Skip to main content

TOLB: A Traffic-Oblivious Load-Balancing Protocol for Next-Generation Sensornets

  • Conference paper
  • 420 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4686))

Abstract

The multiple expected sources of traffic skewness in Next- Generation SensorNets (NGSN) will trigger the need for load-balanced point-to-point routing protocols. Driven by this fact, we present in this paper a load-balancing primitive, namely Traffic-Oblivious Load-Balancing (TOLB), to be used on top of any point-to-point routing protocol. TOLB obliviously load balances traffic by pushing the decision-making responsibility to the source of any packet without depending on the energy status of the network sensors or on previously taken decisions for similar packets. We present theoretical bounds on TOLB’s performance for special network types such as mesh networks. Additionally, we ran simulations to evaluate TOLB’s performance on general networks. Our experimental results show the high benefit (in terms of network lifetime and throughput) of applying TOLB on top of routing schemes to deal with various traffic skewness levels in different sensor deployment scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aly, M., Augustine, J.: Online packet admission and oblivious routing in sensor networks. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Aly, M., Chrysanthis, P.K., Pruhs, K.: Decomposing data-centric storage query hot-spots in sensor networks. In: Proc. of MOBIQUITOUS (2006)

    Google Scholar 

  3. Aly, M., Morsillo, N., Chrysanthis, P.K., Pruhs, K.: Zone Sharing: A hot-spots decomposition scheme for data-centric storage in sensor networks. In: Proc. of DMSN (2005)

    Google Scholar 

  4. Aly, M., Pruhs, K., Chrysanthis, P.K.: KDDCS: A load-balanced in-network data-centric storage scheme in sensor network. In: Proc. of CIKM (2006)

    Google Scholar 

  5. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM Journal on Computing (1999)

    Google Scholar 

  6. Baek, S.J., de Veciana, G.: A scalable model for energy load balancing in large-scale sensor networks. In: Proc. of 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (2006)

    Google Scholar 

  7. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Tan, K.-L., Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, Springer, Heidelberg (2000)

    Google Scholar 

  8. Busch, C., Magdon-Ismail, M., Xi, J.: Oblivious routing on geometric networks. In: Proceedings of SPAA (2005)

    Google Scholar 

  9. Cao, Q., Abdelzaher, T.: A scalable logical coordinates framework for routing in wireless sensor networks. In: Proc. of RTSS (2004)

    Google Scholar 

  10. Dai, H., Han, R.: Unifying micro sensor networks with the internet via overlay networking. In: Proc. of LCN (2004)

    Google Scholar 

  11. Dulman, S., Nieberg, T., Wu, J., Havinga, P.: Trade-off between traffic overhead and reliability in multipath routing for wireless sensor networks. In: Proc. of WCNC (2003)

    Google Scholar 

  12. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica, I.: Beacon Vector Routing: Scalable point-to-point routing in wireless sensornets. In: Proc. of NSDI (2005)

    Google Scholar 

  13. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly-resilient, energy-efficient multipath routing in wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review 5 (2001)

    Google Scholar 

  14. Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D., Osterweil, E., Schoellhammer, T.: A system for simulation, emulation, and deployment of heterogeneous sensor networks. In: Proc. of SenSys (2004)

    Google Scholar 

  15. Hajiaghayi, M., Kim, J.H., Leighton, T., Räcke, H.: Oblivious routing in directed graphs with random demands. In: Proc. of STOC (2005)

    Google Scholar 

  16. Hajiaghayi, M., Kleinberg, R.D., Leighton, T., Räcke, H.: New lower bounds for oblivious routing in undirected graphs. In: Proc. of SODA (2005)

    Google Scholar 

  17. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to minimize congestion. In: Proc. of SPAA (2003)

    Google Scholar 

  18. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. In: Proc. of ASPLOS (2000)

    Google Scholar 

  19. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking (TON) (February 11, 2003)

    Google Scholar 

  20. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless sensor networks. In: Proc. of ACM Mobicom (2000)

    Google Scholar 

  21. Kim, Y.-J., Govidan, R., Karp, B., Shenker, S.: On the pitfalls of geographic face routing. In: Proc. of DIALM-POMC (2005)

    Google Scholar 

  22. Bajaj, L., Takai, M., Ahuja, R., Bagrodia, R., Gerla, M.: Glomosim: A scalable network simulation environment. Technical Report 990027, UCLA (May 1999)

    Google Scholar 

  23. Li, X., Kim, Y.J., Govidan, R., Hong, W.: Multi-dimensional range queries in sensor networks. In: Proc. of ACM SenSys (2003)

    Google Scholar 

  24. Luckenbach, T., Gober, P., Arbanowski, S., Kotsopoulos, A., Kim, K.: Tinyrest - a protocol for integrating sensor networks into the internet. In: Proc. of REALWSN (2005)

    Google Scholar 

  25. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation service for ad-hoc sensor networks, vol. 36, pp. 131–146. ACM Press, New York (2002)

    Google Scholar 

  26. Nath, S., Liu, J., Miller, J., Zhao, F., Santanche, A.: Sensormap: a web site for sensors world-wide. In: Proc. of SenSys (2006)

    Google Scholar 

  27. Newsome, J., Song, D.: GEM: Graph embedding for routing and data centric storage in sensor networks without geographic information. In: Proc. of SenSys (2003)

    Google Scholar 

  28. Räcke, H.: Minimizing congestion in general networks. In: Proc. of FOCS (2002)

    Google Scholar 

  29. Raicu, I., Schwiebert, L., Fowler, S., Gupta, S.K.: Local load balancing for globally efficient routing in wireless sensor networks. International Journal of Distributed Sensor Networks 1 (2005)

    Google Scholar 

  30. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proc. of ACM Mobicom (2003)

    Google Scholar 

  31. Shah, R.C., Rabaey, J.M.: Energy aware routing for low energy ad hoc sensor networks. In: WCNC. Proc. of IEEE Wireless Communications and Networking Conference (2002)

    Google Scholar 

  32. Shenker, S., Ratnasamy, S., Karp, B., Govidan, R., Estrin, D.: Data-centric storage in sensornets. In: Proc. of HotNets-I (2002)

    Google Scholar 

  33. Valiant, L.G.: A scheme for fast parallel communication. SIAM Journal on Computing 11 (1982)

    Google Scholar 

  34. Vincze, Z., Vass, D., Vida, R., Vidacs, A., Telcs, A.: Adaptive sink mobility in event-driven multi-hop wireless sensor networks. In: Proc. of InterSense (2006)

    Google Scholar 

  35. Westphal, C.: Scaling properties of routing protocols in sensor networks with mobile access. Technical report, Nokia (July 2006)

    Google Scholar 

  36. Yao, Y., Gehrke, J.: Query processing for sensor networks. In: Proceedings of CIDR (2003)

    Google Scholar 

  37. Zhao, J., Govindan, R., Estrin, D.: Sensor Network Tomography: monitoring wireless sensor networks. Computer Communication Review 32(1), 64 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Evangelos Kranakis Jaroslav Opatrny

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aly, M., Gopalan, A. (2007). TOLB: A Traffic-Oblivious Load-Balancing Protocol for Next-Generation Sensornets. In: Kranakis, E., Opatrny, J. (eds) Ad-Hoc, Mobile, and Wireless Networks. ADHOC-NOW 2007. Lecture Notes in Computer Science, vol 4686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74823-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74823-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74822-9

  • Online ISBN: 978-3-540-74823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics