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Abstract. This work deals with the application of kernel methods to structured
relational settings such as semantic knowledge bases expressed in Description
Logics. Our method integrates a novel kernel function for theALC logic in a
support vector machinethat could be set up to work with these representations.
In particular, we present experiments where our method is applied to the tasks of
concept retrieval and query answering on existing ontologies.
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1 Learning in Multi-Relational Settings

Many application domains, spanning from computational biology and chemistry to nat-
ural language processing, require operating on structured data representations. A new
emerging domain is represented by the Semantic Web (SW) [1] where knowledge inten-
sive manipulations on complex relational descriptions are foreseen to be performed by
machines. In this context,Description Logics(DLs) [2] have been adopted as the core
technology for ontology languages, such as OWL. This family of languages is endowed
with well-founded semantics and reasoning services (see Sect. 2). Unfortunately, ma-
chine learning through logic-based methods is inherently intractable in multi-relational
settings, unless language bias is imposed to constrain the representation. Yet, for the
sake of tractability, only very simple DL languages have been considered so far.

Kernel methods [3] are a family of efficient statistical learning algorithms, including
the support vector machines(SVMs), that have been effectively applied to a variety
of tasks, recently also in domains that typically require structured representations [4,
5]. They can be very efficient because they map, by means of a kernel function, the
original feature space of the considered data set into a high-dimensional space, where
the learning task is simplified. However, such a mapping is not explicitly performed
(kernel trick): it requires a sound definition of a positive definite kernel function on the
feature space; the validity of such a function ensures that the embedding into a new
space exists, so that it corresponds to the inner product in this space [3].

In this work, we exploit a kernel function for DLs representations, specifically for
theALC logic [6]. It encodes a notion of similarity of individuals in this representa-
tion, based on both structural and semantic aspects of the reference representation (see
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Sect. 3). By means of the resulting SVM, many tasks based on inductive classification
can be tackled. Particularly, we demonstrate how to perform important inferences on
semantic knowledge bases, namely concept retrieval and query answering. These tasks
are generally grounded on merely deductive procedures which easily fail in case of
(partially) inconsistent or incomplete knowledge. We show how the methods performs
comparably well w.r.t. a standard deductive reasoner, allowing the suggestion of new
knowledge that was not previously logically derivable. Indeed, the method was imple-
mented and experimentally tested on artificial and real ontologies drawn from standard
repositories as illustrated in Sect. 5.

2 Reference Representation Space

We will recall the basics ofALC (see [2] for a thorough reference). Such a logic is not
trivial as it is endowed with the basic constructors employed by the standard ontology
languages and deductive reasoning is quite computationally expensive [7].

Descriptions are inductively defined starting with a setNC of primitive concept
names and a setNR of primitive roles. Complex descriptions are built using primitive
concepts and roles and the language constructors. The semantics of the descriptions is
defined by aninterpretationI = (∆I , ·I), where∆I is a non-empty set, thedomain
of the interpretation, and·I is theinterpretation functionthat maps eachA ∈ NC to a
setAI ⊆ ∆I and eachR ∈ NR to RI ⊆ ∆I ×∆I . Thetop concept> is interpreted
as the whole domain∆I , while thebottomconcept⊥ corresponds to∅. Complex de-
scriptions can be built inALC using the following constructors.Full negation: given
any descriptionC, it is denoted¬C and amounts to∆I \CI . Concept conjunction, de-
noted byC1uC2, yields an extensionCI

1 ∩CI
2 and, dually,concept disjunction, denoted

C1 t C2, yields the unionCI
1 ∪ CI

2 . Finally, theexistential restriction, denoted∃R.C,
is interpreted as the set{x ∈ ∆I | ∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)} and thevalue
restriction∀R.C, has the extension{x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}.

The main inference issubsumptionbetween concepts based on their semantics:
given two descriptionsC andD, C subsumesD, denoted byC w D, iff for every
interpretationI it holds thatCI ⊇ DI . WhenC w D andD w C then they are
equivalent, denoted withC ≡ D.

A knowledge baseK = 〈T ,A〉 contains aTBoxT and anABoxA. T is the set
of definitionsC ≡ D, meaningCI = DI , whereC is the concept name andD is its
description.A contains assertions on the world state, e.g.C(a) andR(a, b), meaning
thataI ∈ CI and(aI , bI) ∈ RI .

A related inference isinstance checking, that is deciding whether an individual is an
instance of a concept [7, 2]. Conversely, it may be necessary to find the concepts which
an individual belongs to (realization problem), especially the most specific one:

Definition 1 (most specific concept).Given an ABoxA and an individuala, themost
specific conceptof a w.r.t.A is the conceptC, denotedMSCA(a), such thatA |= C(a)
and for any other conceptD such thatA |= D(a), it holds thatC v D.

In some cases, theMSC may not be expressed by a finite description [2], yet it may be
approximated. Generally approximations up to a certain depthk are considered, denoted
MSCk. We will generically indicate a maximal depth approximation withMSC∗.



Inductive Concept Retrieval and Query Answering through Kernel Methods 3

Another inference isretrieval which consists in finding the extension of a given
conceptC, namely, all individualsa such thatK |= C(a).

Many semantically equivalent (yet syntactically different) descriptions can be given
for the same concept. Nevertheless, equivalent concepts can be reduced to a normal
form by means of rewriting rules that preserve their equivalence [2]. Some notations
are necessary to define theALC normal form.prim(C) is the set of all the primitive
concepts (and their negations) occurring at the top-level ofC; valR(C) = C1u· · ·uCn

if there exists a value restriction∀R.(C1 u · · · u Cn) on the top-level ofC, otherwise
valR(C) = >; exR(C) is the set of the descriptionsC ′ appearing in existential restric-
tions∃R.C ′ at the top-level conjunction ofC. The normal form is defined as follows:

Definition 2 (ALC normal form). A descriptionC is inALC normal formiff C ≡ ⊥
or C ≡ > or if C = C1 t · · · t Cn with

Ci =
l

P∈prim(Ci)

P u
l

R∈NR

∀R.valR(Ci) u
l

E∈exR(Ci)

∃R.E


where, for alli = 1, . . . , n, Ci 6≡ ⊥ and, for anyR ∈ NR, valR(Ci) and every sub-
description inexR(Ci) are in normal form.

3 Kernel Functions

In the kernel methods, the learning algorithm (inductive bias) and the choice of the
kernel function (language bias) are almost completely independent. Thus, an efficient
algorithm for attribute-value instance spaces can be converted into one suitable for
structured spaces (e.g. trees, graphs) by merely replacing the kernel function with a
suitable one. This motivates the increasing interest addressed to the SVMs and other
kernel methods [3] that reproduce learning in high-dimensional spaces while working
like in a vectorial representation.

Kernels are endowed with the closure property w.r.t. many operations. In partic-
ular this class is closed w.r.t. convolution [8]: such kernels can deal with compounds
by decomposing them into their parts, provided that valid kernels have already been
defined for them. Other works have continued this line of research introducing ker-
nels for strings, trees, graphs and other discrete structures [4]. In particular, [5] shows
how to define generic kernels based on type construction where types are defined in a
declarative way. While these kernels were defined as depending on specific structures,
a more flexible method is building kernels as parametrized on a uniform representation.
Cumby and Roth [9] propose the syntax-driven definition of kernels based on a simple
DL representation, theFeature Description Language. They show that the feature space
blow-up is mitigated by the adoption of efficiently computable kernels. These functions
transform the initial representation of the instances into the related active features, thus
allowing learning the classifier directly from the structured data.

Grounded on [5], a (family of) valid kernel for the spaceX ofALC descriptions has
been proposed [6]. Recurring to the convolution kernels [8], the normal form is used to
decompose complex descriptions level-wise into sub-descriptions as follows:
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Definition 3 (ALC kernel). Given an interpretationI, theALC kernelbased onI is
the functionkI : X × X 7→ IR inductively defined as follows. Let two descriptions in
normal form beD1 =

⊔n
i=1 C1

i andD2 =
⊔m

j=1 C2
j , then:

disjunctive descriptions: kI(D1, D2) = λ
∑n

i=1

∑m
j=1 kI(C1

i , C2
j ) with λ ∈]0, 1]

conjunctive descriptions:

kI(C1, C2) =
∏

P1 ∈ prim(C1)
P2 ∈ prim(C2)

kI(P1, P2) ·
∏

R∈NR

kI(valR(C1), valR(C2)) ·

∏
R∈NR

∑
C1

i ∈ exR(C1)
C2

j ∈ exR(C2)

kI(C1
i , C2

j )

primitive concepts: kI(P1, P2) = kset(P I
1 , P I

2 ) = |P I
1 ∩ P I

2 |

wherekset is the kernel for set structures defined in [5]. This case includes also the
negation of primitive concepts using:(¬P )I = ∆I \ P I

This kernel computes the similarity between disjunctive as the sum of the cross-similarities
between any couple of disjuncts from either description (λ is employed to downweight
the similarity of the sub-descriptions on the grounds of the level where they occur). The
conjunctive kernel computes the similarity between two input descriptions, distinguish-
ing among primitive concepts, those referred in the value restrictions and those referred
in the existential restrictions. These similarity values are multiplied reflecting the fact
that all the restrictions have to be satisfied at a conjunctive level. The similarity between
primitive concepts is measured in terms of the intersection of their extension.

The kernel can be extended to the case of individualsa, b ∈ Ind(A) simply by taking
into account the approximations of their MSCs:kI(a, b) = kI(MSC∗(a),MSC∗(b)).

The application of the kernel function to most expressive DL is not trivial. DLs
allowing normal form concept definitions can only be considered. Moreover, for each
constructor not included in theALC logic, a kernel definition has to be provided.

4 Concept Retrieval by means of Kernel Methods

SVMs are classifiers, that, exploiting a kernel function, map the training data into a
higher dimensional feature space where they can be classified using a linear classifier.
The SVM, as any other kernel method, can be applied to whatever knowledge represen-
tation, provided a kernel function suitable for the chosen representation. Hence, a SVM
can be applied to anALC knowledge base, considering the kernel function in Def. 3. In
this paper, the SVM is used to solve the following classification problem:

Definition 4 (Problem Definition). Given a knowledge baseKB = (T ,A), let Ind(A)
be the set of all individuals inA and C = {C1, . . . , Cs} the set of all concepts
(both primitive and defined) inT . The problem to solve is: considered an individual
a ∈ Ind(A) determine the set of concepts{C1, . . . , Ct} ⊆ C to whicha belongs to.
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In the general setting of SVMs, the classes for the classification are disjoint. This is
not generally verified in the SW context, where an individual can be instance of more
than one concept. To solve this problem, a new answering procedure is proposed. It is
based on the decomposition of the multi-class problem into smaller binary classification
problems (one per class). Therefore, a simple binary value set (V = {−1,+1}) can be
employed, where (+1) indicates that an examplexi occurs in the ABox w.r.t. the con-
sidered conceptCj (namelyCj(xi) ∈ A); (−1) indicates the absence of the assertion
in the ABox. As an alternative, it can be considered+1 whenCj(xi) can be inferred
from the knowledge base, and−1 otherwise.

Another issue has to be considered. In the general classification setting an implicit
assumption ofClosed Worldis made. On the contrary, in the SW context theOpen
World Assumption(OWA) is generally made. To deal with the OWA, the absence of
information on whether a certain instancexi belongs to the extension of conceptCj

should not be interpreted negatively, as seen before, rather, it should count as neutral
information. Thus, another value set has to be considered, namelyV = {+1,−1, 0},
where the three values denote, respectively, assertion occurrence (Cj(xi) ∈ A), occur-
rence of the opposite assertion (¬Cj(x) ∈ A) and assertion absence inA. Occurrences
can be easily computed with a lookup in the ABox. Moreover, as in the previous case, a
more complex procedure may be devised by substituting the notion of occurrence (ab-
sence) of assertions in (from) the ABox with the one of derivability from the whole KB,
i.e.K ` Cj(xi) (K 6` Cj(xi) ),K 6` Cj(xi) and K 6` ¬Cj(xi), respectively.

Hence, considered the query instancexq, for every conceptCj ∈ C the classifier
will return+1 if xq is an instance ofCj ,−1 if xq is an instance of¬Cj , and0 otherwise.
The classification is performed on the ground of a set of training examples from which
such information can be derived.

The classification results can be used to improve concept retrieval service. By clas-
sifying the individuals in the Abox w.r.t. all concepts, concept retrieval is performed
exploiting an inductive approach. As will be experimentally shown in the following,
the classifier, besides of having a comparable behavior w.r.t. a standard reasoner, is also
able to induce new knowledge that is not logically derivable. Moreover it can be em-
ployed for the query answering task by determining, as illustrated above, the extension
of a new query concept built from concepts and roles in the considered ontology.

5 Experimental Evaluation

In order to solve the classification problem presented in the previous section and assess
the validity of theALC kernel function (see Def. 3), a SVM from the LIBSVM library1

has been considered. The instance classification has been performed on nine different
ontologies represented in OWL:FAMILY andUNIVERSITY handmade ontologies,FSM,
SURFACE-WATER-MODEL, NEWTESTAMENTNAMES, SCIENCE, PEOPLE, NEWSPA-
PERand WINES ontologies from the Protéǵe library2. Although they are represented in
languages that are different fromALC, constructors that are not allowed byALC are
simply discarded, in order to apply the kernel function.

1 http://www.csie.ntu.edu.tw/ cjlin/libsvm
2 See the webpage: http://protege.stanford.edu/plugins/owl/owl-library
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The classification method was applied to all the individuals in each ontology; namely,
the individuals were checked to assess if they were instances of the concepts in the on-
tology through the SVM. The performance was evaluated comparing its responses to
those returned by a standard reasoner3 used as baseline. Specifically, for each individ-
ual in the ontology theMSC is computed and enlisted in the set of training (or test)
examples. Each example is classified applying the SVM and theALC kernel function
with λ = 1 (see Def. 3). The experiment has been repeated twice, adopting the leave-
one-out cross validation procedure for ontologies with less then 50 individuals, and the
ten-fold cross validation procedure for the other ontologies. For each concept in the
ontology, the following parameters have been measured for the evaluation:match rate
computed as the number of cases of individuals that got exactly the same classification
by both classifiers with respect to the overall number of individuals;omission error rate
computed as the amount of unlabeled individuals (namely the method could not deter-
mine whether it was an instance or not) while it was to be classified as an instance of
that concept;commission error ratecomputed as the amount of individuals (analogi-
cally) labeled as instances of a concept, while they (logically) belong to that concept or
vice-versa;induction ratecomputed as the amount of individuals that were found to be-
long to a concept or its negation, while this information is not logically derivable from
the knowledge base. The average rates obtained over all the concepts in each ontology
are reported, jointly with their range. By looking at Tab. 1, reporting the experimen-
tal outcomes, it is important to note that, for every ontology, the commission error is
quite low. This means that the classifier did not make critical mistakes, i.e. cases when
an individual is deemed as an instance of a concept while it really is an instance of
another disjoint concept. Particularly, the commission error rate is not null in case of
UNIVERSITY and FSM ontologies and consequently also the match rate is the lowest.
It is worthwhile to note that these ontologies have the lowest number of individuals
for concepts. Specifically, the number of concepts is almost similar to the number of
individuals, this may represent a situation in which there is not enough information for
separating the feature space and then produce a correct classification. However, also in
this condition, the commission error is quite low, the matching rate is considerably high
and the classifier is able to induce new knowledge (induction rate not null).

In general, looking at Tab. 1 it is possible to note that the match rate increases with
the increase of the number of individuals in the considered ontology with a consequent
strong decrease of the commission error rate that is close to0 in such cases. Almost
always the classifier is able to induce new knowledge. Anyway it presents also a con-
servative behavior, indeed the omission error rate is very often not null. To decrease the
tendency to a conservative behavior of the classifier, a threshold could be introduced for
the consideration of the ”unknown” (namely labeled with0) training examples.

Another experiment has been done, to test the method as a means for performing
inductive concept retrieval w.r.t. new query concepts built from a considered ontology.
The method has been applied to perform a number of retrieval problems applied to the
considered ontologies usingλ = 1 for the kernel function. The experiment was quite
intensive involving the classification of all the individuals in each ontology; namely, the
individuals were checked through the inductive procedure to assess whether they were

3 PELLET: http://pellet.owldl.com
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Table 1.Results (average and range) of the experiments withλ = 1.

ONTOLOGY match rate induction rate omis. err. rate comm. err. rate

PEOPLE
avg. 0.866 0.054 0.08 0.00

range 0.66 - 0.99 0.00 - 0.32 0.00 - 0.22 0.00 - 0.03

UNIVERSITY
avg. 0.789 0.114 0.018 0.079

range 0.63 - 1.00 0.00 - 0.21 0.00 - 0.21 0.00 - 0.26

FSM
avg. 0.917 0.007 0.00 0.076

range 0.70 - 1.00 0.00 - 0.10 0.00 - 0.00 0.00 - 0.30

FAMILY
avg. 0.619 0.032 0.349 0.00

range 0.39 - 0.89 0.00 - 0.41 0.00 - 0.62 0.00 - 0.00

NEWSPAPER
avg. 0.903 0.00 0.097 0.00

range 0.74 - 0.99 0.00 - 0.00 0.02 - 0.26 0.00 - 0.00

WINES
avg. 0.956 0.004 0.04 0.00

range 0.65 - 1.00 0.00 - 0.27 0.01 - 0.34 0.00 - 0.00

SCIENCE
avg. 0.942 0.007 0.051 0.00

range 0.80 - 1.00 0.00 - 0.04 0.00 - 0.20 0.00 - 0.00

S.-W.-M.
avg. 0.871 0.067 0.062 0.00

range 0.57 - 0.98 0.00 - 0.42 0.00 - 0.40 0.00 - 0.00

N.T.N.
avg. 0.925 0.026 0.048 0.001

range 0.66 - 0.99 0.00 - 0.32 0.00 - 0.22 0.00 - 0.03

Table 2.Results (average) of the querying experiments.

ONTOLOGY match rate ind. rate omis. err. rate comm. err. rate
PEOPLE 0.886 0.040 0.074 0.0

UNIVERSITY 0.72 0.16 0.009 0.111
FSM 0.878 0.009 0.0 0.114

FAMILY 0.663 0.045 0.292 0.0
NEWSPAPER 0.779 0.0 0.221 0.0

WINES 0.943 0.0 0.057 0.0
SCIENCE 0.978 0.005 0.016 0.0

S.-W.-M. 0.804 0.134 0.062 0.0
NTN 0.906 0.022 0.072 0.0

retrieved as instances of a query concept. Therefore,15 queries were randomly gener-
ated by means of conjunctions/disjunctions of primitive and/or defined concepts of each
ontology. As for the previous experiment, the leave-one-out procedure was performed
in case of ontologies with less than50 individuals and a ten-fold cross validation was
performed for the others. The outcomes are reported in Tab. 2, from which it is pos-
sible to observe that the behavior of the classifier mainly remains the same as in the
experiment whose outcomes are reported in Tab. 1.

Summarizing, theALC kernel function can be effectively used, jointly with a SVM,
to perform inductive concept retrieval, guaranteeing almost null commission error and
interestingly the ability to induce new knowledge. The performance of the classifier in-
creases with the increase of the number of individuals populating the considered ontol-
ogy that have to be preferable homogeneously spread w.r.t. the concept in the ontology.
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6 Conclusions and Future Work

In this work we have tested a kernel function forALC descriptions integrated with
a SVM in a (multi)relational learning setting. The resulting classifier has been used
to improve concept retrieval and query answering tasks in the ontological setting. It
has been experimentally shown that its performance is not only comparable to the one
of a standard reasoner, but it is is also able to induce new knowledge, which is not
logically derivable. Particularly, an increase in prediction accuracy was observed when
the instances are homogeneously spread.

The realized classifier can be exploited for predicting/suggesting missing informa-
tion about individuals, thus completing large ontologies. Specifically, it can be used to
semi-automatize the population of an ABox. Indeed, the new assertions can be sug-
gested to the knowledge engineer that has only to validate their inclusion. This consti-
tutes a new approach in the SW context, since the efficiency of the statistical and numer-
ical approaches and the effectiveness of a symbolic representation have been combined.

The main weakness of the approach is on its scalability towards more complex
DLs. While computingMSC approximations might be feasible, it may be more difficult
focusing on a normal form when comparing descriptions. Indeed, as long as the ex-
pressivity increases, the gap between syntactic structure semantics of the descriptions
becomes more evident. As a next step, we can foresee the investigation of defining ker-
nels for more expressive languages w.r.t.ALC, e.g. languages enriched with (qualified)
number restrictions and inverse roles [2].
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5. Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Machine Learning

57 (2004) 205–232
6. Fanizzi, N., d’Amato, C.: A declarative kernel forALC concept descriptions. In Esposito, F.,

Rás, Z.W., Malerba, D., (Eds.), G.S., eds.: In Proceedings of the 16th International Sympo-
sium on Methodologies for Intelligent Systems. Volume 4203 of Lecture Notes in Computer
Science., Springer (2006) 322–331

7. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept languages: From
subsumption to instance checking. Journal of Logic and Computation4 (1994) 423–452

8. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-
10, Department of Computer Science, University of California – Santa Cruz (1999)

9. Cumby, C., Roth, D.: On kernel methods for relational learning. In Fawcett, T., N.Mishra,
eds.: Proceedings of the 20th International Conference on Machine Learning, ICML2003,
AAAI Press (2003) 107–114


