ff08 0x0012ff08 ; memcpy destination argument

Fig. 20. A version of the stack shown in Figure 14 for the median function of Figure 11,
showing the contents for both valid inputs and in the case of a benign buffer overflow.
A local copy of the cmp argument has been placed at address 0x0012ff04, below tmp;
therefore, this copy cannot be corrupted by an overflow of the tmp buffer. If the code
in the body of the function makes use of this copy, not the original argument, then this
prevents attacks based on the vulnerability exploited by Attack 3.

Attack 3. In this example, a local copy has been made of the cmp function-pointer
argument corrupted by the attack; since this local copy resides below the buffer
on the stack, it cannot be corrupted in an overflow of that buffer.

Defense 2: Performance, Limitations, Variants, and Counterattacks

Placing local variables and copies of function arguments below any buffers in
a function’s stack frame has negligible enforcement overheads: reordering local
variables has effectively zero overhead, and the overhead of local argument copies
is also close to zero. Furthermore, this overhead applies only to functions with
local stack buffers that may be overflowed. As a result, in practice, the overhead
of this defense is often too small to be reliably measured [15].

This defense is both efficient and effective, but it is also limited. In particular,
this defense offers no protection against Attacks 2 and 4 or other attacks that
do not exploit stack-based buffer overflow vulnerabilities.

However, this defense does not completely prevent an attacker from exploiting
the effects of a stack-based buffer overflow. For instance, although local variables
or arguments may not be corrupted, these variables may contain pointers into
a region of the stack that may possibly be corrupted by the attacker. Thus, in
the case of a string pointer function argument, the attacker may not be able to
change the address in the pointer, but they will be able to change the contents

Low-Level Software Security: Attacks and Defenses 117

of the string itself—as long as the buffer overflow reaches up to the location on
the stack where the string resides.

This defense is combined with stack canaries in most implementations, such as
ProPolice and Microsoft’s /GS. This is a good fit, since both techniques defend
against the effects of stack-based buffer overflow, but only stack canaries offer
a means of detecting when stack corruption may have occurred. There is some
variation between these implementations. In particular, in order to further reduce
enforcement overhead, not all function arguments may be copied, but only code
and data pointers and other arguments that meet some heuristic requirements.
(Of course, this may permit some attacks that might otherwise not be possible.)

There are few counterattacks to this defense. An attacker may attempt to craft
a more indirect stack-based buffer overflow exploit that corrupts the contents of
pointers into the stack. However, the attacker is also likely to turn their attention
from attacks based on stack-based buffer overflow to other means of attack, such
as those described in Attacks 2 and 4.

3.3 Defense 3: Making Data Not Be Executable as Machine Code

Many high-level languages allow code and data to reside in two, distinct types
of memory. The C and C++ languages follow this tradition, and do not specify
what happens when code pointers are read and written as data, or what happens
when a data pointer is invoked as if it were a function pointer. This under-
specification brings important benefits to the portability of C and C++ software,
since it must sometimes run on systems where code and data memory are truly
different. It also enables a particularly simple and efficient defense against direct-
code-injection exploits, such as those in Attacks 1 and 2.

If data memory is not executable, then Attacks 1 and 2 fail as soon as the
hardware instruction pointer reaches the first byte of the attack payload (e.g.,
the bytes 0xfeeb2ecd described in Figure 6, and used throughout this tutorial).
Even when the attacker manages to control the flow of execution, they cannot
simply make control proceed directly to their attack payload. This is a simple,
useful barrier to attack, which can be directly applied to most software, since,
in practice, most software never treats data as code.

(Some legacy software will execute data as a matter of course; other software
uses self-modifying code and writes to code memory as a part of regular, valid
execution. For example, this behavior can be seen in some efficient, just-in-time
interpreters. However, such software can be treated as a special case, since it is
uncommon and increasingly rare.)

Defense 3: Performance, Limitations, Variants, and Counterattacks

In its implementation on modern x86 systems, non-executable data has some
performance impact because it relies on double-size, extended page tables. The
NX page-table-entry bit, which flags memory as non-executable, is only found
in PAE page tables, which are double the size of normal tables, and are otherwise

118 Ú. Erlingsson

not commonly used. The precise details of page-table entries can significantly im-
pact the overall system performance, since page tables are a frequently-consulted
part of the memory hierarchy—with thousands of lookups a second and, in some
cases, a lookup every few instructions. However, for most workloads, the over-
head should be in the small percents, and will often be close to zero.

Non-executable data defends against direct code injection attacks, but offers
no barrier to exploits such as those in Attacks 3 and 4. For any given direct code-
injection attack, it is likely that an attacker can craft an indirect jump-to-libc
variant, or a data-only exploit [10]. Thus—although this defense can be highly
useful when used in combination with other defenses—by itself, it is not much
of a stumbling block for attackers.

On Microsoft Windows, and most other platforms, software will typically ex-
ecute in a mode where writing to code memory generates a hardware exception.
In the past, some systems have also generated such an exception when the hard-
ware instruction pointer is directed to data memory, i.e., upon an attempt to
execute data as code. However, until recently, commodity x86 hardware has only
supported such exceptions through the use of segmented memory—which runs
counter to the flat memory model that is fundamental to most modern operating
systems. (Despite being awkward, x86 segments have been used to implement
non-executable memory, e.g., stacks, but these implementations are limited, for
instance in their support for multi-threading and dynamic libraries.)

Since 2003, and Windows XP SP2, commodity operating systems have come
to support the x86 extended page tables where any given memory page may be
marked as non-executable, and x86 vendors have shipped processors with the
required hardware support. Thus, it is now the norm for data memory to be
non-executable, in particular when running the Windows operating system.

On most legacy x86 processors that use unmodified page tables, it is actu-
ally possible to make data pages be non-executable using a clever technique
first implemented in the PaX project [37]. This technique builds on the fact
that, at the very top of the memory hierarchy on those x86 processors, code
and data is separated into two distinct memories: the code i-cache and data
d-cache. By maintaining an invariant, this technique can ensure that data mem-
ory is never present in the i-cache, and therefore that data memory is never
executed. Although ingenious, this technique does not work on all x86 proces-
sors; it can also have significant performance overhead and has a race condition
on multi-processor systems. Therefore, it never saw significant adoption before
being superseded by the current x86 hardware support for non-executable data
pages.

(The technique works as follows: all data pages in the page table are marked as
invalid, thereby preventing data memory from entering either of the two top-level
memories. Rather, an access to a data memory address will cause a page-fault
handler to be invoked; this handler can load the data memory into the d-cache
only, by briefly marking as valid the page-table entry for the data memory and
reading the data memory, e.g., using the mov instruction. As a result, until it
is evicted from the d-cache, the memory will be accessible as data. However,

Low-Level Software Security: Attacks and Defenses 119

because its page-table entry remains marked as invalid, the memory will never
enter the i-cache, and therefore never be executable.)

Indirect code injection, jump-to-libc attacks, and data-only attacks are all
effective counterattacks to this defense Even so, non-executable data can play
a key role in an overall defense strategy; for instance, when combined with De-
fense 6 below, this defense can prevent an attacker from knowing the location of
any executable memory bytes that could be useful to an attack.

3.4 Defense 4: Enforcing Control-Flow Integrity on Code Execution

As in all high-level languages, it is not possible for software written in the C
and C++ languages to perform arbitrary control-flow transfers between any two
points in its code. Compared to the exclusion of data from being executed as
code, the policies on control-flow between code are much more fine-grained.

For example, the behavior of function calls is only defined when the callee
code is the start of a function—even when the caller invokes that code through a
function pointer. Also, it is not valid to place a label into an expression, and goto
to that label, or otherwise transfer control into the middle of an expression being
evaluated. Transferring control into the middle of a machine code instruction is
certainly not a valid, defined operation, in any high-level language—even though
the hardware may allow this, and this may be useful to an attacker (see Attack 3,
page 109).

Furthermore, within the control flow that a language permits in general, only
a small fraction will, in fact, be possible in the semantics of a particular piece
of software written in that language. For most software, control flow is either
completely static (e.g., as in a C goto statement), or allows only a small number
of possibilities during execution.

For example, consider the case when the entire high-level language software
consists of the C++ code of Figure 9 on page 103. There, in the cmp function, it
is only possible for the invocation of m_cmp.compare to pass control to the start
of a compare member function in one of the two Comparer classes. Also, it is
clear that when either of those compare functions returns, it can only be to the
call site in the cmp function. Similarly, for all C or C++ software, any indirect
control transfers, such as through function pointers or at return statements, will
have only a small number of valid targets.

Dynamic checks can ensure that the execution of low-level software does not
stray from a restricted set of possibilities allowed by the high-level software. The
runtime enforcement of such a Control-Flow Integrity, or CFI, security policy is
a highly effective defense against low-level software attacks [2,3].

As a concrete example of the benefits of CFI enforcement, consider the pub-
lished attack on the GDI+ JPEG flaw in Windows [16]. This attack starts by
causing a heap memory corruption that results in a global variable being over-
written; this variable holds a C++ object pointer. When this pointer is later
used for calling a virtual destructor, the attacker has the possibility of execut-
ing code of their choice, much as in the C++ example in Attack 2. A CFI check at

120 Ú. Erlingsson

class Vulnerable
{

char m_buff[MAX_LEN];
Comparer m_cmp;

public:
Vulnerable(Comparer c) : m_cmp(c) {}
// ... elided code ...
int cmp(char* str) {

if((m_cmp.compare == &Comparer::compare) ||
(m_cmp.compare == &CaseSensitiveComparer::compare))

{
return m_cmp.compare(m_buff, str);

}
else throw report_memory_corruption_error();

}
};

Fig. 21. An excerpt of the C++ code in Figure 9 with explicit CFI checks that only
allow valid comparison methods to be invoked at runtime—thereby preventing the
exploit in Attack 2. (This code may not be accepted by modern C++ compilers, because
of how it reads the address of a virtual member function in an object instance.)

int is_file_foobar_using_heap(vulnerable* s, char* one, char* two)
{

// ... elided code ...
if((s->cmp == strcmp) || (s->cmp == stricmp)) {

return s->cmp(s->buff, "file://foobar");
} else {

return report_memory_corruption_error();
}

}

Fig. 22. An excerpt of the C code in Figure 7 with explicit CFI checks that only allow
the proper comparison methods to be invoked at runtime—assuming only strcmp and
stricmp are possible. These CFI checks prevent the exploit on this function in Attack 2.

this callsite can prevent this exploit, for instance by restricting valid destinations
to the C++ virtual destructor methods of the GDI+ library.

There are several strategies possible in the implementation of CFI enforce-
ment. For instance, CFI may be enforced by dynamic checks that compare the
target address of each computed control-flow transfer to a set of allowed des-
tination addresses. Such a comparison may be performed by the machine-code
equivalent of a switch statement over a set of constant addresses. Programmers
can even make CFI checks explicitly in their software, as shown in Figures 21
and 22. However, unlike in Figures 21 and 22, it is not possible to write software
that explicitly performs CFI checks on return addresses, or other inaccessible
pointers; for these, CFI checks must be added by the compiler, or some other

Low-Level Software Security: Attacks and Defenses 121

bool lt(int x, int y) {
return x < y;

}
bool gt(int x, int y) {

return x > y;
}
sort2(int a[], int b[], int len)
{

sort(a, len, lt);
sort(b, len, gt);

}

lt():

ret 23

label 17

sort2():

call sort

call sort

label 55

sort():

call 17,R

ret 55

label 23

ret …

gt():

ret 23

label 17

label 55

Fig. 23. Three C functions and an outline of their possible control flow, as well as
how an CFI enforcement mechanism based on CFI labels might apply to the functions.
In the outline, the CFI labels 55, 17, and 23 are found at the valid destinations of
computed control-flow instructions; each such instruction is also annotated with a CFI
label that corresponds to its valid destinations.

mechanism. Also, since the set of allowed destination addresses may be large, any
such sequence of explicit comparisons is likely to lead to unacceptable overhead.

One efficient CFI enforcement mechanism, described in [2], modifies according
to a given control-flow graph, both the source and destination instructions of
computed control-flow transfers. Two destinations are equivalent, when the CFG
contains edges to each from the same set of sources. At each destination, a
CFI label is inserted, that identifies equivalent destinations, i.e., destinations
with the same set of possible sources. The CFI labels embed a value, or bit
pattern, that distinguishes each; these values need not be secret. Before each
source instruction, a dynamic CFI check is inserted that ensures that the runtime
destination has the proper CFI label.

Figure 23 shows a C program fragment demonstrating this CFI enforcement
mechanism. In this figure, a function sort2 calls a qsort-like function sort
twice, first with lt and then with gt as the pointer to the comparison function.
The right side of Figure 23 shows an outline of the machine-code blocks for these
four functions and all control-flow-graph edges between them. In the figure, edges
for direct calls are drawn as light, dotted arrows; edges from source instructions
are drawn as solid arrows, and return edges as dashed arrows. In this example,
sort can return to two different places in sort2. Therefore, there are two CFI
labels in the body of sort2, and an CFI check when returning from sort, using
55 as the CFI label. (Note that CFI enforcement does not guarantee to which
of the two callsites sort must return; for this, other defenses, such as Defense 1,
must be employed.)

Also, in Figure 23, because sort can call either lt or gt, both comparison
functions start with the CFI label 17, and the call instruction, which uses a
function pointer in register R, performs a CFI check for 17. Finally, the CFI
label 23 identifies the block that follows the comparison callsite in sort, so both
comparison functions return with a CFI check for 23.

122 Ú. Erlingsson

machine-code opcode bytes machine code in assembly
... ...
0x57 push edi
0x53 push ebx
0x8b 0x44 0x24 0x24 mov eax, [esp+comp_fp]
0x81 0x78 0xfc 0x78 0x56 0x34 0x12 cmp [eax-0x4], 0x12345678
0x75 0x13 jne cfi_error_label
0xff 0xd0 call eax
0x0f 0x18 0x80 0xdd 0xcc 0xbb 0xaa prefetchnta [0xaabbccdd]
0x83 0xc4 0x08 add esp, 0x8
0x85 0xc0 test eax, eax
0x7e 0x02 jle label_lessthan
... ...

Fig. 24. A version of Figure 12, showing how CFI checks as in [2] can be added to the
qsort library function where it calls the comparison function pointer. Before calling
the pointer, it is placed in a register eax, and a comparison establishes that the four
bytes 0x12345678 are found immediately before the destination code, otherwise execu-
tion goes to a security error. After the call instruction, an executable, side-effect-free
instruction embeds the constant 0xaabbccdd; by comparing against this constant, the
comparison function can establish that it is returning to a valid call site.

Figure 24 shows a concrete example of how CFI enforcement based on CFI
labels can look, in the case of x86 machine-code software. Here, the CFI label
0x12345678 identifies all comparison routines that may be invoked by qsort,
and the CFI label 0xaabbccdd identifies all of their valid call sites. This style
of CFI enforcement has good performance, and also gives strong guarantees. By
choosing the bytes of CFI labels carefully, so they don’t overlap with code, even
an attacker that controls all of data memory cannot divert execution from the
permitted control-flow graph—assuming that data is also non-executable.

The CFI security policy dictates that software execution must follow a path of
a control-flow graph, determined ahead of time, that represents all possible valid
executions of the software. This graph can be defined by analysis—source-code
analysis, binary analysis, or execution profiling. This graph does not need to be
perfectly accurate, but needs only be a conservative approximation of the control-
flow graph possible in the software, as written in its high-level programming
language. To be conservative, the graph must err on the side of allowing all valid
executions of the software, even this may entail allowing some invalid executions
as well. For instance, the graph might conservatively permit the start of a few-
too-many functions as the valid destinations of a source instruction where a
function pointer is invoked.

Defense 4: Performance, Limitations, Variants, and Counterattacks

CFI enforcement incurs only modest overhead. With the CFI enforcement mech-
anism in [2], which instruments x86 machine code much as is shown in Figure 24,
the reported code-size increase is around 8%, and execution slowdown ranges

Low-Level Software Security: Attacks and Defenses 123

from 0% to 45% on a set of processor benchmarks, with a mean of 16% Even so,
this overhead is significant enough that CFI enforcement has, to date, seen only
limited adoption. However, a form of CFI is enforced by the Windows SafeSEH
mechanism, which limits dispatching of exceptions to a set of statically-declared
exception handlers; this mechanism does not incur measurable overheads.

CFI enforcement offers no protection against Attack 4 or other data-only
attacks. However, CFI can be an highly effective defense against all attacks
based on controlling machine-code execution, including Attacks 1, 2, and 3.

In particular, CFI enforcement is likely to prevent all variants of Attack 3,
i.e., jump-to-libc attacks that employ trampolines or opportunistic executable
byte sequences such as those found embedded within machine-code instructions.
This is the case even if CFI enforces only a coarse-grained approximation of the
software control-flow graph, such as allowing function-pointer calls to the start
of any function with the same argument types, and allowing functions to return
to any of their possible call sites [2].

CFI enforcement mechanisms vary both in their mechanisms and in their pol-
icy. Some mechanisms establish the validity of each computed control transfer
by querying a separate, static data structure, which can be a hash table, a bit
vector, or a structure similar to multi-level page tables [42]. Other mechanisms
execute the software in a fast machine-code interpreter that enforces CFI on
control flow [29]. Finally, a coarse-grained form of CFI can be enforced by mak-
ing all computed-control-flow destinations be aligned on multi-word boundaries.
(However, in this last case, any “basic block” is effectively a valid destination,
so trampolines and elaborate jump-to-libc attacks are still feasible.) The com-
plexity and overheads of these CFI mechanisms varies, but is typically greater
than that described above, based on CFI labels.

In a system with CFI enforcement, any exploit that does not involve control-
ling machine-code execution is a likely counterattack; this includes not only data-
only attacks, such as Attack 4, but also other, higher-level attacks, such as social
engineering and flaws in programming interfaces [4]. In addition, depending on
the granularity of CFI enforcement policy, and how it is used in combination with
other defenses, there may still exist possibilities for certain jump-to-libc attacks,
for instance where a function is made to return to a dynamically-incorrect, but
statically-possible, call site.

3.5 Defense 5: Encrypting Addresses in Code and Data Pointers

The C and C++ languages do not exactly specify how pointers encode memory
addresses, since this representation is highly platform specific. Just as C and
C++ hold return addresses abstract, which allows Defense 1, other pointers are
only subject to a few, well-defined operations that hold abstract their address
value. Therefore, one promising line of defense is to encrypt the addresses stored
in data and code pointers using a secret key, unknown to the attacker.

All of the attacks in Section 2 depend on pointer corruption in some way. As
long as all pointers contain encrypted addresses—including direct and indirect
function pointers, return addresses, base pointers, and pointers to data—then

124 Ú. Erlingsson

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: 0x656c6966 0x662f2f3a 0x61626f6f 0x00000072 0xbd6ba903

Fig. 25. A version of the data structure in Figure 8(a). The structure holds the string
“file://foobar” and a pointer to the strcmp function, whose address is 0x004013ce.
In this example, the address has been explicitly encrypted using the Windows
EncodePointer library function, and is stored as 0xbd6ba903 in the data structure.

this defense can thwart all of these attacks. For instance, encrypted pointers
can prevent Attack 4, where a pointer in the environment string table is cor-
rupted. When crafting this attack, if the attacker does not know the pointer
encoding, then they cannot know what integer value to write as an address in
the environment string table.

Unfortunately, in practice, software is most commonly written for expediency
and efficiency, not portability. Thus, existing C and C++ software often contains
elaborate pointer arithmetic, and operates on pointers cast into integral types
in ways that make it difficult to adopt defenses based on encrypted pointers.
This is in stark difference from the other defenses in this section: it is far more
common for software to rely on the address encoding in pointers than, say, for
software to make use of self-modifying code, or execute data as code. As a result,
defense mechanisms such as PointGuard [13], which attempt to pervasively and
automatically apply encrypted pointers, have seen very limited adoption.

However, if encrypted pointers are used explicitly by programmers, then the
programmers can ensure that no pointer arithmetic is invalidated by the encryp-
tion. Such explicit, selective application of encrypted pointers is a useful defense
for security-critical code that is a likely target of attacks. Figure 25 shows the
contents of a data structure where a function pointer has been explicitly en-
crypted using a library function available on Windows.

This defense has seen significant adoption in security-conscious software sys-
tems. For instance, in recent versions of the Windows heap implementation,
many heap metadata pointers are explicitly encrypted to prevent certain forms
of heap-based attacks discussed on page 104, in Attack 2.

Figure 26 shows how, on Windows, programmers can use pointer encoding
to make the C++ function in Figure 9 less vulnerable to attack. In this code
fragment, Windows library routines are explicitly invoked to encrypt and de-
crypt the address in the comparison pointer, using a per-process random value.
Thus this address will always appear encrypted in the object instance contents,
requiring the attacker to guess or learn the key in order to perform attacks such
as that shown in Figure 10.

Defense 5: Performance, Limitations, Variants, and Counterattacks

The performance effects of this defense will vary based on how pervasively point-
ers are encrypted, and what encryption method is used. To keep overheads low,

Low-Level Software Security: Attacks and Defenses 125

class LessVulnerable
{

char m_buff[MAX_LEN];
void* m_cmpptr;

public:
LessVulnerable(Comparer* c) {

m_cmpptr = EncodePointer(c);
}
// ... elided code ...
int cmp(char* str) {

Comparer* mcmp;
mcmp = (Comparer*) DecodePointer(m_cmpptr);
return mcmp->compare(m_buff, str);

}
};

Fig. 26. An excerpt of a variant of the C++ code in Figure 9 where the comparison
pointer is encoded using a random value specific to the process executing the software.
This code invokes library routines for the encoding and decoding; these particular rou-
tines are present on Windows XP SP2 and more recent versions of Microsoft Windows.

only a weak form of encryption is typically used, e.g., xor-ing pointers with a
secret value. When encryption is simply an inline xor operation, its performance
effects will be limited to a few percent, even when applied widely [13]. In Win-
dows, encryption is based on an xor operation and a bit-wise rotation, using
either per-process or system-wide random values established using good sources
of randomness [20]; one system call is performed when using a per-process secret.
As applied in Windows utilities and systems software, this defense has enforce-
ment overheads that are small enough to be hard to measure for most workloads.

The main limitation of this defense is that encrypted pointers must be selec-
tively applied to existing software, due to their potential incompatibility with
pointer arithmetic. Also, in the common case where encryption does not include
any signature or integrity check, this defense may not detect attempted attacks.

Many variants of this defense are possible, depending on which pointers are
encrypted. In particular, the encoding of addresses held in pointers does not need
to be the same for all pointers in a given piece of software. Instead, pointers could
be assigned into equivalence classes, or “colors”, and each color could be given
a different encoding, as long as no instruction that accessed a pointer made use
of more than one color. This variant can make defenses more fine grained and,
if applied pervasively to all or most pointers, can approximate the benefits of
other, general constraints on the software’s data flow [9].

The counterattacks to this defense depend on which pointers are encrypted,
and, of course, attacks that do not involve pointers are still possible. In partic-
ular, this defense may not prevent attacks based on corrupting the contents of
data, such as a buffer overflow of a boolean value that signifies successful authen-
tication [10]. Such attacks do not corrupt pointers, but still require the attacker
to know, in some form, the location of the data contents to be corrupted.

126 Ú. Erlingsson

3.6 Defense 6: Randomizing the Layout of Code and Data in Memory

The C and C++ languages specify neither where code is located in memory, nor
the location of variables, arrays, structures, or objects. For software compiled
from these languages, the layout of code and data in memory is decided by the
compiler and execution environment. This layout directly determines all concrete
addresses used during execution—and attacks, including all of the attacks in
Section 2, typically depend on these concrete addresses.

Therefore, a simple, pervasive form of address encryption can be achieved by
shuffling, or randomizing, the layout of software in the memory address space,
in a manner that is unknown to the attacker. Defenses based on such Address-
Space Layout Randomization, or ASLR, can be a highly practical, effective bar-
rier against low-level attacks. Such defenses were first implemented in the PaX
project [37] and have recently been deployed in Windows Vista [19,24].

ASLR defenses can be used to change the addresses of all code, global vari-
ables, stack variables, arrays, and structures, objects, and heap allocations; with
ASLR those addresses are derived from a random value, chosen for the software
being executed and the system on which it executes. These addresses, and the
memory-layout shuffling, may be public information on the system where the
software executes. However, low-level software attacks—including most worms,
viruses, adware, spyware, and malware—are often performed by remote attackers
that have no existing means of running code on their target system, or otherwise
inspect the addresses utilized on that system. To overcome ASLR defenses, such
attackers will have to craft attacks that do not depend on addresses, or somehow
guess or learn those addresses.

ASLR is not intended to defend against attackers that are able to control
the software execution, even to a very small degree. Like many other defenses
that rely on secrets, ASLR is easily circumvented by an attacker that can read
the software’s memory. Once an attacker is able to execute even the smallest
amount of code of their choice (e.g., in a jump-to-libc attack), it should be safely
assumed that the attacker can read memory and, in particular, that ASLR is
no longer an obstacle. Fortunately, ASLR and the other defenses in this tutorial
can be highly effective in preventing attackers from successfully executing even
a single machine-code instruction of their choice.

As a concrete example of ASLR, Figure 27 shows two execution stacks for
the median function of Figure 11, taken from two executions of that function on
Windows Vista, which implements ASLR defenses. These stacks contain code
addresses, including a function pointer and return address; they also include
addresses in data pointers that point into the stack, and in the data argument
which points into the heap. All of these addresses are different in the two exe-
cutions; only the integer inputs remain the same.

On many software platforms, ASLR can be applied automatically, in manner
that is compatible even with legacy software. In particular, unlike Defense 5,
ASLR changes only the concrete values of addresses, not how those addresses
are encoded in pointers; this makes ASLR compatible with common, legacy
programming practices that depend on the encoding of addresses.

Low-Level Software Security: Attacks and Defenses 127

stack one stack two
address contents address contents
0x0022feac 0x008a13e0 0x0013f750 0x00b113e0 ; cmp argument
0x0022fea8 0x00000001 0x0013f74c 0x00000001 ; len argument
0x0022fea4 0x00a91147 0x0013f748 0x00191147 ; data argument
0x0022fea0 0x008a1528 0x0013f744 0x00b11528 ; return address
0x0022fe9c 0x0022fec8 0x0013f740 0x0013f76c ; saved base pointer
0x0022fe98 0x00000000 0x0013f73c 0x00000000 ; tmp final 4 bytes
0x0022fe94 0x00000000 0x0013f738 0x00000000 ; tmp continues
0x0022fe90 0x00000000 0x0013f734 0x00000000 ; tmp continues
0x0022fe8c 0x00000000 0x0013f730 0x00000000 ; tmp continues
0x0022fe88 0x00000000 0x0013f72c 0x00000000 ; tmp continues
0x0022fe84 0x00000000 0x0013f728 0x00000000 ; tmp continues
0x0022fe80 0x00000000 0x0013f724 0x00000000 ; tmp continues
0x0022fe7c 0x00000000 0x0013f720 0x00000000 ; tmp buffer starts
0x0022fe78 0x00000004 0x0013f71c 0x00000004 ; memcpy length argument
0x0022fe74 0x00a91147 0x0013f718 0x00191147 ; memcpy source argument
0x0022fe70 0x0022fe8c 0x0013f714 0x0013f730 ; memcpy destination arg.

Fig. 27. The addresses and contents of the stacks of two different executions of the
same software, given the same input. The software is the median function of Figure 11,
the input is an array of the single integer zero, and the stacks are snapshots taken at
the same point as in Figure 14. The snapshots are taken from two executions of that
function on Windows Vista, with a system restart between the executions. As a result
of ASLR defenses, only the input data remains the same in the two executions. All
addresses are different; even so, some address bits remain the same since, for efficiency
and compatibility with existing software, ASLR is applied only at a coarse granularity.

However, ASLR is both easier to implement, and is more compatible with
legacy software, when data and code is shuffled at a rather coarse granularity.
For instance, software may simultaneously use more than a million heap allo-
cations; however, on a 32-bit system, if an ASLR mechanism randomly spread
those allocations uniformly throughout the address space, then only small con-
tiguous memory regions would remain free. Then, if that software tried to allo-
cate an array whose size is a few tens of kilobytes, that allocation would most
likely fail—even though, without this ASLR mechanism, it might certainly have
succeeded. On the other hand, without causing incompatibility with legacy soft-
ware, an ASLR mechanism could change the base address of all heap allocations,
and otherwise leave the heap implementation unchanged. (This also avoids trig-
gering latent bugs, such as the software’s continued use of heap memory after
deallocation, which are another potential source of incompatibility.)

In the implementation of ASLR on Windows Vista, the compilers and the
execution environment have been modified to avoid obstacles faced by other
implementations, such as those in the PaX project [37]. In particular, the soft-
ware executables and libraries of all operating system components and utilities
have been compiled with information that allows their relocation in memory at
load time. When the operating system starts, the system libraries are located

128 Ú. Erlingsson

sequentially in memory, in the order they are needed, at a starting point cho-
sen randomly from 256 possibilities; thus a jump-to-libc attack that targets
the concrete address of a library function will have less than a 0.5% chance of
succeeding. This randomization of system libraries applies to all software that
executes on the Vista operating system; the next time the system restarts, the
libraries are located from a new random starting point.

When a Windows Vista process is launched, several other addresses are chosen
randomly for that process instance, if the main executable opts in to ASLR
defenses. For instance, the base of the initial heap is chosen from 32 possibilities.
The stacks of process threads are randomized further: the stack base is chosen
from 32 possibilities, and a pad of unused memory, whose size is random, is placed
on top of the stack, for a total of about 16 thousand possibilities for the address
of the initial stack frame. In addition, the location of some other memory regions
is also chosen randomly from 32 possibilities, including thread control data and
the process environment data (which includes the table corrupted in Attack 4).
For processes, the ASLR implementation chooses new random starting points
each time that a process instance is launched.

An ASLR implementation could be designed to shuffle the memory layout at
a finer granularity than is done in Windows Vista. For instance, a pad of unused
memory could be inserted within the stack frame of all (or some) functions; also,
the inner memory allocation strategy of the heap could be randomized. However,
in Windows Vista, such an ASLR implementation would incur greater overhead,
would cause more software compatibility issues, and might be likely to thwart
mostly attacks that are already covered by other deployed defenses. In particular,
there can be little to gain from shuffling the system libraries independently for
each process instance [41]—and such an ASLR implementation would be certain
to cause large performance and resource overheads.

Defense 6: Performance, Limitations, Variants, and Counterattacks

The enforcement overhead of ASLR defenses will vary greatly depending on the
implementation. In particular, implementations where shared libraries may be
placed at different addresses in different processes will incur greater overhead
and consume more memory resources.

However, in its Windows Vista implementation, ASLR may actually slightly
improve performance. This improvement is a result of ASLR causing library
code to be placed contiguously into the address space, in the order that the
code is actually used. This encourages a tight packing of frequently-used page
table entries, which has performance benefits (cf. the page-table changes for
non-executable data, discussed on page 117).

ASLR can provide effective defenses against all of the attacks in Section 2 of
this tutorial, because it applies to the addresses of both code and data. Even so,
as discussed on page 125 for Defense 5, some data-only attacks remain possible,
where the attacks do not depend on concrete addresses, but rely on corrupting
the contents of the data being processed by the target software.

Low-Level Software Security: Attacks and Defenses 129

The more serious limitation of ASLR is the small number of memory layout
shuffles that are possible on commodity 32-bit hardware—especially given the
coarse shuffling granularity that is required for efficiency and compatibility with
existing software. As a result, ASLR creates only at most a few thousand possi-
bilities that an attacker must consider, and any given attack will be successful
against a significant (albeit small) number of target systems. The number of
possible shuffles in an ASLR implementation can be greatly increased on 64-bit
platforms, which are starting to be adopted. However, current 64-bit hardware
is limited to 48 usable bits and can therefore offer at most a 64-thousand-fold
increase in the number of shuffles possible [44].

Furthermore, at least on 32-bit systems, the number of possible ASLR shuffles
is insufficient to provide a defense against scenarios where the attacker is able to
retry their attack repeatedly, with new addresses [41]. Such attacks are realistic.
For example, because a failed attack did not crash the software in the case of
the recent ANI vulnerability in Windows [22], an attack, such as a script in
a malicious Web page, could try multiple addresses until a successful exploit
was found. However, in the normal case, when failed attacks crash the target
software, attacks based on retrying can be mitigated by limiting the number of
times the software is restarted. In the ASLR implementation in Windows Vista,
such limits are in place for many system components.

ASLR defenses provide one form of software diversity, which has been long
known to provide security benefits. One way to achieve software diversity is to
deploy multiple, different implementations of the same functionality. However,
this approach is costly and may offer limited benefits: its total cost is proportional
to the number of implementations and programmers are known to make the same
mistakes when implementing the same functionality [33].

A more attractive defense—which can offer more diversity, at little cost—is to
artificially perturb some of the low-level properties of existing, deployed imple-
mentations [17]. ASLR is one, relatively coarse-grained variant of this defense.
Other, finer-grained variants exist, including techniques based on automatically
creating multiple software versions through randomized obfuscation of the high-
level software specification [39]. While preserving the software’s high-level se-
mantics, such obfuscation can change the semantics as well as the addresses of
low-level code and data. However, unlike ASLR, defenses based on finer-grained
diversity have many costs, including performance overheads and increases to the
cost of software-engineering processes such as testing and debugging.

ASLR has a few counterattacks other than the data-only, content-based at-
tacks, and the persistent guessing of an attacker, which are both discussed above.
In particular, an otherwise harmless information-disclosure vulnerability may
allow an attacker to learn how addresses are shuffled, and circumvent ASLR
defenses. Although unlikely, such a vulnerability may be present because of a
format-string bug, or because the contents of uninitialized memory are sent on
the network when that memory contains residual addresses.

Another type of counterattack to ASLR defenses is based on overwriting only
the low-order bits of addresses, which are predictable because ASLR is applied at

130 Ú. Erlingsson

a coarse granularity. Such overwrites are sometimes possible through buffer over-
flows on little-endian architectures, such as the x86. For example, in Figure 27,
if there were useful trampoline machine-code to be found seven bytes into the
cmp function, then changing the least-significant byte of the cmp address on the
stack from 0xe0 to 0xe7 would cause that code to be invoked. An attacker that
succeeded in such corruption might well be able to perform a jump-to-libc at-
tack much like that in Attack 3. (However, for this particular stack, the attacker
would not succeed, since the cmp address will always be overwritten completely
when the vulnerability in the median function in Figure 11 is exploited.)

Despite the above counterattacks, ASLR is an effective barrier to attack,
especially when combined with the defenses described previously in this section.
Indeed, with such a combination of defenses, an attacker may be most likely to
counter with a higher-level attack, such as one based on higher-level interfaces
such as Web scripting languages, or simply based on social engineering.

4 Summary and Discussion

The distinguishing characteristic of low-level software attacks is that they are
dependent on the low-level details of the software’s executable representation
and its execution environment. As a result, defenses against such attacks can be
based on changing those details in ways that are compatible with the software’s
specification in a higher-level programming language.

As in Defense 1, integrity bits can be added to the low-level representation of
state, to make attacks more likely to be detected, and stopped. As in Defense 2,
the low-level representation can be reordered and replicated to move it away from
corruption possibilities. As in Defenses 3 and 4, the low-level representation can
be augmented with a conservative model of behavior and with runtime checks
that ensure execution conforms to that model. Finally, as in Defenses 1, 5, and 6,
the low-level representation can be encoded with a secret that the attacker must
guess, or otherwise learn, in order to craft functional attacks.

However, defenses like those in this tutorial fall far short of a guarantee that
the software exhibits only the low-level behavior that is possible in the soft-
ware’s higher-level specification. Such guarantees are hard to come by. For lan-
guages like C and C++, there are efforts to build certifying compilers that can
provide such guarantees, for correct software [6,31]. Unfortunately, even these
compilers offer few, or no guarantees in the presence of bugs, such as buffer-
overflow vulnerabilities. Many of these bugs can be eliminated by using other,
advanced compiler techniques, like those used in the Cyclone [25], CCured [35],
and Deputy [45] systems. But these techniques are not widely applicable: they
require pervasive source-code changes, runtime memory-management support,
restrictions on concurrency, and result in significant enforcement overhead.

In comparison, the defenses in this tutorial have very low overheads, require
no source code changes but at most re-compilation, and are widely applicable
to legacy software written in C, C++, and similar languages. For instance, they
have been applied pervasively to recent Microsoft software, including all the

Low-Level Software Security: Attacks and Defenses 131

Table 1. A table of the relationship between the attacks and defenses in this tutorial.
None of the defenses completely prevent the attacks, in all of their variants. The first
two defenses apply only to the stack, and are not an obstacle to the heap-based Attack 2.
Defenses 3 and 4 apply only to the control flow of machine-code execution, and do not
prevent the data-only Attack 4. Defense 5 applies only to pointers that programmers
can explicitly encode and decode; thus, it cannot prevent the return-address clobbering
in Attack 1. When combined with each other, the defenses are stronger than when they
are applied in isolation.

Attack 1 Attack 2 Attack 3 Attack 4

Defense 1 Partial
defense

Partial
defense

Partial
defense

Defense 2 Partial
defense

Partial
defense

Partial
defense

Defense 3 Partial
defense

Partial
defense

Partial
defense

Defense 4 Partial
defense

Partial
defense

Partial
defense

Defense 5 Partial
defense

Partial
defense

Partial
defense

Defense 6 Partial
defense

Partial
defense

Partial
defense

Partial
defense

components of the Windows Vista operating system. As in that case, these de-
fenses are best used as one part of a comprehensive software-engineering method-
ology designed to to reduce security vulnerabilities. Such a methodology should
include, at least, threat analysis, design and code reviews for security, security
testing, automatic analysis for vulnerabilities, and the rewriting of software to
use safer languages, interfaces, and programming practices [23].

The combination of the defenses in this tutorial forms a substantial, effective
barrier to all low-level attacks—although, as summarized in Table 1, each offers
only partial protection against certain attacks. In particular, they greatly reduce
the likelihood that an attacker can exploit a low-level security vulnerability for
purposes other than a denial-of-service attack. Because these defenses are both
effective, and easy to adopt in practice, in the next few years, they are likely to
be deployed for most software. Their adoption, along with efforts to eliminate
buffer overflows and other underlying security vulnerabilities, offers some hope
that, for C and C++ software, low-level software security may become less of a
concern in the future.

Acknowledgments. Thanks to Mart́ın Abadi for suggesting the structure of this
tutorial, and to Yinglian Xie for proofreading and for suggesting useful improve-
ments to the exposition.

132 Ú. Erlingsson

References

1. Abadi, M.: Protection in programming-language translations. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 868–883. Springer,
Heidelberg (1998) (Also Digital Equipment Corporation Systems Research Center
report No. 154, April 1998)

2. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-Flow Integrity: Princi-
ples, implementations, and applications. In: Proceedings of the ACM Conference
on Computer and Communications Security (2005) (Also as Microsoft Research
Technical Report MSR-TR-05-18 February 2005)

3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: A theory of secure control flow. In:
Proceedings of the 7th International Conference on Formal Engineering Methods
(2005) (Also as Microsoft Research Technical Report MSR-TR-05-17 May 2005)

4. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc., New York (2001)

5. Bailey, M., Cooke, E., Jahanian, F., Watson, D., Nazario, J.: The Blaster worm:
Then and now. IEEE Security and Privacy 03(4), 26–31 (2005)

6. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006)

7. Bray, B.: Compiler security checks in depth (2002),
http://msdn2.microsoft.com/en-us/library/aa290051(vs.71).aspx

8. Brumley, D., Chiueh, T.C., Johnson, R., Lin, H., Song, D.: Efficient and accurate
detection of integer-based attacks. In: Proceedings of the 14th Annual Network
and Distributed System Security Symposium (NDSS’07) (February 2007)

9. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow in-
tegrity. In: USENIX’06: Proceedings of the 7th conference on USENIX Symposium
on Operating Systems Design and Implementation, Berkeley, CA, USA, USENIX
Association, pp. 11–11 (2006)

10. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.: Non-control-data attacks are
realistic threats. In: Proceedings of the Usenix Security Symposium, pp. 177–192
(2005)

11. Intel Corporation: Intel IA-32 architecture, software developer’s manual, Volumes
1–3 (2007), http://developer.intel.com/design/Pentium4/documentation.htm

12. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., Lokier,
J.: FormatGuard: Automatic protection from printf format string vulnerabilities.
In: Proceedings of the Usenix Security Symposium (2001)

13. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: Protecting pointers
from buffer overflow vulnerabilities. In: Proceedings of the Usenix Security Sym-
posium, pp. 91–104 (2003)

14. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In: Proceedings of the Usenix Security Symposium,
pp. 63–78 (1998)

15. Etoh, H., Yoda, K.: ProPolice—improved stack smashing attack detection. IPSJ
SIGNotes Computer Security (CSEC), 14 (October 2001)

16. Florio, E.: GDIPLUS VULN - MS04-028 - CRASH TEST JPEG (September 15,
2004), Forum message sent, full-disclosureatlists.netsys.com

17. Forrest, S., Somayaji, A., Ackley, D.: Building diverse computer systems. In: HO-
TOS ’97: Proceedings of the 6th Workshop on Hot Topics in Operating Systems
(HotOS-VI), p. 67. IEEE Computer Society, Washington, DC (1997)

http://msdn2.microsoft.com/en-us/library/aa290051(vs.71).aspx
http://developer.intel.com/design/Pentium4/documentation.htm
full-disclosure at lists.netsys.com

Low-Level Software Security: Attacks and Defenses 133

18. Foster, J.C.: Metasploit Toolkit for Penetration Testing, Exploit Development, and
Vulnerability Research. Syngress Publishing (2007)

19. Howard, M.: Alleged bugs in Windows Vistas ASLR implementation (2006),
http://blogs.msdn.com/michael howard/archive/2006/10/04/
Alleged-Bugs-in -Windows-Vista 1920 s-ASLR-Implementation.aspx

20. Howard, M.: Protecting against pointer subterfuge (redux) (2006),
http://blogs.msdn.com/michael howard/archive/2006/08/16/702707.aspx

21. Howard, M.: Hardening stack-based buffer overrun detection in VC++ 2005
SP1 (2007), http://blogs.msdn.com/michael howard/archive/2007/04/03/
hardening-stack-based-buffer-overrun-detection-in-vc-2005-sp1.aspx

22. Howard, M.: Lessons learned from the animated cursor security bug (2007),
http://blogs.msdn.com/sdl/archive/2007/04/26/
lessons-learned-from-the-animated-cursor-security-bug.aspx

23. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press, Red-
mond, WA (2006)

24. Howard, M., Thomlinson, M.: Windows Vista ISV security (April 2007),
http://msdn2.microsoft.com/en-us/library/bb430720.aspx

25. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone: A
safe dialect of C. In: Proceedings of the Usenix Technical Conference, pp. 275–288
(2002)

26. Johns, M., Beyerlein, C.: SMask: Preventing injection attacks in Web applications
by approximating automatic data/code separation. In: SAC ’07: Proceedings of
the 2007 ACM symposium on Applied computing, pp. 284–291. ACM Press, New
York (2007)

27. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: CCS ’03: Proceedings of the 10th ACM confer-
ence on Computer and communications security, pp. 272–280. ACM Press, New
York (2003)

28. Kennedy, A.: Securing the .NET programming model. special issue of Theoreti-
cal Computer Science. In: Earlier version presented at APPSEM II Workshop, in
Munich, Germany, September 12-15, 2005 (to appear, 2007)

29. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shep-
herding. In: Proceedings of the Usenix Security Symposium, pp. 191–206 (2002)

30. Klog.: The frame pointer overwrite. Phrack 9(55) (1999)
31. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler

with a proof assistant. In: 33rd symposium Principles of Programming Languages,
pp. 42–54. ACM Press, New York (2006)

32. Litchfield, D.: Defeating the stack buffer overflow prevention mechanism of Mi-
crosoft Windows 2003 Server (2003),
http://www.nextgenss.com/papers/defeating-w2k3-stack-protection.pdf

33. Littlewood, B., Popov, P., Strigini, L.: Modeling software design diversity: a review.
ACM Comput. Surv. 33(2), 177–208 (2001)

34. Livshits, B., Erlingsson, Ú.: Using Web application construction frameworks to pro-
tect against code injection attacks. In: PLAS ’07: Proceedings of the 2007 workshop
on Programming languages and analysis for security, pp. 95–104. ACM Press, New
York (2007)

35. Necula, G.C., McPeak, S., Weimer, W.: CCured: Type-safe retrofitting of legacy
code. In: Proceedings of the 29th ACM Symposium on Principles of Programming
Languages, pp. 128–139 (2002)

http://blogs.msdn.com/michael_howard/archive/2006/10/04/Alleged-Bugs-in -Windows-Vista_1920_s-ASLR-Implementation.aspx
http://blogs.msdn.com/michael_howard/archive/2006/10/04/Alleged-Bugs-in -Windows-Vista_1920_s-ASLR-Implementation.aspx
http://blogs.msdn.com/michael_howard/archive/2006/08/16/702707.aspx
http://blogs.msdn.com/michael_howard/archive/2007/04/03/hardening-stack-based-buffer-overrun-detection-in-vc-2005-sp1.aspx
http://blogs.msdn.com/michael_howard/archive/2007/04/03/hardening-stack-based-buffer-overrun-detection-in-vc-2005-sp1.aspx
http://blogs.msdn.com/sdl/archive/2007/04/26/lessons-learned-from-the-animated-cursor-security-bug.aspx
http://blogs.msdn.com/sdl/archive/2007/04/26/lessons-learned-from-the-animated-cursor-security-bug.aspx
http://msdn2.microsoft.com/en-us/library/bb430720.aspx
http://www.nextgenss.com/papers/defeating-w2k3-stack-protection.pdf

134 Ú. Erlingsson

36. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of
the 12th Annual Network and Distributed System Security Symposium (NDSS’07)
(February 2005)

37. PaX Project: The PaX project (2004), http://pax.grsecurity.net/
38. Pincus, J., Baker, B.: Beyond stack smashing: Recent advances in exploiting buffer

overruns. IEEE Security and Privacy 2(4), 20–27 (2004)
39. Pucella, R., Schneider, F.B.: Independence from obfuscation: A semantic frame-

work for diversity. In: CSFW ’06: Proceedings of the 19th IEEE workshop on Com-
puter Security Foundations, pp. 230–241. IEEE Computer Society, Washington,
DC (2006) (Expanded version available as Cornell University Computer Science
Department Technical Report TR 2006-2016)

40. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: submission (2006),
http://hovav.net/dist/geometry.pdf

41. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: CCS ’04: Proceedings of the 11th
ACM conference on Computer and communications security, pp. 298–307. ACM
Press, New York (2004)

42. Small, C.: A tool for constructing safe extensible C++ systems. In: Proceedings of
the 3rd Conference on Object-Oriented Technologies and Systems (1997)

43. Spafford, E.H.: The Internet worm program: An analysis. SIGCOMM Comput.
Commun. Rev. 19(1), 17–57 (1989)

44. Wikipedia: x86-64 (2007), http://en.wikipedia.org/wiki/X86-64
45. Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren, M., Necula, G.,

Brewer, E.: SafeDrive: Safe and recoverable extensions using language-based tech-
niques. In: USENIX’06: Proceedings of the 7th conference on USENIX Symposium
on Operating Systems Design and Implementation, Berkeley, CA, USA, USENIX
Association, pp. 4–4 (2006)

http://pax.grsecurity.net/
http://hovav.net/dist/geometry.pdf
http://en.wikipedia.org/wiki/X86-64

	Low-Level Software Security: Attacks and Defenses
	Introduction
	Low-Level Software Security in Languages Other Than C and C++
	The Difficulty of Eliminating Low-Level Vulnerabilities
	The Assumptions Underlying Software, Attacks, and Defenses
	The Presentation of Technical Details in This Tutorial

	A Selection of Low-Level Attacks on C and C++ Software
	Attack 1: Corruption of a Function Return Address on the Stack
	Attack 2: Corruption of Function Pointers Stored in the Heap
	Attack 3: Execution of Existing Code Via Corrupt Pointers
	Attack 4: Corruption of Data Values That Determine Behavior

	Defenses That Preserve C and C++ Language Properties
	Defense 1: Checking Stack Canaries on Function Return Addresses
	Defense 2: Moving Function-Local Variables Below Stack Buffers
	Defense 3: Making Data Not Be Executable as Machine Code
	Defense 4: Enforcing Control-Flow Integrity on Code Execution
	Defense 5: Encrypting Addresses in Code and Data Pointers
	Defense 6: Randomizing the Layout of Code and Data in Memory

	Summary and Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

